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摘要 

    本論文的研究主題是智能型視訊及影像分析，人
臉偵測及辨識將是重要課題，利用以基底為基礎的

非負值矩陣的拆解，進行人臉辨識，其效果良好，

實驗結果及與其他方法的比較將在論文中展示。 
 

ABSTRACT 
 
A fundamental problem of Non-negative Matrix 
Factorization (NMF) is that it does not always extract 
basis components manifesting localized features which 
are essential in face recognition. The aim of our work is 
to strengthen localized features in basis images and to 
impose orthonormal characteristic of Principle 
Component Analysis (PCA) on NMF. Such improved 
technique is called Basis-emphasized Non-negative 
Matrix Factorization (BNMF). In order to reduce noise 
disturbance in the original image such as facial 
expression, illumination variation and partial occlusion, 
Wavelet Transform (WT) is applied before the BNMF 
decomposition. In this paper, a novel subspace 
projection technique, called Basis-emphasized Non-
negative Matrix Factorization with Wavelet Transform 
(wBNMF), is proposed to represent human facial image 
in low frequency sub-band and yields better recognition 
accuracy. These results are compared with those 
produced by PCA and NMF.  
 

1. INTRODUCTION 
 
Face recognition is one of the most challenging 
problems to be solved in the computer vision 
community due to the wide variety of illumination 
condition, facial expression and occlusion. It has 
several potential applications in areas such as Human 
Computer Interaction (HCI), biometrics and security. 
Moreover, it is a prototypical pattern recognition 
problem whose solution is helpful in many other 
classification problems.  
Until now, several sophisticated approaches have been 
developed to obtain better recognition result using some 
face databases. But there is no uniform way to establish 
the best approach because nearly all of them have been 
designed to work with faces under some specific 
situations. In order to obtain comparable result, the 

three databases used are the MIT CBCL face database 
[1], the Cambridge ORL face database [2] and the 
Aleix Robert (AR) face database [3]. 

One effective approach for face recognition is 
Principal Component Analysis (PCA) [4] which can 
simplify a dataset by transforming the data to a new 
coordinate system with the greatest variance. PCA 
learns basis components for subspace representation 
and achieves dimension reduction by discarding the 
least significant components. The eigenimage method 
uses PCA [5] [6] performed on a set of training images 
to decorrelate second order moments corresponding to 
low frequency property. Each input image can be 
represented as a linear combination of these 
eigenimages. Due to the holistic nature of this method, 
the resulting components are global interpretations, and 
thus PCA is unable to extract basis components 
manifesting localized features. However, localized 
features offer advantages in object recognition, 
including stability to local deformation, lighting 
variation, and partial occlusion. Therefore, several 
methods have been proposed for localized, part-based 
feature extraction.  

Recently a subspace method called Non-negative 
Matrix Factorization (NMF) is proposed by Lee and 
Seung [7] [8] as a way to find a set of basis functions 
for representing non-negative data, which has been 
used for image representation, document analysis [7] 
and clustering [9] [10] [11] for its parts-based 
representation property. NMF is akin to other matrix 
decompositions which have been proposed previously, 
such as Positive Matrix Factorization (PMF) of Juvela, 
Lehtinen and Paatero [12] [13]. The non-negativity 
constraints make the representation purely additive, in 
contrast to many other linear representations such as 
PCA and Independent Component Analysis (ICA) [14] 
[15]. However, the additive parts learned by NMF are 
not necessarily localized for some databases such as the 
ORL face database. Experiments also show that directly 
using the learned feature vectors via NMF under the 
Euclidean distance cannot get better face recognition 
rate than that obtained by the traditional PCA. In order 
to improve the recognition accuracy, Local Non-
negative Matrix Factorization (LNMF) [16] is proposed 
to achieve a more localized NMF algorithm with the 
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aim of computing spatially localized bases from a face 
database by adding three constraints that modify the 
objective function in the original NMF algorithm. But 
this method has a slow speed for learning the bases. 
Then, Guillamet and Vitrià adopt one relevant metric 
called Earth Mover's Distance (EMD) [17] for parts-
based representation of NMF. However, the 
computation of EMD is too time-demanding. Recently 
Hoyer incorporated the notion of sparseness to improve 
the found decompositions, and then proposed a method 
called Non-Negative Matrix Factorization with 
Sparseness Constraints (NMFSC) [20] [21]. But its 
recognition accuracy is not better than that of PCA. 

In this paper, a novel subspace method is proposed, 
called Basis-emphasized Non-negative Matrix 
Factorization with Wavelet Transform (wBNMF), for 
learning intuitive parts-based representation of visual 
pattern with noise reduction [22] [23]. Inspired by 
previous work, our aim is to impose orthonormal 
characteristic on basis components and to make the 
representation more suitable for tasks where feature 
localization is important. This paper also investigates 
how to improve the face recognition accuracy based on 
wBNMF [24] [25] [26] [27] [28] [29]. For better 
performance, we adopt the Riemanian metric distance 
for the learned feature vectors instead of the Euclidean 
distance [18] [19]. Experiments on the widely used AR 
face database demonstrate the proposed method can 
improve recognition accuracy and even outperform 
PCA. 
 

2. FACE DATABASE 
 
2.1. CBCL face database 
 
There are 2429 faces and 4548 non-faces in the 
training set. The testing set consists of 472 faces, 23573 
non-faces. Each image is 19 ×  19 grayscale PGM 
format. Figure 1 shows some sample images from the 
database. 
 

 
 

Figure 1: Face examples from the CBCL database. 
 
2.2. ORL face database 
 
There are 400 face images of 40 persons, 10 images per 
person which are shown in Fig. 2. The original 
dimension of each image is 112 × 92. These images are 
taken at different times, slightly varying lighting, facial 
expressions (open/closed eyes, smiling/non-smiling) 
and facial details (glasses/no-glasses). All the images 
are taken against a dark homogeneous background. The 
faces are in up-right position of frontal view, with 

slight left-right out-of-plane rotation. Each image is 
linearly stretched to the full range of pixel value within 
[0, 255]. In Fig. 3, the ORL faces are re-aligned in the 
center of the original images. The redundancy region of 
each image, non-facial feature, is eliminated to avoid 
undesired noise in face image analysis. The dimension 
of the normalized ORL face image is 48 × 48. 
 

 
 

Figure 2: Face examples from the ORL database. 
 

 
 

Figure 3: Face examples from the normalized ORL 
database. 

 
2.3. AR face database 
 
The AR color face database contains images of 126 
individuals (70 males and 56 females). Original images 
are 768 × 576 pixels in size with 24-bit color resolution.  
A total of 13 photos are taken from each individual 
with each shot taken under different conditions as 
shown in Fie. 4. These same shots are taken again after 
two weeks interval in another session. For our 
experiments, only 200 face images (50 males and 50 
females) of 13 shots in both sessions of the original AR 
database were randomly extracted. In order to avoid 
external influence of background, these realigned 
images are cropped and down-sampled in such a way 
that the final image size is 120 × 120 pixels.  
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Figure 4: Face examples from the cropped AR database 
(from left to right, from top to down) : neutral, smile,  
anger, scream, left light, right light, both lights, 
sunglasses, sunglasses & left light, sunglasses & right 
light, scarf, scarf & left light, scarf & right light. 

 
3. BASIS-EMPHASIZED NON-NEGATIVE 

MATRIX FACTORIZATION 
 
3.1. Drawbacks of NMF 
 
One noticeable property of NMF is that it usually 
produces a naturally sparse representation of the input 
data. Such a representation encodes much of the input 
data by using relatively few active bases, which make 
the encoding easy to interpret. Lee and Seung (1999) 
originally showed that NMF learned a parts-based 
representation when trained on the CBCL database. 
Despite this success, when applied to the ORL database 
in which images are not aligned as well, a global 
decomposition emerges. Therefore, the difference in 
result was mainly attributed to how well the images 
were hand-aligned (Li et al., 2001). In Fig. 5, NMF is 
applied to different face databases, the CBCL and ORL 
databases. The representation of basis images learned 
from the CBCL database is apparently composed of the 
intuitive facial features, but the representation of basis 
images learned from the ORL database is global rather 
than local. 
 

       
                     (a)                                        (b) 
 
Figure 5: Basis images learned from the CBCL (a) and 
ORL (b) database using NMF. 
 
3.2. Extensions of NMF 
 
Sparseness in both the bases and encodings is crucial 
for a parts-based representation. For this reason, many 
studies incorporating the notion of sparseness are 
developed to improve the found decomposition. One 
useful approach is non-negative matrix factorization 
with sparseness constraints (NMFSC), the aim of which 

is to constrain NMF to find decomposition with desired 
degree of sparseness. 

     In the other point of view, the manifestation of 
localized features is significant and then an improved 
method, local non-negative matrix factorization 
(LNMF), is proposed. LNMF defines a novel objective 
function with additional localization constraint. 
However, many basis images learned from the 
normalized ORL database using LNMF and NMFSC 
respectively lack intuitive facial features as shown in 
Fig. 6. Moreover, most of them are just non-meaningful 
fragments. In addition, the sparseness of the basis 
images in NMFSC is fixed at 0.75 and higher pixel 
values are in darker color. In the following cases, the 
normalized ORL face image database is chosen to avoid 
undesired noise. 
 

      
(a) (b) 
 

Figure 6: Basis images learned from the normalized 
ORL database using LNMF (a) and NMFSC (b) 
respectively. 
 
3.3. Algorithm of BNMF 
 
The basis images we desire are non-global and contain 
several versions of mouths, noses and other intuitive 
facial features in different locations and forms. In order 
to meet human intuitive notion of an individual face, 
some symmetrical facial features have better come out 
in pairs such as eyes and eyebrows. These 
considerations lead us to designing an improved NMF 
which can learn basis images with weakened holistic 
contour and emphasized local features. The 
accomplished result is shown in Fig. 7 and it is 
noticeable that our method can learn desired facial 
features, in contrast to the original NMF. 
 

      
                     (a)                                       (b) 
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Figure 7: Basis images learned from the normalized 
ORL database using NMF (a) and BNMF (b). 
 

     Since the original NMF does not impose any 
constraints on the spatial localization, minimizing the 
objective function hardly yields a factorization which 
can reveal local features in the basis images. Therefore, 
BNMF is introduced to impose more spatial constraints 
on the cost function. A new objective function is 
defined to learn intuitively parts-based components. 
Letting [ ] T

ijB b W W= = , BNMF can learn local 

features by imposing the following constraints on the 
bases and encodings. 
(1) Given the existing constraint 1iji

w =∑  for all i, 

we wish that each basis should be as orthogonal as 
possible, so as to minimize redundancy between 
different bases. The objective function can be 
imposed by minijb =∑  
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The incorporation of the above constraints leads to 
the following objective function for BNMF: 
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3.4. Comparison of NMF-related Algorithms 
 
BNMF adds the non-negative constraint and the 
orthonormal characteristic of PCA to get intuitive 

parts-based features. Therefore, bases should be as 
orthogonal as possible so as to minimize redundancy 
between them. 
To show the advantage of BNMF, we compare it with 
other extensions of NMF. The Euclidean distance and 
the divergence distance between the original and 
reconstructed images are computed to evaluate the 
efficiency of each algorithm. The smaller distance value 
we compute, the better matrix factorization we get. 
Furthermore, the influence of various dimensions 
(number of basis components) on the result basis 
images is surveyed. 

As Fig. 7 shows, NMF and BNMF learn basis 
images which contain dark intuitive part-based facial 
features and light global facial contour. Higher contrast 
between the holistic contour and the local feature 
emerges in BNMF. Nevertheless, some of the basis 
images learned from LNMF and NMFSC in Fig. 6 are 
no more than non-meaningful fragments. In Table 1, 
we intentionally adopt two different kinds of distance 
metrics, the Euclidean distance and the divergence 
distance. So we can see more deeply that the smallest 
distance value occurs in BNMF. 
 
Table 1: Distance between the original and the 
reconstructed images under various extensions of NMF 
and NMF itself. And we set the dimension for 25 and 
the iteration time for 1000. 
 

 
 

4. WAVELET TRANSFORM 
 
4.1. Two-Dimensional Discrete Wavelet Transform 
 
Since the information the continuous wavelet transform 
(CWT) provides is highly redundant as far as the 
reconstruction of the signal is concerned, the discrete 
wavelet transform (DWT) is needed to provide 
sufficient information both for analysis and synthesis of 
the original signal, with a significant reduction in the 
computation time. DWT employs two sets of functions, 
called scaling functions and wavelet functions obtained 
by successive high pass and low pass filtering of the 
time domain signal. The equation of DWT is given: 

-
0

0

1( ( ))( , )  [ ] [ - ]m
km

W f x m n x k a n k
a

ψ ψ= ∑  

Where m is a scaling integer variable, n is a shifting 
integer variable, x[k] is a digital signal with sample 
index k, and ψ  is the mother wavelet. 

For images, two-dimensional DWT is needed to 
decompose approximation coefficients at level j-1 to 
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four components at level j which are the approximation 
(LLj) and the details in three orientations: horizontal 
(LHj), vertical (HLj) and diagonal (HHj). On the other 
hand, two-dimensional discrete wavelet transform 
(IDWT) is used to reconstruct the original image. Fig. 8  
describes the basic decomposition and reconstruction 
steps. 
 

 
 
Figure 8: The decomposition and reconstruction of two-
dimensional DWT. 
 
4.2. Wavelet Sub-Bands 
 
Two-dimensional discrete wavelet transform can be 
used to decompose the facial images into a multi-
resolution representation in order to keep the least 
coefficients possible without losing useful image 
information. Fig. 9 depicts the decomposition process 
by applying the two-dimensional Haar wavelet 
transform of a face image and depicts the successive 
levels wavelet decomposition by applying the Haar 
wavelet transform on the low-frequency band 
sequentially. Note that the highest-frequency wavelet 
sub-band contains mostly noise and the contour of the 
decomposed facial image is clearer toward the left-top 
direction. 
 

         
(a)                     (b)                      (c)               

 
Figure 9: Face image in wavelet sub-bands. (a) 1-level 
wavelet decomposition, (b) 2-level wavelet decomposit-
ion, (c) 3-level wavelet decomposition. 
 

In this paper, Wavelet Transform is used to 
reconstruct a better representation in the low spatial 
frequency bands by discarding the highest frequency 
spectrum of each level as shown in Fig. 10(d). Hence, it 
can make the facial images insensitive to facial 
expression, illumination variation and occlusion. 
During reconstruction, these discarded coefficients are 
replaced with zeros. We also compute the difference 
between the reconstructed and the original images and 
the error result is shown in Fig. 11, in which the larger 
the error, the lighter the color for each element. 
 

 
 
Fig 10: The reconstructed images using two-
dimensional IDWT discarding (a) no frequency band, 
(b) the first (lowest) frequency band, (c) the second 
frequency band, (d) the third (highest) frequency band. 
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Figure 11: The error images between the original image 
and the corresponding reconstructed image in Fig. 10.  
 
 
4.3. Basis-emphasized Non-negative Matrix Factor-

ization with Wavelet Transform 
 
This section introduces a novel subspace projection 
technique via BNMF to represent human facial image 
in low frequency sub-band, which is able to realize 
through the Wavelet Transform. After wavelet 
decomposition and reconstruction, BNMF is performed 
to produce part-based representations of the images. 
The simulation results on the AR database show that 
the hybrid of BNMF and the best wavelet filter will 
yield better recognition rate and shorter training time. 
In order to achieve an excellent verification rate when 
identifying the faces, We investigate the performance 
obtained by the integration of WT and BNMF to take 
the advantages of these two methods. These results are 
compared with those learned by PCA and the original 
NMF techniques later. 

In face recognition, dimensionality reduction is 
very important to project the facial images from a high-
dimensional space onto a lower-dimensional space. 
And wavelet transform reduces the resolution of images 
and decreases the computation load of feature 
generation. With the adoption of wavelet transform, the 
training time can also be reduced significantly. In this 
paper, three level of wavelet decomposition is 
performed on face images. The reconstructed face 
image discarding the highest-frequency sub-band is 
then subjected to BNMF. The integrated framework of 
Wavelet Transform and Basis-emphasized Non-
negative Matrix Factorization is abbreviated as 
wBNMF. The flow chart of wBNMF is illustrated in 
Fig. 12. 
 

 
 
Figure 12: Flow chart of generating the wBNMF 
features. 
 

5. FACE RECOGNITION 
 
5.1. Classifier Determination 
 
In this experiment, we adopt the Riemannian distance 
metric which is more suitable than any other distance 
metric for face classification when using the nearest 
neighbor classifier. Let f1, f2 denote two facial vectors 
in the original n-dimension space, and the 
corresponding learned coefficients in lower r-
dimension space are h1, h2, respectively. To some extent, 
we can say f1 = Wh1 and f2 = Wh2 where W is the 
learned basis matrix. Then we get 

1, 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

T T T

T T

Rie f f f f f f h h W W h h

h h G h h h h h h

= − − = − −

= − − ≠ − −
This indicates that the Riemannian metric can preserve 
the neighborhood of the original samples for 
classification. In addition, the technique is able to 
improve recognition accuracy when a higher rank is 
used.  
 
5.2 Facial Expression 
 
In order to see how each technique can deal with 
expression, facial images in the AR face database are 
used as a testing set because they contain smile, anger 
and scream expressions. And we use the neutral facial 
expression images as the training set. NMF and 
wBNMF techniques are executed under 1000 iteration 
time.  

Given scream facial images as a testing set, it is 
noticeable that PCA produces the poorest recognition 
rate. Since PCA is based on learning holistic nature, it 
mostly extracts global features of the original images 
and cannot handle obvious distortion such as scream 
facial expressions. On the contrary, the other two parts-
based methods, NMF and wBNMF, are more suitable to 
solve such a problem, especially with the significant 
performance improvement on behalf of wBNMF under 
the lowest feature dimensional space. And wBNMF 
outperforms both PCA and NMF for smile and anger 
expressions under such feature dimensional space. 
Therefore, the small basis number is necessary for 
wBNMF to reach good recognition accuracy. The 
reason is that smaller basis number is helpful to 
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produce more robust wBNMF basis representation 
which tends to neglect the seriously distorted facial part.  

 

 
 

Figure 13: Total success rate versus various facial 
expressions using techniques, PCA, NMF and wBNMF. 
 

Fig. 13 shows the comparison of recognition 
performance when using different facial expressions as 
testing sets. All facial expressions are relatively better 
classified when using wBNMF under the lowest feature 
dimensional space. But scream faces demonstrate the 
worst verification rate because of its striking facial 
expression where PCA and NMF are unable to deal 
with. 
Finally, we conclude that the wBNMF technique is 
more suitable than the other two to recognize various 
facial expressions. 
 
5.3. Illumination Variation 
 
Illumination condition is a factor which should be 
taken into account in face recognition. The condition is 
reflected in neutral facial images under three kinds of 
lighting way: left light on, right light on and both lights 
on. We experimentally demonstrate that illumination 
condition is a serious matter in face recognition. As 
what we anticipate, harsher illumination change 
reduces recognition accuracy. 

Under varying illumination conditions and 
constant facial expression, the experimental result 
shows that PCA and NMF can not deal with 
illumination variations as good as wBNMF. Due to the 
noise reduction caused by Wavelet Transform, wBNMF 
is relatively good to withstand global changes of image. 
And it can improve the ability of NMF to handle 
illumination variations. Therefore, wBNMF deals with 
illumination variations a little better than the other two, 
PCA and NMF. In addition, when the lighting scope is 
expanded from half to whole facial region, the 
recognition rate decreases obviously about thirty 
percent as shown in Fig. 14. 
 

 
 

Figure 14: Total success rate versus various lighting 
conditions using techniques, PCA, NMF and wBNMF.  

 
5.4. Occlusion Disturbance 

 
Here we have a set of natural occlusion where faces are 
occluded with a scarf or sunglasses. It means that the 
eyes and mouth in the facial image are occluded. Under 
the presence of sunglasses or scarf, recognition rates 
decrease considerably. This implies that certain facial 
features, such as eyes and mouth, are very important for 
classifying faces as shown in Fig. 15. 
 

 
 
Figure 15: Total success rate versus facial images with 
sunglasses or scarf occlusion using techniques, PCA, 
NMF and wBNMF. 
 

The result clearly shows that wBNMF outperforms 
the other approaches by a large margin when the 
occluded region, such as eyes and mouth, is 
significantly large and crucial for face recognition. On 
the contrary, PCA can not manage such conditions as 
well because it is focused on extracting global face 
features. For this reason, wBNMF is able to classify 
occluded facial images with the best recognition rate, 
even comparable to the best one obtained by PCA or 
NMF. As a result, we believe that wBNMF can be a 
relevant technique for pattern recognition problems, 
where partial face occlusion that can not be handled by 
PCA may appear. 

For a specific pattern such as human face, the 
recognizable facial features occupy only a fraction of all. 
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Since a specific pattern of interest can reside in a low 
dimensional sub-manifold of the original input data 
space which consists of an unnecessarily high 
dimensionality. One of subspace analyses, wBNMF, is 
used to reveal low dimensional structures observed in a 
high dimensional space. In fact, the essence of feature 
extraction in pattern recognition can be considered as 
discovering and computing low dimensional intrinsic 
pattern from observation. Subspace analysis has 
demonstrated its success in numerous visual 
recognition tasks such as face recognition and detection. 
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