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Abstract : We derive a new upperbound on pairwise error 
probability for MPSK sequences over the Rayleigh fading 
channel when CSI is not available. This is obtained by 
adding weight factors in calculating the symbol metrics. 
Simulation shows that the weight factors which optimize 
the upperbound are likely to optimize the error rate too. 
We also design multilevel coded MPSK schemes which are 
suitable for the Rayleigh fading channel. These schemes 
are basically in the form of block coded modulation with 
interblock memory (BCMIM) [4], which was originally de- 
signed for additive white Gaussian noise (AWGN) channel. 
The added weight factors are found to be effective in im- 
proving the error performances of these BCMIM schemes 
in case that CSI is not available. 

I Introduction 

In 1982, Ungerboeck[l] introduced the concept of coded 
modulation which was originally designed for the additive 
white Gaussian noise (AWGN) channel. For a coded mod- 
ulation system applied to the AWGN channel, it is de- 
sired to maximize its minimum squared Euclidean distance 
(MSED). In [2], Divsalar and Simon investigate the situ- 
ation of applying a coded MPSK system to the Rayleigh 
fading channel. Through the derivation of upperbounds on 
the pairwise error probability of MPSK sequences, it has 
been shown that maximizing both minimum symbol dis- 
tance (MSD) and minimum product distance (MPD) is de- 
sired regardless of whether channel state information (CSI) 
is available or not. In this paper, we derive a better upper- 
bound on the pairwise error probability for the Rayleigh 
fading channel without CSI by adding weight factors in 
calculating the symbol metrics. The channel under con- 
sideration in this paper is the frequency nonselective slow 
Rayleigh fading channel with perfect phase tracking. We 
find weight factors which can optimize the upperbound. 
The new upperbound also shows that maximizing MSD 
and MPD is desired. Simulation on several examples show 
that the weight factors which optimize the upperbound are 
likely to be the best choices in lowering the error rates. 

Multilevel coding is a useful method to construct coded 
modulation systems [3]. The basic idea of multilevel coding 
is to partition a signal set into several levels and to sep- 
arately encode each level with a proper component code. 
We can use either a block code or a convolutional code as 
the component code in each level. If the component codes 

for all the levels are block codes, it is a kind of block coded 
modulation (BCM). 

In [4], a kind of multilevel coded modulation called block 
coded modulation with interblock memory (BCMIM) was 
designed for the AWGN channel to increase the coding rate 
without decreasing MSED as compared to the associated 
multilevel BCM. In this paper, we modify the design of 
BCMIM for MPSK signals applied to the Rayleigh fading 
channel such that the coding rate can be increased with- 
out decreasing MSD and MPD. The error performances 
of these BCMIM are simulated by computer. When CSI 
is not available, the error performances of the designed 
BCMIM schemes are not as good as we expect if conven- 
tional symbol metrics are used. However, by adding proper 
weight factors to the symbol metrics, improvement of the 
error performances can be observed. The optimal choice 
for the weight factor is a value proportional to the inverse 
of the level Euclidean distance in each level. In this paper, 
the coding rate, error performances and decoding complex- 
ities are provided for some BCM and BCMIM examples so 
that a fair comparison can be made. 

I1 Upperbounds on the Error Rate 
for Coded MPSK 

Let x = ( 2 1 ,  z2,.. . , z ~ )  be a transmitted coded MPSK 
symbol sequence of length N ,  where zi is the transmitted 
symbol at time i. Let r = ( T ~ , T Z , . . . , ~ N )  be the corre- 
sponding received sequence, where the ith element, ri, is 
given by 

p i  = P j X i  f nil 

where ni is a zero mean complex Gaussian variable with 
variance U: and pi is a normalized random variable with 
Rayleigh distribution. 

Consider the case that ideal CSI is available. Given the 
condition that the fading gain sequence is p = (PI, . . . , PN), 
the pairwise error probability of choosing 2 instead of x is 

(1) 

N 

~ r { x  -+ 2 I p} = P y { C [ m ( r z , z z t p e )  - m ( r , , ~ * , ~ ) ]  > 01, (2) 
e=1 

where m(ri, x i ,  pi )  is the metric of xi which will be used in 
the decoding trellis. 

By setting m(ri,zi,pi) =I ri - pizi 12 ,  it [a] can be 
shown that for reasonably large values, the pairwise 

0-7803-3692-5/96 0 1996 IEEE 339 



error probability of choosing 2 instead of x is bounded by 

This upperbound was derived by Divsalar and Simon [a]. 
Now we consider the case that CSI is absent, the pair- 

wise error probability of choosing 2 instead of x given the 
condition of fading gain sequence p is 

N 
Pr{x --+ 9 I p> = P r { C [ m ( r i ,  xi) - m(ri, 2i)l > 01. (4) 

Traditionally, m(ri, xi) is set to be 1 ri - xi 1’. We propose 
to set m(ri, zi) =wi 1 ri -xi 12, where wi is a weight factor. 
By applying Chernoff bound to (4), we have 

i=l  

~ r { x  -+ j7: I p> I 

= n e . z p [ - X w i  I si - si l 2  - ~ ~ w i ( p i  - I) 

E { e s p [ X ( m ( r ; ,  xi) - m(.ri, $;))I}. 
e” 

im 
xRe{s;(rci - 2i)*}] 
x E { e z p [ - 2 X w ; R e { a ; ( ~ ;  - 2i)*}]}, (5) 

where y’ is the complex conjugate of y and Re{y} is 
the real part of y. Suppose that the 1 zi I=) & 1, it 
can be shown that I xi - 3i [’= 2Re{xi(zi - ai)’}. and 
E { e x p [ - a X w i R e { n i ( ~ i - ~ i ) * ) I )  = ezp[X2wPai I xi--& 1’1. 
With da = I  xi - Pi 1 2 ,  we have 

P r { x  --+ 2 I p }  _< exp[-Xwipid; + X2w?vid;]. (6) 
{E, 

Normalizing the Chernoff parameter (replacing X by A c i  
) and substituting 8 for & in (6), we have 

With the assumption of infinite interleaving, the pair- 
wise error probability is 

Pr{x+9} = 1” . * . LW PrCx + 9 I P)P(Pl)P(PZ) 
. . .P(pN)dpldpZ ’ + ‘ d p N ,  (8) 

where pi and pj are identical and mutually independent 
for i # j .  

With a procedure similar to that used in [a], we can have 

where 

Since erfc z M 9 (1 - &) , we have 

where L, is the cardinality of q. 
To minimize the righthand side of (lo),  we need 

for each j E q. It follows from (lo), (1 1) and 

To see the effect of the weight factor, we give two simple 
examples as follows. 
Example 1 : Consider two 8PSK sequences, x = 
( X I , Q , X ~ )  and 2 = ( 2 1 , & , l i . ~ ) ,  such that df = 0.586, 
dz = 2, dg = 4. The ratio of optimal weight factors is 
w1 : w2 : w3 = - 
Upperbounds and simulation results are shown in Fig. 1. 
Example 2 : Consider two 16PSK sequences, x = 
(q,x2,x3,z4) and -jz = (%1,22,23,24), such that df = 
0.152, d? = 0.586, d$ = 2, d: = 4. Upperbounds and 
simulation results are shown in Fig. 2. 

Although to minimize the upperbound of pairwise error 
probability, we have shown that the best weight factor wj  is 
proportional to the inverse of d j ,  we are unable to theoret- 
ically prove that to minimize the pairwise error probability 
Pr{x  -+ j i .}  also requires that wj  be proportional to the 
inverse of d j  . However, simulation results indicate that 
probably setting wj  to be proportional to the inverse of dj 
is the best choice. Hence, we suggest that : “for decoding 
in the Rayleigh fading channel, the best weight factor at 
the j-th position may be proportional to  the inverse of the 
Euclidean distance between the two associated symbols” . 

1 : 3 1 : -L - 1 : 0.5412 : 0.3827. 4 -  

I11 Several Coded MPSK Systems 
for the Rayleigh Fading Chan- 
nel 

In this section, we will design several coded MPSK systems 
which are suitable for the Rayleigh fading channel. For the 
convenience of presentation, we restrict M to be 8. 
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Figure 1: Pr{x  -+ a} for 8PSK sequences of Example 1. 
(A) Upperbounds with CSI. 
(B) Upperbounds without CSI using 

w 1 : w 2 : w 3 = 1 : 1 : 1 .  
(C) Upperbounds without CSI using 

~1 : ~2 : ~3 = 1 : 0.5412 : 0.3827. 
(D) Simulation results with CSI. 
(E) Simulation results without CSI 

using w1 : w2 : w3 = 1 : 1 : 1. 
(F) Simulation results without CSI 

using w1 : 202 : w3 = 1 : 0.5412 : 0.3827. 
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Figure 2: Pr{x  --+ 2 )  for 16PSK sequences of Example 2. 
(A) Upperbounds with CSI. 
(B) Upperbounds without CSI using 

(C) Upperbounds without CSI using 

(D) Simulation results with CSI. 
(E) Simulation results without CSI using 

w1: w2 : w3 : w4 = 1 :  1 :  1 :  1. 
(F) Simulation results without CSI using 

w1 : w2 : w3 : w4 = 1 : 1 : 1 :  1. 

~1 : ~2 : ~3 : wq = 1 : 0.5098 : 0.2759 : 0.1951. 

~1 : ~2 : ~3 : 204 = 1 : 0.5098 : 0.2759 : 0.1951. 

Consider an 8PSK signal constellation as given in [l], 
in which each signal point is labelled by (a ,  b ,  c), where 
a, 6 ,  and e E {0,1}. By successive two-way partitions of 
8PSK signal set, the intra-subset squared Euclidean dis- 
tances are Si = 0.586, S; = 2 and S: = 4 respectively [l]. 
Let (ul, b l ,  el), (a2, b2,  ea), . . be a sequence of transmit- 
ted 8PSK signals. A conventional multilevel coding system 
is designed in such a way that (a1 , u2, . . .) is a codeword 
of a binary code C,, ( 6 1 ,  bar . a . )  is a codeword of a bi- 
nary code cb, and (cl, c2, . ..) is a codeword of a binary 
code C,. Here, Ci is the code used for coding the level i, 
i E { a ,  6 ,  c}. Suppose that Ci is an (n,  ki, di) binary block 
code with generator matrix Gi, where i E {a ,  6 ,  c). Then 
we have a BCM for which each block consists of n 8PSK 
signal points and the coding rate is ( k l  + k2 + k 3 ) / n  bits 
per 8PSK signal point. Such a BCM can be easily decoded 
by a 3-stage decoding, where at the i-th stage of decoding, 
a trellis for Ci is used. 

The important parameters which will affect the error 
performances of a coded MPSK for the Rayleigh fading 
channel are MSD, MPD and N ( a , p ) ,  where N ( a , p )  is 
the number of neighbors at a symbol distance of a and 
at a product distance of p. From the upperbounds given 
in (3) and (12), we see that MSD is the most important 
parameter for high signal-to-noise ratio (SNR). Hence, it 

is natural to set C,, cb, and C, to be the same code, to 
achieve a large MSD. 
Example 3 (BCM-1) : Let C, = cb = C, be an (8,4,4) 
binary code. Then, we have a BCM. The coding rate is 
12/8 bits per symbol. The parameters MSD, MPD and 
N(MSD,MPD) are 4, (0.586)* and 224 respectively. Simu- 
lation results for the Rayleigh fading channel with CSI and 
without CSI which are obtained from a 3-stage decoding 
are respectively given in Fig. 4, Fig. 5 and Fig. 6, where 
in Fig. 4 weight factor is not used and in Fig. 5 optimal 
weight factors are used. The ratio of optimal weight fac- 
tors for level a, b and e is w, : wb : w, =1 : 0.5412 : 0.3827. 
In each stage of the 3-stage decoding, a 4-state trellis for 
the (8,4,4) binary code is needed. 

For BCM-1, the bit error rate (BER) is not satisfactory 
for high SNR, since the MPD S: is not large enough. One 
way to increase 6; is to decrease the code rate of C, as 
given in Example 4. 
Example 4 (BCM-2) : Replace C, in BCM-1 by an (8,1,8) 
code. Then the coding rate is reduced to 9/8 bits per 
symbol. The parameters MSD, MPD and N(MSD,MPD) 
are 4, 16 and 224 respectively. Simultion results given in 
Figures 4, 5 and 6 show the improvement of BER for high 
SNR. For both BCM-1 and BCM-2, the decoding results 
without CSI are independent of the weight factors Since 
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the coding of each level is indepdent of each levels. 
The BCMIM scheme [4] proposed in 1994 is for the 

AWGN channel. For the Rayleigh fading channel, the de- 
sign criterion is much different. 

Let ( a l ,  . . . , a,, bl, . . . , b,, c1, . . . , e,) represent a block 
of n 8PSK signal points and (aT,...,u$, br,...,b,f, 
c; , . . , e$) represent the following block. These two adja- 
cent blocks are combined to be called a superblock. For a 
BCM,wehave(al , . . . ,a , )  =Ga.G,, (61,...,bn) = G b . G b  

and (el, . . . , e,) = G, .G,, where Gi is the generator matrix 
of the (n, k; ,  d; )  binary block code Ci and i& is a ki-bit 
message for i E { a ,  b, e}. For a BCMIM with interblock 
memory between levels a and b, it is designed such that 

(bl, . ' ,  bn, a:, * ' ,  a$) = ( E r ,  6b) G (13) 

where 21.1. is a kr-bit message, 

Gbr Gar '=(  ? )  (14) 

is the generator matrix of a (2n, k ,  + k b  + T )  binary code 
c, Gar and Gbr are both r x n matrices. Also, coding for 
level c is obtained by (cl,. . . , en) = iic . G, The coding 
configuration is given in Fig. 3. 

Codewords of C 
J 4 

which are encoded into (bl,; + * ,  b,, ci,  . * . ,era, a:, . . . , U $ )  

and ( b i ,  . . . , b,, cl, . . . , L,, a t  , . . + ) a:') respectively. Con- 
sider the following conditions. 

(i) Suppose that 6,. = 6;. Then, the MSD and MPD 
between the associated superblocks are equal to 8~ and 
A$ respectively. 

(ii) Suppose that er # 6;. Then, the MSD and MPD 
between the associated superblocks are 

I /  

SHr = dau + dbb (15) 

and 
A;r = (SX)daa ( S z ) d b b  (16) 

respectively. In our design, we require either (A) SH,. = SB 
and Agr > A$ or (B) S H ~  > S H .  Note that for high SNR, 
symbol distance is more important than product distance. 
Hence, BCMIM and BCM will have almost the same bit 
error rate (BER) at the same E,,",, and BCMIM will have 
lower BER than BCM at the same &/No which results 
from the smaller bandwidth required by BCMIM, where 
E,  is the average energy of each signal point, Eb is the 
average energy of each message bit and No is the one-sided 
power spectral density of AWGN. 

BCMIM for which interblock memory is provided be- 
tween other levels can be similarly designed. 

We will show specific designs of BCMIM for the Rayleigh 
fading channel in the following examples. 

/ .  / ,  

Figure 3: The structure of BCMIM with interblock memory 
between levels a and 6. 

In this way, the coding rate will be (T $- k ,  + k b  + k,)/n 
bits per 8PSK signal point. If we switch the roles of the 
'%"and "2' symbols in the above coding design, then we 
have a BCMIM with interblock memory between levels a 
and e. Of course, we can provide interblock memory be- 
tween levels b and e in a similar way. 

Consider the case that the interblock memory is pro- 
vided between levels a and b. Let the MSD and 
MPD of the original BCM be b~ and A; respec- 
tively. Let Cii denote the (n, ki -+ r,d;i) binary block 
code with generator matrix [GZ,GTIT, i E {a,b,c), 
where MT is the transpose of a matrix M .  Let 
( U r ,  G i ,  66, Gc) and (e;, Cif ' ,  e;, e,') be distinct messages 
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Figure 4: Simulations with CSI. 

Example 5 (BCMIM-1) : For this BCMIM, Ca,cb, 
CUU and C b b  are (8,1,8), (8,4,4), (8,4,4), (8,4,4) and (8,7,2) 
binary codes respectively. The code rate is 12/8 bits per 
signal point. In the 2-stage decoding, an 8-state trellis for 
the (16,8,4) binary code C and a 4-state trellis for C, are 
needed. 
Example 6 (BCMIM-2) : For this BCMIM, C,,Cb, C,, 
C,, and Cc, are (8,1,8), (8,4,4), (8,4,4), (8,4,4) and (8,7,2) 
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binary codes respectively. The code rate is 12/8 bits per 
signal point. In the 2-stage decoding, an %state trellis for 
the (16,8,4) binary code and a 4-state trellis for c b  are 
needed. 
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Figure 5: Simulations without CSI using wa : wb : wc = 1 : 1 : 
1. 
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Figure 6: Simulations without CSI using wa : wb : wc = 1 : 
0.5412 : 0.3827. 

Example 7 (BCMIM-3) : For this BCMIM, Ca,Cb, C,, 

binary codes respectively. The code rate is 12/8 bits per 
signal point. In the 2-stage decoding, an 8-state trellis for 
the (16,11,4) binary code and a l-state trellis for Ca are 
needed. 

From simulation results shown in Fig. 4, for which per- 
fect CSI is available, we see that all the three BCMIM 
have lower BER than the BCM-1 and BCM-2. Among the 
three BCMIM, BCMIM-2 which provides interblock mem- 
ory between levels a and c is the best. This can be seen by 

c b b  and Ccc are (8,118)j (8,4,4), (8,4,4), (8,772) and (8,7,2) 

more detailedly examining the distance properties of these 
BCMIM, even though the MSD and MPD of these BCMIM 
are all identical to the MSD and MPD of BCM-2. In case 
that U,. # U:, we have SH,. = 6 and A;,. = (2)2 x (0.586)4 
and N ( S H p ,  A;,.) = 3584 for BCMIM-1; bHr = 6 and A;,. 
= (4)’ x (0.586)4 and N ( ~ H , . ,  A$,) = 896 for BCMIM-2; 
dHr = 4 and A;,. = (4)2 x (2)’ and N ( ~ H ~ ,  A;,.) = 1792 
for BCMIM-3. Since SH,. is more important than A;,. for 
high SNR, we can expect that BCMIM-2 which also has 
the smallest N(SH,., A;,.) is the best. Although N ( S H r ,  
A:,.) is larger and A;,. is smaller, BCMIM-1 is better than 
BCMIM-3 for high SNR, which is due to the larger SH,. 

From Fig. 5 and Fig. 6, we note that for all the three 
BCMIM, the usage of weight factors can improve the BER. 
We use BCMIM-2 as an example for explaining the reason. 
In the first stage of decoding for BCMIM-2, the SED be- 
tween any two symbols in the first 8 positions is either 4 
or 0 and the SED between any two symbols in the last 8 
positions is either 0.586 or 0. In decoding this stage, the 
optimal ratio of weight factors is (1/4)0-5 : (1/0.586)0.5 
= 1 : 0.3827. Compared with BCM-2, the coding rate of 
BCMIM-2 is increased from 9/8 to 12/8, and the error rate 
is lower. The price is that the decoding complexity for de- 
coding BCMIM-2 is about twice of that for BCM-2. In the 
following, we slightly lower the coding rate of BCMIM-2 
to more clearly show the advantage of BCMIM over BCM. 
Example 8 (BCMIM-4) : For this BCMIM, Ca,Cb, c,, 
binary codes respectively. The code rate is 11/8 bits per 
signal point. In the 2-stage decoding, a 4-state trellis for 
the (16,7,4) binary code and a $-state trellis for c b  are 
needed. 

The decoding complexity of BCMIM-4 is almost the 
same as BCM-2. However, the coding rate is higher and 
the BER is lower. 

Caa and Ccc are (8,1,8), (8,4,4), (8,4,4), (8,3,4) and (8,6,2) 
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