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ABSTRACT

In this work, estimating two-dimensional (2-D) angle of
arrival for radiating sources in a coherent environment is studied.
The concept of spatial smoothing is first extended to a rectangular
planar array and a 2-D search function is formed to estimate the
source directions. To avoid performinga 2-D search, an approach
based on two one-dimensional (1-D) searches is also discussed.
This approach uses rows and columns of the rectangular array
to perform 1-D searches. To match the data obtained, a 2-D
verification is then performed. Computer simulation resuits for
both approaches based on the MUSIC method are presented.

1. INTRODUCTION

Eigenstructure methods for estimating the angles of arrival
(AOA) of radiating sources have been studied extensively. Fora
non-coherent source environment, those methods use the pro-
perty that the rank of the signal component of the covariance
matrix equals the number of sources. In this case, the signal and
noise subspaces can be obtained from the eigenstructure of the
covariance matrix [1]. That property does not hold, however,
for coherent sources. To resolve coherent sources, several
methods have been discussed [2-5]. Among them the spatial
smoothing approach groups an equally spaced array into sub-
arrays. Covariance matrices of the subarrays are averaged to
form the spatially smoothed covariance matrix. It was shown
that the signal and noise subspaces can be obtained from the
eignstructure of the smoothed covariance matrix [3-4].

In this paper, we extend that approach to estimate two-
dimensional (2-D) AOAs of coherent sources using a rectangular
planar array. We first describe a 2-D spatial smooth and search
process for estimating the AOAs. Following this, we discuss the
approach of performing two one-dimensional (1-D) spatial
smoothes and searches and then carrying out a 2-D verification
of the data obtained in 1-D processing. This avoids performing
a 2-D search and therefore saves computation. Simulation
results for both approaches are presented.

2. TWO-DIMENSIONAL SPATIAL SMOOTHING

Let us consider the problem of estimating the 2-D AOAs of
K coherent narrow-band sources by the use of an M x N
rectangular array. The element spacings along the X and Y axes
are dy and dy, respectively. The AOA of the kth source is
denoted by (8, ¢x) as shown in Fig. 1. The input of the mnth
array element, which is located at the intersection of the mth

row and the nth column, can be written as

K

Vmn(t) = k§1 py a1 (t) exp [ jke (mdxu +n dy %)l

+ Ny p (L) )
where a, (t) is the complex envelope of the 1st source at the
origin, p, is a complex number representing the relative ampli-
tude and phase between the kth and the 1st sources (p1=1),
k¢ is the wavenumber of the carrier frequency, ux = sinfx Cosg ,
Vi = sinfysingy, and np,(t) is the complex noise of the mnth

element. Using Eq. (1), the input vector of the mth row of the
array, which has a size of N X 1, can be written as

Vo = [Vm @), ., i 17
K
= 2 A (D sin *im(©) 3]

In Eq. (2) sem is the phase vector of the kth source at the mth
oW,

Skm = [ exp [jke (mdyxug +dyvi)], ...,
exp [ike (mduy +Ndyvi)11T 3)
and n, (t) is the noise vector of the mth row,
B ()= [0y () Bz (), - -, D (1T @

The input vector of the rectangular array can be defined as the
MN x 1 vector given by

¥ =, m®1"
=a,<t>(k§1 oy )+ 1() ®)
where g, is the phase vector of the kth source
se=Isf, - ostml” ()

and n(t) is the noise vector. The covariance matrix of y(t) is
defined as

R=E [v*(t) y" (t)] Q)
where ‘E’, “*’ and ‘T’ denote expectation, conjugation and

transposition rtespectively. With the assumption that noises are
uncorrelated and have equal power, Eq. (7) becomes
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K K
R=E t) 12 = (2 T
fley1F ] (k=1 P & ) ( k=1,okgk)
+ 0?1 8)
where o? is the noise power. Therefore, the signal component

of R has a rank of one.

To reconstruct the signal subspace, the approach of spatial
smoothing can be used. Let us use a simple example to demon-
strate the spatial smoothing scheme for a 2-D array. The M x N
rectangular array shown in Fig. 1. can be grouped into four
(M-1) x (N—1) subarrays as shown in Fig. 2. Let v (t), i=1, 2
and j=1,2, be the input vector of the subarray which consists
of the ith to the (M—2 +i)th rows and the jth to the (N—2+j)th
columns of the array. From Eq. (5), y(1,1) can be written as

X

Vv = a(t % s +n t 9

va,n®= a® 2 oy sy ) +00,1,® ©)
where $i(1,1) is the phase vector of the kth source at the (1, 1)th
subarray and n,1)(t) is the noise. From Eq. (6), si(1,1) is given
by

e, = 08, 58 opl” (10)
where Fem, m = 1, 2, ..., M—1, is the (N—1) x 1 vector which
contains the first (N—1) entries of sg, given by Eq. (3).

In general, 5 (t) is given by
K
Vi, (t) = ap (1) k§1 Py exp Ligkq, il sca,n
+1g;,j)(t) 11y

where

b i = ke [ (—Ddy ug +(3-1)dy vk ] (12)

The covariance matrix of the (i,j)th subarray can be expressed as

K
Rijp= Elle;®1PH k=21 py exp Litk il sk} *

{

k

M=

p, exp [itkqp] sk} T+l (13)

i
—

The special case of K = 2 is considered below for discussion.
In this case, we can see from Eq. (13) that the signal subspaces
of R(n,jl) and R(iZ,jZ) are different if
p1 exp [i¢1G1, 5101 o1 exp [i¢1 Gz j2) ]
det #0
p2 €xp [j2Gia,j1)] P2 exp [ o2 (iz,j2)]
(14)

where ‘det’ denotes determinant. Under such circumstance, the
spatially smoothed covariance matrix computed from R

i1,j1
and R which is given by ahan

i2,j2)°
R= %[ Rgi 1)+ Ruz o)l (15)

has a signal subspace equal to the subspace spanned by { s; (1,1),
$2(1,1)} - Therefore, the noise subspace of R is orthogonal to
$1(1,1) and $ (1,1). When the MUSIC method described in [1]
is used to perform estimation, a 2-D search function can be
formed as

1
EO O s @ IT (NRs* @, 001 o

where Ni contains the noise eigenvectors of R and (8, ¢) is
the search vector.

In the above discussion, it is assumed that the determinant
shown in Eq. (14) is not equal to zero. It can be shown, however,
that the determinant equals zero when

c[sin@, (cosi cos¢, +sing sing,; )
—sinf, (cost cosgp, +sing sing,)] =n a7n

where n is an integer,

c={[ (iy—i)dy ]2+[01*J2)dy ]2}1/2, 18)
X A
cos¢ = ——-—(il-il)dx (19
AC
and
sin§= lejz)dy (20)
AC

Forsin §,. > sin 8, , Eq. (17) s satisfied with n = 0 when

sinf,

cos (¢2—§ )l @n
in 6

¢ = cost |

In this case, R 1) and Rj,j) have the same eigenspace.
Therefore, there is no smoothing effect in computing R from
these two covariance matrices. In order to perform spatial
smoothing for all combinations of (8,, ¢; ) and (8,, ¢, ), at least
three covariance matrices, for example Rq 1y, R(2,1) and Rz,2),
are required. This phenomenon does not appear in the 1-D
bearing estimation problem.

In general, the M x N rectangular array can be grouped into
P? subarrays, each with size (M—P+1) x (N—P+1), and spatial
smoothing can be performed to reconstruct the signal subspace
of K coherent sources for K < P2.

3. ONE-DIMENSIONAL SIGNAL PROCESSING

The technique discussed in Section II involves a 2-D search
with a search vector length of order MN. Therefore, considerable
computation is required. In this section, we discuss the approach
of using two 1-D searches together with a 2-D verification to
estimate the AOAs. This avoids performing a 2-D search.

This approach is based on the fact that the AOA of the kth
source (8, ¢ ) can be solved from uy and vi if they are properly
estimated. In the following, we discuss the estimation of v and
ux by using rows and columns of the array, respectively. Let
us first consider searching vy , k=1,2,....K, using rows of the array.
The input vector of the mth row of the array is given by Eq.
(2). Using Eq. (3), it can be written as

W= ® oy oxp (romdst) s+ ®) ©2)

where
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s = [exp (ke dy vic )y - - - exp (jke Ndy v) 1T (23)
The covariance matrix of v, (t) is given by
Rue = E [ 12y (@[] [é] oy, exp (ke mdy ) skl *
[é,"k exp (jke mdy u) 51T 40T (24)

Therefore, when K < M and u, # up fork # £, a spatially
smoothed covariance matrix, R;, can be computed by averaging
over at least K Ry,’s. In this way, the signal and noise subspaces
of R, are the same as and orthogonal to, respectively, the sub-
space spanned by { 817, S2r»-» Skr} - The search function of the
MUSIC method can be formed as

1
[Ng, & 0 1T INg, s (1%

E/(v) = (25)

where N contains the noise eigenvectors of R, and 5 (v) is the
search vector with —1 < v < 1. Peaks of E;(v) will indicate
Vk,k=1,2, ... K.

Similarly, when K < N and v # v, for k # &, ux can be
determined by using columns of the antenna array. After
obtaining v, and ug, k = 1, 2, . . . K, we can use a 2-D verifica-
tion to match these two data sets. Here, K* combinations of
(vg, ug) are substituted into the search vectors s (8, ¢) in Eq.
(16). The K largest outcomes of the search function indicate
the correct combinations of (vi, ug), k = 1, 2, ..., K. Then, 6x
and ¢y can be computed from (v, Ug).

In the above discussion, it is assumed that uy # u, and v #
vy for k # 2. For the circumstance that the above assumption
does not hold, there will be no smoothing effect between the kth
and the fth sources in performing spatial smoothing for row or
column search. Therefore, the searches will fail to identify the
parameters of the two sources. This phenomenon can be
eliminated by grouping subrows in performing row search (and
similarly grouping subcolumns in column search) as shown in
Fig. 3. An extra degree of smoothing is provided by using
subrows or subcolumns. Therefore the two sources can be
resolved even with ug = up or vg = ve.

4. SIMULATION RESULTS

Computer simulations are carried out based on a 5 x 5
antenna array with half wavelength interelement spacing in both
axes. Two coherent sources with equal power of 10 dB and
AOAs of (45°, 65°) and (45°, 25°) are used for simulations.
The covariance matrix is computed by using four hundred
samples. We first simulate the 2-D search method described in
Section II. Figure 4a plots the simulation results of the MUSIC
method without 2-D spatial smoothing. The two coherent sourced
can not be resolved as expected. In Fig. 4b, a spatially smoothed
covariance matrix computed by averaging over the covariance
matrices of three 4 x 4 subarrays, R¢1,1),R2,1) and Rz 2y, is
used. The two sources are successfully resolved with peaks located
at (44.9°, 64.9°) and (45.0°, 25.0°). We also perform simula-
tion using a smoothed covariance matrix computed from the
covariance matrices of two subarrays, Ry 1) and Rz 2). In this
particular case, the determinant given by Eq. (14) equals zero.
Therefore, there is no smoothing effect and the two sources can
not be identified as shown in Fig. 4c.

Next, we simulate the estimation of AOAs using the 1-D
search approach. The spatially smoothed covariance matrix for
row search is computed from three subrows as shown in Fig. 3
(and similarly for column search). The search results are plotted
in Fig. 5. For each search, two peaks, indicating v or uy , k=1,2,
are obtained. The correct combinations of v and uy are deter-
mined by performing a 2-D verification with results shown in
Table 1. The AOAs computed from the two combinations
having the highest two verification outputs are (45.1°, 65°) and
(45.2°,24.9°).
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Table 1

2-D Verification of the Data Obtained From 1-D Processing
(v=sind sing, u=sind cos¢)

o v=030 | v=0.64 | v=0.30 | v=0.64
Combination
u=0.30 | u=0.30 | u=0.64 | u=0.64
Verification
-20.09 16.11 13. -16.
Output (dB) 3.02 16.99
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Figure . The 2-D M x N Rectangular Array.
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