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Abstract - Finite-difference time-domain (FD-TD) method combined with 
Lanczos algorithm and time-reversal technique is proposed for the steady-state 
response. With Lanczos algorithm, modes of FD-TD operator can be extracted 
efficiently. The steady-state response can then be calculated at any time by an 
analytic formula with a few of these modes. The existing FD-TD code needs 
not to be modified, except for an additionally time-reversal electric field update. 
An example of an air-filled cavity is demonstrated for the validation of this 
hybrid method. 
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I. INTRODUCTION 

Steady-state response is desired in finite-difference time-domain (FD-TD) 
method[l] to increase the resolution in frequency domain. In order to satisfy the 
stability condition, the time step in conventional FD-TD simulation should be 
small enough to get the correct simulated solution. It will be time-consuming 
with small time step, especially for the steady-state response. In addition, only 
those fields at a few points are usually necessary. In conventional FD-TD 
method, however, fields at all the points in the computational domain need to 
be calculated at each time iteration. How to efficiently get the steady-state 
response at those field points concerned is therefore the subject of this study. 

In late time, the electromagnetic sources fade to zero. The field response 
is believed to be composed by a few modal patterns. If these modes are 
extracted, the steady-state response can be obtained efficiently. The equivalent 
matrix of FD-TD operator is large and sparse. In order to efficiently obtain the 
modes of this operator, Lanczos algorithm is adopted[2]. The matrix is 
converted into a tridiagonal form by Lanczos algorithm. This tridiagonal matrix 
is much smaller in size compared to the original matrix, and has eigenvalues 
approximately equal to some eigenvalues of the original matrix. The 
corresponding eigenmodes of the original matrix can be also obtained by a 
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transformation of eigenmodes of the small tridiagonal matrix. The original large 
system is therefore can be efficiently approximated by the reduced model. 

Remis proposes a modified Lanczos algorithm for the computation of 
transient electromagnetic fields[3]. Accurate representation of the transient 
electromagnetic fields is obtained on a certain bounded interval in time. 
Lanczos algorithm is also employed in finite-element frequency-domain (FEFD) 
and finite-element time-domain (FETD) techniques[4]. In this study, FD-TD 
method combined with Lanczos algorithm to obtain the steady-state response is 
proposed. With Lanczos algorithm, modes for source-free FD-TD operator are 
extracted. The components of the electric field on each mode are found, and the 
steady-state response at any time can be obtained by an analytic formula. The 
existing FD-TD code needs not to be modified in the proposed technique, 
except for an additional time-reversal electric field update. Time reversal in FD- 
TD method was proposed by Sorrentino for the numerical synthesis of a 
microwave structure in 1993.[5] To our knowledge, this is the first paper to 
construct the steady-state response by FD-TD method with Lanczos algorithm 
and time-reversal technique. 

11. OUTLINE OF THE THEORY 

In inhomogeneous medium with permittivity E,(r) and permeability pdr), 
source-free Maxwell equation for FD-TD method can be written in the matrix 
form, 

where I is the identity matrix, D denotes the discretized curl operator, At is the 
time step, c denotes the velocity of light in free space, and the superscript n 
means the n-th time step. As equation (1) indicates, the equivalent matrix of 
FD-TD operator is large and sparse, but not symmetric. Although Lanczos 
algorithm for asymmetric systems is available[6], the symmetric form is 
preferred. 

Eliminating the magnetic field in equation (l) ,  the FD-TD updating 
equation which only electric fields are involved is 

E"" =2.[1-+(c.At)* .E;I(r).DT .p; '(r).D].E" -E"-'. (2) 

Obviously, the updating matrix in (2) is symmetric. It is theoretically equivalent 
to the updating matrix in [7], and therefore has eigenvalues of which the 
magnitudes are no larger than unity. Expand the electric field E" in terms of the 
eigenvectors of the updating matrix, and let a,, denote the expansion coefficient 
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corresponding to the j-th eigenvector. Substitution of the expansion coefficients 
to (2) yields the recurrence relation 

where 1, is the corresponding j-the eigenvalue. Once anJ, an.ld and A, are given 
for some n-th time step, the corresponding expansion coefficient ak,, at any k-th 
time step (k t n-1) is quite easy to obtained by solving the recurrence relation in 
(3). The steady-state response at any time step can therefore be obtained 
analytically. 

Lanczos algorithm is applied to obtain the approximated eigensolutions of 
the updating matrix in (2) instead of the original FD-TD operator in (I). In 
Lanczos algorithm, a Krylov subspace of order m is established[2]: 

d"(A,b) = span{b,Ab,AZb,...,A"-lb} = span{q,,q,,q,;..,q,}. (4) 

When the electromagnetic sources fade to zero and the modal patterns appear, 
Lanczos algorithm is employed by initially setting b vector to be the electric 
field E" and A matrix to be the updating matrix in (2). However, Ae.1 instead 
of AJ-lb is used in the Lanczos j-th iteration. Updating equation in (2) is neither 
preferred because the existing FD-TD code needs to be modified. As (2) 
implies, Aqj is the average of the 'virtual' electric fields at the next and the 
previous time steps. The former can be obtained by the standard time-forward 
FD-TD method, while the later will be available from the time-reversal FD-TD 
method. The existing FD-TD codes are therefore preserved. 

111. NUMERICAL RESULTS 

An air-filled cavity of dimension 10 cm x 10 cm x 1 cm is first considered. 
The size of spatial division A in each direction is 1 cm and the normalized time 
step c,At is set to be 0.5 cm, where c is the velocity of light in free space. An 
electric field excitation in the form of Gaussian pulse exp(-(c+50.5)*/100) 
(volt/m) is applied at the center of the cavity. The late-time responses obtained 
by FD-TD method and the hybrid method are depicted in Fig. 1. As shown in 
Fig. 1,  the steady-state response can be faithfully obtained with only two modes 
in the hybrid method. That is, only two Lanczos iterations are necessary in this 
case and the CPU time for Lanczos iterations is therefore negligible. Table 1 
lists the computed resonant frequencies and the exact solution as a comparison. 

IV. CONCLUSION 

FD-TD method combined with Lanczos algorithm and time-reversal 
technique is proposed for the steady-state response calculation. Only extra one 
electric field updating equation is necessary to the existing FD-TD code. With 
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only two modes, the steady-state response of electric field in an air-filled cavity 
can be faithfully obtained at any time step. More examples are under studied. 
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Fig. 1. steady-state electric field of an 
air-filled cavity excited by a 
Gaussian pulse at the center. 
Nmdc is the number of modes 
extracted by Lanczos algorithm. 

IResonant 1Mode 1 1Mode 2 I 

1 Exact I 2.121 I 4.743 I 
Lanczos 

Lanczos 

Table 1. Comparison of the 
calculated resonant 
frequencies with the 
exact solution. 
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