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Abstract

In this paper, we propose a new method to realize an
irrational scaling of a 2D digital signal/image. This method is
suitable for any scaling matrices with real entries, including
irrational numbers. Based on this algorithm, anew structure of
a 2D four-channel non-uniform perfect reconstruction filter
bank is derived. Through the proposed structure, it is now
possible to segment the 2D frequency components of a 2D
digital signal/image arbitrarily through a careful design of the
scaling matrix whilestill preserving the PR property. Therefore,
we can find many applications such as image compression and
communication using this structure. The experimental results
are presented at the end of this paper.

index terms—irrational scaling, interpolation, decimation,
2D nonuniform filter bank, perfect reconstruction

I. INTRODUCTION

I n a conventional filter bank system, the scaling operation is
very important in that it controls the sampling rate to meet
the system requirements. Asfor the 2D filter bank system, the
scaling matrix not only controls the sampling rate through its
determinant but also incorporates shearing and rotating
operations as those fundamental properties of a 2D affine
transform. However, as long as a discrete time system is
considered, most previous works fail to realize a scaling
operation with irrational matrices. Although rational scaling
can approximate any irrational scaling to reasonable accuracy

inthe 1D case, i.e. F =M /N [1], M and N might have to be

very large with higher sampling rates. Furthermore, as far as
the 2D case is concerned, the decomposition of the scaling
matrix to that with all integer entriesistrivial and not practical.

In this paper, we propose a new method to realize any
irrational scaling operations of a 2D digital signal. This
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method well preserves the linearity property while performing

i the gealing operation. In addition, the formula has a concise

closed form in time domain, which is invulnerable to any
computational approximation. Therefore, a 2D PR filter bank
structure with irrational down-sampling matrices is realizable
using the proposed scaling algorithms.

The paper is organized as follows. Section  provides the
derivation of the new scaling algorithm. Section  introduces
a decomposition method of the scaling matrix and the
corresponding structure of the 2D irrational scaling PR filter
bank isshowninSection . Section presentsthe simulation
results of the above scheme. Finally the conclusion is made in
Section

I1. PROPOSED IRRATIONAL SCALING
ALGORITHM

Given a 2D discrete time signal x{mn| with DTFT
X(ejwm,eJWn), suppose its scaled version is x,[m,n] with DTFT
X ,(e"n,e" ), where A isthe scaling matrix and
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For smplicity, we will use X(Wm'Wn)' XA(Wm'Wn) instead
of X (e e™) and X (e, e ) respectively through out this
paper. Since Eq.(3) is defined only for those A’s with integer
entries, we will seek for another solution using spectral

approaches as follows. Referring to the scaling property of 2D
continuous time Fourier transform (CTFT) as below [2],
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we could reasonably infer Eq.(4) to its DTFT counterpart, i.e.
x[m,n]- %F@® X (w,,w, )
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scaling formula which reveals that scaling by A in time
domain is equivalent to scaling by (A'l)T in frequency domain
and magnifying by ]/|det(A)|- Since X(Wm,Wn) is a 2D
continuous time periodic function with period 2p aong both
vertical and horizontal directions, XA(Wm,Wn) by definition
exists whenever a,b,c,di A . Based on Eq.(5), we can now
proceed to derive the 2D irrational scaling algorithm step by

step.
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Eq.(7) can serve as an initial solution for 2D irrational scaling
problems. However, it suffers from possible aliasing and
imaging effects which are introduced by the scaling matrix A.
Therefore, we will modify Eq.(7) according to two different
kinds of scaling matrix in the next section.

I11. DECOMPOSITION OF THE SCALING
MATRIX

Any scaling matrix A could be decomposed into the product of
two matrices, i.e. X and Y , asfollows.
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, X- direction scaling factor
y - direction scaling factor 9)

, X- direction shearing factor

=— , y- direction shearing factor

Note that we have merged the x-direction scaling and
shearing matricesinto one single matrix X in Eq.(8), aswell

as 'Y . We now explain the main motivation and concepts. In
Section , we have referred that scaling by A in time

domain is equivalent to scaling by (A'l)T in frequency
domain and magnifying by ]/|det(A)| . Therefore, shearing in

the x-direction in time domain is equivalent to shearing in the
y-direction in frequency domain due to the matrix transpose
operation. Although shearing operation does not influence the
2p periodic property in the frequency domain aong the
corresponding direction, it does break the period along its
orthogonal direction. It is the main reason why we combine
the scaling and shearing operations along the same direction
in time domain since they both change the frequency period
along the same direction in frequency domain. Notethat if the
frequency period is changed along only one single direction, it
is equivalent to a 1D operation. Therefore, following the
decomposition process, asingle 2D scaling operation becomes
two subsequent 1D scaling operations except for the
associated shearing operations.

In thisway, when the decimation operation, i.e. a,b >1, is

concerned, we need to preserve the high frequency
components which are supposed to be filtered out in Eq.(7) in
order to attain PR. This can be accomplished by using only
one additional channel since we are now dealing with the
scaling operation along either x-direction or y-direction one at
atime. The details will be described in the next section.

On the other hand, when the interpolation operation, i.e.
a,b <1, is concerned, we have to remove those unwanted

high frequency images which are introduced when scaling a
periodic signal to a different new period, i.e. from 2p to
{Zpa,Zpb} in our case. Therefore, the derivation of the

up-sampling agorithm should be slightly modified from
Eq.(7) such that the upper and lower bounds of the integrals
are limited to [- p/a,+p/a] and [- p/d,+p/d]. Changing
the integral upper/lower bound is equivaent to applying an
ideal low-pass filter after up-sampling. Moreover, since
up-sampling by A is equivaent to down-sampling by A",
those A’s in Eq.(7) are replaced by A'™’s in the following
derivation.
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In conclusion, we summarize Eq.(7) and Eq.(10) in Table



Table .2D irrationa up-sampling and down-sampling formulas
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IV. 2D IRRATIONAL SCALING PERFECT
RECONSTRUCTION
FILTER BANK STRUCTURE

Thefundamental structure of the2D four-channel non-uniform
PR filter bank using irrational scaling matrices is shown in
Fig.1, where
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Note that there is no need to design the prefilters and
post-filters in our PR FB structure since those filters have
already been merged into the down-sampling and up-sampling
kernels respectively in Table , which could be revealed from
the derivations in the previous section. The equivaent
pre-filter we address is the ideal low pass filter whose cutoff
frequencies locate at W, =W, =3p and the equivaent

post-filter is the ideal low pass filter whose cutoff frequencies
locate at W, :J_rp/;,\,\,\,Cy =+p/d. The basic god of proposed

structure is to perfectly reconstruct the output such that
y[m,n] = x[m,n] under any circumstances, evenif g b,c,d are

irrational numbers. The up-sampling and down-sampling
kernel have already been summarizedin Table  whilewe now
rearrange the formulasof X, X¢, Y and Y(in Table
Table . Four kernel matrices X, X(, Y and Y
X X Y Y¢
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V. EXPERIMENTAL RESULTS

To test the proposed PR FB structure in Fig.1, we take a
100x100 gray level LENA with a black surrounding outer ring

as our input image x[m,n]- This dark region is adopted in

order to avoid possible exceeding of the scaled image beyond
the border which might cause uncomfortable visual defects. In
fact, the proposed PR FB structure is suitable for any kinds of
2D signals, not only for images. Here the down-sampling
matrix A is chosen as

e\/—\/§u
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Since the index m¢n¢in Table has a range from minus
infinity to infinity which is not feasible in practical
implementations, here we choose m¢ n¢:[-50, +5o] in our

experiment and observe the reconstruction errors due to
truncation of m¢ n¢. After reconstruction, the mean absolute

value of the reconstruction error is only 0.2892, which is
showed in Fig.2(g) together with the corresponding magnified
version in Fig.2(h). Note that these errors are introduced by
truncation of m¢nd¢, which makes the equivalent low-pass

filters no ideal any more. However, the errors keep decreasing
as m¢ n¢ grows larger and the filter bank structure virtually

becomes perfect reconstruction as m¢nt® ¥ .

VI. CONCLUSION

In this paper, a 2D non-uniform perfect reconstruction filter
bank using irrational scaling matrices is proposed. The
advantage of the new scaling algorithm is that it is a concise
closed form formulain time domain, and it works well with any
arbitrarily designed scaling matrices with irrational entries
while still maintain the PR property. This provides us a
powerful tool to extract any linear shapes of the 2D frequency
components for subsequent applications, such as image/video
compression and communication. The experimental results
have shown the perfect reconstruction after a several irrational
scaling operations.

APPENDIX

We include the detailed processed images and their
corresponding frequency section diagrams in Fig.3 for
reference. It is astep by step illustration of the entire structure
in Fig.1. Note that the colors represent only the sections of the
frequency domain, not the true values of it.
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Fig.2 () Original input image. (b)-(e) Down-sampled images from
channel 1 to channel 4 with down-sampling matrices XY, X'Y, XY’,
and XY’ respectively. (f) Perfectly reconstructed output image. (g)

Reconstruction error. (h) A magnified version of (g)
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Fig.1 2D irrational scaling four-channel perfect reconstruction filter bank structure
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