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                              摘要 
專憑經驗的模式分解為一新穎非線性訊號分析方

法，它能分解一度空間訊號及二度空間影像為許

多基本性質模式函數，本論文提出一方向性影像

的經驗模式分解，較傳統的二度空間經驗模式分

解方法，運算簡單而且有效率可以應用在紋理及

自然影像之分析。 
 

ABSTRACT 
 
Empirical mode decomposition (EMD) is first proposed 
by Huang et al. in 1998. The EMD is local, adaptive 
and useful for analyzing non-linear and non-stationary 
signals. Bidimensional empirical mode decomposition 
(BEMD) is the extended version of EMD and can 
decompose an image into several multiscale 
components called intrinsic mode functions (IMFs). In 
this paper, a new algorithm for BEMD is proposed. 
This BEMD is realized using one dimensional EMD in 
two directions or more directions. Compared with the 
existing bidimensional sifting process interpolating the 
surface by radial basis function or thin-plate smoothing 
spline, the proposed method is much faster and more 
suitable for extracting fine directional textures. The 
experimental results show that the proposed approach 
can effectively decompose both textures and natural 
images. 

 

1. INTRODUCTION 
 
Empirical mode decomposition (EMD) is a powerful 
method for generating adaptive multiscale structure of 
non-stationary signals and analyzing them [1][2][3]. 
There are several variations of EMD algorithm 
introduced in [4]. The EMD is recently extended to 
analyze two dimensional signals [5][6][7][8][9][10] and 
the two dimensional extension is called bidimensional 
empirical mode decomposition (BEMD). There are 

mainly two major methods to extend EMD to BEMD 
[5][6][7][8][9][10]. One carries out BEMD by real 2D-
sifting process including extrema detection by 
neighboring window or morphological operators and 
surface interpolation by radial basis function [7][8] or 
thin-plate smoothing spline [5][6]. The other carries 
out BEMD for 2D-data by dividing a 2D-data into 1D 
data [9][10]. 

In this paper, we propose a new BEMD where one 
dimensional EMD is used to decompose two 
dimensional signals by dividing a 2D-data into 1D-data 
in two or more directions separately. Then, we combine 
the results of EMD in each direction by averaging them. 

This paper is organized as follows. Section 2 and 3 
describe the algorithm of EMD and BEMD. Section 4 
shows the experimental results. Finally, conclusions are 
made in Section 5. 

 
2. ONE-DIMENSIONAL EMPIRICAL MODE 

DECOMPOSITION 
 
The EMD is first introduced by Huang et al. [1] for 
signal processing. This novel tool decomposes non-
linear or non-stationary signals into several frequency 
components called IMFs. The flow chart of EMD 
algorithm is plotted in Fig.1. IMFs must satisfy the 
following two conditions: 
• the numbers of extrema and the numbers of zero-
crossings must either equal or differ at most by one in 
the whole data set; 
• at any point, the mean value of the envelope defined 
by the local maxima and the envelope defined by the 
local minima is zero. 

The process of extracting the IMFs from a signal 
is called the sifting process introduced in [1].For a real-
valued signal )(tf , we can extract IMFs from it by the 
following steps: 
1) Initialize )()()( 00 tftrth == , i=j=1; 

2) Identify all local maxima and minima of )(1 th j− ; 
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3) We generate the upper envelope by interpolating the 
local maxima, denoted )(thupper , and the lower 

envelope by interpolating the local minima, denoted 
)(thlower ; 

4) Compute the envelope mean, 
)(1 tm j− = 2/))()(( thth lowerupper + ; 

5) Compute )()()( 11 tmthth jjj −− −= ; 

6) Repeat steps 2-5 and set j=j+1 until )(th j  is an IMF; 

7) )()( thtimf ji = and compute the residue 

)()()( 1 timftrtr iii −= − ; 

8) Repeat steps 2-7 and set i=i+1 until )(tri is 

monotonic. When )(tri is monotonic, we have 

accomplished the EMD, and set )()( trtr iL = . 

The original signal )(tf can be expressed as the sum 
of IMFs and the last residue as follow: 

∑
=

+=
L

i
Li trtimftf

1
)()()(  

The stopping criterion, SD, used to know whether hj is 
an IMF, is defined as, 

TtmSD
T

t
j /|)(|

0
1∑

=
−=  

In other words, the sifting process stops when SD is 
smaller than some predefined constant C. 
 

 

 
Fig. 1. The flow chart of EMD for one dimensional 
signal.  
 

3. BIDIMENSIONAL EMPIRICAL MODE 
DECOMPOSITION 

 
Texture analysis and multiscale structure are important 
techniques in image processing. BEMD is a new 
technique proposed to extract two-dimensional IMFs 
from images [5][6][7][8][9][10]. BEMD is better than 
Fourier or wavelet, and the other multi-scale structure 
when extracting features of textures or filtering images, 
because it is local, adaptive and suitable for non-linear, 
non-stationary data analysis. This section introduces 
two methods of BEMD. The first method is proposed in 
[5] called BEMD-1 and it is real 2D method. The 
second method called BEMD-2 is the proposed method 
using 1D EMD in two or four directions to approach 
the real 2D method. 
 
3.1. BEMD-1[5] 
 
The steps of 2D-sifting process are described as follows: 
1) Identify the local maxima and minima of the image I 

by neighboring window. 
2) Generate the 2D ‘envelope’ by interpolating maxima 

points (respectively, minima points) by thin-plate 
smoothing spline. 

3) Determine the local envelope mean m1 by averaging 
the two envelopes. 
4) Since IMF should have zero local mean, subtract out 

the mean from the image: I-m1=h1. 
5) Repeat steps 2-4 until h1 is an IMF 
Repeat steps 1) to 5) after subtracting precedent IMF 
from input image until the residue has no more IMF, 
just like the algorithm of one-dimensional EMD. 
 
3.2. BEMD-2 
  
This method is proposed to decompose images by 1D 
EMD and form 2D IMFs. Before doing the following 
steps, we find two orthogonal directions respectively: 

1θ and 2θ . Then we apply 1D EMD to image I(x,y) in 

two direction, 1θ or 2θ ,respectively. In other words, we 
do steps as follows: 
1) Initialize 1θθ = ,  

),(),(),( 11 yxIyxhyxr ji == −−
θ . 

2) Apply one-dimensional EMD to each line in the 
first direction of the image. 

3) Get residue ),(1 yxrθ and several IMFs. 
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4) Set 2θθ = , ),(),( 1
1 yxryxri

θθ =− , and repeat 

steps 2-3. 

5) Change 1θ  to 2θ  and 2θ  to 1θ  in above steps,  
and do steps 1-4. 

Finally, we can get the following equation: 

)),(),((5.0

)),(),((5.0),(

2

2

2
2

1

1

1
1

1

1

yxryximf

yxryximfyxI

N

N

i
i

N

N

i
i

θθ

θθ

+×+

+×=

∑

∑

=

=  

where N1 is the number of IMFs by steps 1-4, and N2 
is the number of IMFs by step5.  
We set N1=N2=N, and get the following equation, 

),(),(),(
1

yxryximfyxI N

N

i
i += ∑

=

  

where )],(),([5.0),( 21 yximfyximfyximf iii
θθ += ,

),( yxrN = ),(),((5.0 2

2

1

1
yxryxr NN

θθ +× . 
 

The IMFs from EMD in two orthogonal directions 
can form 2D IMFs. Besides, this method can be 
extended to four directions by averaging these IMFs 
using two directions and other IMFs using another two 
directions. Similarly, we can extend this method to 
more and more directions to approximate 2D IMFs 
using real 2D-sifting process. The flow diagram of this 
BEMD algorithm for the direction of row and column 
case is plotted in Fig. 2. For textures, we use stage1 and 
stage2 and add the similar scales to form 2D IMFs as 
Fig. 3. Different from textures, we only apply stage1 of 
our algorithm to natural images. 

 

EMD along each row EMD along each column

Input Image I
ri-1=I

IMFrow IMFcol

Resrow Rescol2d IMF
X0.5 X0.5

EMD along each column EMD along each row

IMFrow2IMFcol2

2d IMF

X0.5 X0.5

Rescol2 Resrow2

Final 
residue

X0.5X0.5

 
 

Fig. 2. The flow diagram of BEMD-2 algorithm 
for two-dimensional signals. All the steps above 
red line is called stage1 and all the steps below 
red line is called stage2. 

 
 

Different from the directional EMD (DEMD) in 
[9], our algorithm is to decompose 2D image by 1D 
EMD in two or more directions separately at the same 
time, then take the average of  i-th IMF in all directions 
to form the 2D IMF. However, the DEMD in [9] 
generates the middle mean envelope by extrema 
detection and interpolation along each row, then 
generates the 2D mean envelope of the middle mean 
envelope by extrema detection and interpolation along 
each column. The other steps of  DEMD is the same as 
BEMD-1. 
 

4. EXPERIMENTAL RESULTS 
 

In order to compare the 2-D IMFs of BEMD-1 using 
real 2D-sifting process with the proposed BEMD-2 
using 1D EMD to approach, both textures and natural 
images are used. 

 
4.1. For textures 
 
Fig. 3 shows the results of synthetic image with the 
sum of three horizontal sinusoidal components and 
three vertical sinusoidal components. BEMD can 
decompose the image and generate different scales form 
fine to coarse. We add the same scale IMFs to 
approximate the BEMD-1’s results due to this texture is 
symmetric. Fig. 4 shows the results of portions of 
Brodatz D101 [11]. From the experimental results, the 
proposed BEMD decomposes textures into more scales 
and faster than BEMD-1. In addition, we can add some 
IMFs to approximate the BEMD-1’s IMFs. 
 
 

 

    

   

            

    

 
Fig. 3. First row: synthetic image, IMF1, IMF2, 
and residues using BEMD-1. Second row: sum 
of IMF1 and IMF3, sum of IMF2 and IMF4, 
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residue. Third row: IMF1, IMF2, IMF3, IMF4, 
using BEMD-2. 
 

 

    

     
Fig. 4. First row: Brodatz D101 [11], IMF1, 
IMF2, and residue using BEMD-1. Second 
row: sum of all IMFs, sum of IMF1 and IMF3, 
sum of IMF2 and IMF4, residue. 

 

 

 

 

 

  
Fig. 5. Original images: Lena, Baboon, and 
Barbara. 

 
4.2. For natural images 
 
We use three natural images, Lena, Baboon, and 
Barbara (Fig. 5.) for bidimensional empirical mode 
decomposition. First, we apply BEMD-1 to Lena image 
and get 2D IMFs of them (Fig. 6.). Secondly, we apply 
EMD to each row and each column of Lena image to 
form 2D IMFs (Fig. 7.), and compare with the results of 
BEMD-2 in four directions (0°, 45°, 90°,and 135°) 
shown in (Fig. 8.). From the experimental results of 
natural images, we can find that 2-D IMFs using 1D 
EMD in four directions or more directions will 
approximate 2D IMFs using BEMD-1 further. 
Therefore, Fig. 9 shows the results of Baboon, and 
Barbara decomposed by BEMD-2 in four directions and 
we compare them with BEMD-1’s first IMF. The first 
IMF is like the image extracted the uneven illumination. 
We only show several IMFs due to other IMFs have 
little information. 

In addition to approximating the first IMF of 
BEMD-1, BEMD-2 is faster and more suitable for 
extracting fine directional textures. Fig. 10 shows the 
parts of Barbara and Baboon, we can see the small 
directional textures are extracted from the images. 

 

 

  

   
 

Fig 6. Lena image decomposition using BEMD-
1. First row: IMF1, IMF2. Second row: IMF3 
and residue. 
 

5. CONCLUSION 
 
In this paper, a new algorithm for BEMD is proposed 
using 1D EMD. The experimental results show that the 
proposed approach can effectively decompose both 
textures and natural images into 2D IMFs. These 2D 
IMFs are multi-scale images having similar frequencies 
locally and these features can help image recognition or 
texture analysis. The proposed BEMD not only extracts 
clear fine directional textures but also maintains local 
contrast when adding some IMFs. However, the IMFs 
generated by the proposed BEMD have small vertical 
lines or horizontal lines because using 1D interpolation 
method makes the inconsistent amplitude between row 
by row or column by column.  

Compared with BEMD-1, the results of BEMD-1 
are smooth in all directions, but BEMD-1 costs too 
much time to interpolate the 2D envelopes and 
decomposes the image into more fine scale with 
difficulty. Also, our BEMD only needs low 
computational cost because of line-based EMD and can 
approximate the results of BEMD-1 with high 
computational cost. The cost time of BEMD-1 is 
probably 2 hours for the image of size 256X256 pixels 
and SD=10.  However, our method only costs several 
minutes with the same SD. In addition, BEMD-1 needs 
much more memory than ours.  

There are still some boundary problems with our 
algorithm, and they will be left to the future work. 
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Fig 7. Lena image decomposition using BEMD-
2 in two directions (0°and 90°).First row: IMF1, 
IMF2. Second row: IMF3, IMF4. 

 

 

  

   
Fig.8. Lena image decomposition using 
BEMD-2 in four directions (0°, 45°, 90°,and 
135°). First row: IMF1, IMF2. Second row: 
IMF3, IMF4. 
 

 

 

  

  

  

Fig. 9.Left column: IMF1 using BEMD-1. Right  
column: sum of IMF1,IMF2,IMF3 using 
BEMD-2 in four directions. 

 

        

  

 
Fig.10. First row: part of Barbara, IMF1 using 
BEMD-2. Second row: part of Baboon, IMF1 
using BEMD-2. 
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摘要 
在智慧型視訊及影像分析，人臉偵測及辨識將是重

要課題，膚色將是一個非常重要而且有效的臉部特

徵可以應用，本論文探討人類膚色的彩色空間分佈

圖，同時進一步分析白種，黃種及黑種人類膚色的

彩色區域分布，並進行不同人種的偵測及辨識。 
 

ABSTRACT 
 

With the growing technique of communication 
between human and robot, the problem of human face 
recognition has attached more importance and become 
the current research in the popular domain of computer 
vision and recognition model. Thus, human’s skin 
color is always an important mechanism and principle 
basis of human face detection. Human’s skin color has 
the relative stability with the difference of the majority 
background object appearance. The skin color does not 
rely on the face detail characteristic and do not change 
with the face expression and rotation. Therefore, 
utilizing skin color to examine human face in color 
image is an important context of human face 
recognition. 

In this paper, we provide a fast algorithm to identify 
human race with face skin color. The basic construction 
is roughly dividing human race into three parts: white, 
yellow and black race, then using Gaussian Mixture 
Model to train the feature parameter of each human 
race with large number of training images. Afterward, 
utilize Bayesian Decision Rule to determine the human 
race of test images. 

 
1. INTRODUCTION 

 
Face detection techniques based on the use of color 

information have been proposed recently. Take into 
account that the major dissimilarities between different 
races of people who have different skin color lie mostly 
in their chrominance so that skin color can be 
considered as good face segmentation and racial 
recognition feature. The main advantage in 

segmentation and racial recognition through the color 
characteristics is that facial detection can be performed 
independently on the size, position and expression of 
the face within the image. Also using color 
characteristics to classify human race is more 
convenient than using facial feature. 

In our proposed method, we classify human races 
into three typical categories: white, yellow and black 
people (or Caucasian, Mongoloid and Negroid). First, 
several images are trained to get parameters of each 
race with GMM analysis. According to the analysis of 
GMM, there are tiny differences among these 
parameters of three different races and we use these 
parameters to classify the racial category of each testing 
image. We gathered the statistical result and displayed 
the experiment consequence in section 5.  

 
 

2. HUMAN SKIN COLOR DISTRIBUTION  
 
2.1 YCbCr color space 
The formula between RGB and YCbCr is list below: 

16 0.257 0.504 0.098
128 0.148 0.291 0.439
128 0.439 0.368 0.071

Y R
Cb G
Cr B

       
       = + − −       
       − −       
    According to [1], most skin color pixels distribution 
and boundary box in the Cb-Cr plane show in Fig 1. 
The ranges of boundary box are: 76 124Cb≤ ≤  
and130 200Cr≤ ≤ . 
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 2 

 
 
 
 
Fig 1.Skin color distribution and boundary box in CbCr 
color space in Ref [1]. 

Considering only color information, a pixel will be 
classified as skin if both of its color components are 
within each of these ranges. So, the technique used for 
the racial recognition and face segmentation consists of 
defining maximum and minimum thresholds for each 
of the two chromatic components. 

 
2.2 YCgCr color space 
     There is another useful color coordinate: YCgCr, a 
novel color space based on YCbCr, was mainly 
proposed in [1, 2] for face segmentation. It is based on 
YCbCr, but it differs on the use of the Cg color 
component instead of Cb. The color spaces used in 
television systems (YUV, YCbCr) are transmission 
oriented, so in order to minimize the encoding 
decoding errors, they use the biggest color differences: 
(R-Y) and (B-Y). The YCgCr color uses the smallest 
color difference (G-Y) instead of (B-Y). 

The YCgCr components can be obtained in a 
similar way than the YCbCr equations described in the 
ITU Rec. BT. 601 and expressed in terms of Y’, G’-Y’, 
R’-Y’ components defined in the [0,1] range using the 
following matrix expression: 

16 219 'Y Y= + × , 
' 0.299 ' 0.413 ' 0.144 'Y R G B= × + × − ×   ...Eq(1) 

1128 112 [ ( ' ')]
1 0.587

Cg G Y= + × −
−

………Eq(2) 

1128 112 [ ( ' ')]
1 0.299

Cr R Y= + × −
−

……….Eq(3) 

 
Luminance and chrominance are coded in 8 bits. 

Y has an range of 219 and an offset of 16. The 
chromatic components are defined in the rage [16,240], 
with range of ± 112 and an offset of 128. Each 
component is coded in 8 bits. Expressed in matrix form, 
R’G’B’ components can be easily transformed to 
YCgCr components: 

 
16 0.257 0.504 0.098

128 0.316 0.439 0.121
128 0.439 0.368 0.071

Y R
Cg G
Cr B

       
       = + − −       
       − −       

…..Eq(4) 

 
According to [2], most skin pixel color 

distribution can be detected in the chrominance 
bounding box in CgCr domain shown in Fig 11. A 
pixel will be considered as skin if both of its color 
components are within each of the ranges defined by 
the maximum and minimum thresholds of the 

chrominance plane coordinates Cg and Cr. Where (Cg 
min, Cg max)=[76, 125] and (Cr min, Cr max)=[136, 
202]. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 2.Skin color distribution and boundary box in CgCr 
color space in Ref[2]. 

Consider the skin color distribution depicted in Fig 
2, it is possible to achieve a better performance of the 
face segmentation in the YCgCr color space by defining 
a boundary box in the direction of the line that connects 
the Red and Cyan colors, where most of the skin values 
are concentrated. 
     New decision thresholds constituting a 
nonrectangular region (the black region inside the 
boundary box shown in Fig 2) can be defined, so that 
the Cr thresholds are the same vertical limits of the 
boundary box, while the Cg thresholds, Cg min and Cg 
max lines, are parallel to the Red-Cyan line. Hence the 
Cr min and Cr max thresholds and the Cg min and Cg 
max lines, according to the following equations: 

min maxCr Cr Cr≤ ≤ …………..…….Eq(5) 
(Cr min, Cr max)= [136, 202]. 
(305 ) min 1.38 max

1.38 1.38
Cr Cr Cr CrCg− + × −

≤ ≤ Eq(6) 

Instead of using two binary masks for face 
segmentation based on the Cg and Cr thresholds of the 
boundary box, in the case of a nonrectangular decision 
region, for every Cr value, a binary mask is used for 
each Cg min and Cg max pair of Cg thresholds. The 
final mask for face segmentation is obtained as the 
intersection of all the binary masks. 
 
2.3 The reasons of choosing YCgCr 
     The black cluster of Fig 1 and 2 represent the 
majority of human skin chrominance in different 
domains. Fig 1 displays human skin chrominance of 
CbCr and Fig2 represents that of CgCr. Compare Fig 1 
to Fig 2, the shape of black cluster of Fig 2 in CgCr 
domain is more regular than that of Fig 1. The human 
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skin distribution in CgCr is less widespread than that in 
CbCr and more centralized as ellipse shape. 
     Because the chromatic distribution of CgCr has 
better shape than that of CbCr, it will achieve better 
performance in GMM detection. The slanted thin 
ellipse shape in CgCr domain means the negative 
correlation between Cg and Cr. The large value of Cg 
results in small value of Cr so that Cg and Cr have 
strong correlation. 

Contrariwise, the relation between Cb and Cr 
displays a random-like distribution in Fig 1 and the 
shape is more widespread so that it is more difficult to 
analyze the distribution in CbCr domain. 
 
2.4 Distribution in YCgCr domain of different races 
    We use YCgCr domain to compute our experiment 
with GMM analysis of different races’ pictures which 
only include the region of nose, because this region is 
purity of skin color without the effects on other colors 
of lip or eyes. There are three typical human races 
(white, yellow and black (or Caucasian, Mongoloid and 
Negroid)) and their distribution of CgCr domain shown 
in Fig 3. 
. 
. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3.Different racial color distribution in CgCr domain 

We choose three typical pictures to represent 
each racial distribution of CgCr shown in Fig 3. The 
red cluster displays Caucasian’s distribution in CgCr 
domain, the blue region displays Negroid’s distribution 
and the yellow cluster displays Mongoloid’s. It can be 
seen that the majority of black people’s distribution are 
at the location between white people and yellow people. 
Also the Mongoloid’s distribution has larger value in 
CgCr domain than others while he Caucasian’s 
distribution has smallest value in CgCr domain. 
 
2.5 Brightness and other chromatic distribution 
    There are several other kinds of color coordinates to 
represent the distribution with different races. The 
researches on Lab and Yuv represented in [3,4] show 

that Negroid has less brightness than Caucasian and 
Mongoloid. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4. Saturation and brightness chromatic distribution  
 
of flesh tone in Ref [3][4] (a) uv; (b) La chromaticity 

In Fig 4(b), Caucasian has greater brightness value 
than other races and in (a), saturation value which is 
represented to the magnitude of u and v is distributed 
greatly to Negroid, but the hue value which is 
represented to the angle of u and v is almost same for 
races. Thus, the flesh tones for races are discriminated 
for the combination value of both saturation and 
brightness. 
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Fig 5.Skin color distribution in YCg and Y Cr domain. 

In Fig 5, there are two figures which show the 
experiment result of distributions in Y-Cg and Y-Cr 
domain. They show that Negroid really has less 
brightness than Caucasian and Mongoloid. 
Furthermore, Mongoloid has the widest distribution of 
luminance; we will consider the effect of illumination 
in GMM analysis. 

3. GAUSSIAN MIXTURE MODEL 
 

GMM (Gaussian mixture model) which is the 
extension of single model Gaussian probability function 
is a conventional method to analyze non-uniform 
distributed data and is among the most statistically 
mature methods for clustering (though they are also 
used intensively for density estimation. In this tutorial, 
we introduce the concept of clustering, and see how one 
form of clustering in which we assume that individual 
data points are generated by first choosing one of a set 
of multivariate Gaussians and then sampling from them 
can be a well-defined computational operation.  

Mixture models are a semi-parametric alternative 
to non-parametric histograms (which can also be used 
as densities) and provide greater flexibility and 
precision in modeling the underlying statistics of 
sample data. They are able to smooth over gaps 
resulting from sparse sample data and provide tighter 
constraints in assigning object membership to color-
space regions. Such precision is necessary to obtain the 
best results of optimum means, covariance and 
weighting possible from color-based pixel classification 
for qualitative segmentation requirements.  

We then see how to learn such a thing from data, 
and we discover that an optimization approach not used 
in any of the previous Andrew Tutorials can help 
considerably here. This optimization method is called 
Expectation Maximization (EM). We'll spend some 
time giving a few high level explanations and 
demonstrations of EM, which turns out to be valuable 
for many other algorithms beyond Gaussian Mixture 
Models. 

 1-D data for example in Fig 6, we can see that 2-3 
clusters occupy separate sub-space and the probability 
of mixture clusters reveals Gaussian like distribution. 
We can use EM algorithm to find out optimum mean, 
co variance and weighting value of each cluster. 2-D 
data for example in Fig 7 also can be estimated by EM 
algorithm. 
 
 
 
 

 
 
 
 
 
Fig 6. The compare of original 1-D data and GMM 
fitted. (a)The fitting 2 components of GMM. (b) The 
fitting 3 components of GMM. 
 
 
 
 
 
 
 
Fig 7. 2D data with 3-components of GMM fitted 

We applied 3-components Gaussian mixture 
models to the cluster of each race, Fig 8 for example. 
Each component of Gaussian model has its optimum 
mean, covariance and weighting which are obtained by 
EM algorithm. 
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Fig 8. The compare of original 2-D data and GMM 
fitted with different races. (a)Negroid (b) Mongoloid (c) 
Caucasian. 
 
 
3.1 Mixture Gaussian model with EM algorithm 

   If the shape of these data points’ distribution is not 
like ellipse in d- dimension, then we can not use single 
Gaussian model to describe the probability density 
function of these data points. So we use several 
Gaussian distributions with weighted average to 
describe it, Take 3-components GMM for example, the 
probability density function can be expressed as: 

1 1 1 2 2 2 3 3 3( ) ( , , ) ( , , ) ( , , )p X g X g X g Xα µ α µ α µ= Σ + Σ + Σ  

1 1 2 2 3 3g g gα α α= + +  
 

There are several parameters of this density 
function ( 1 1 1 2 2 2 3 3 3, , , , ,α µ α µ α µΣ Σ Σ ), and there is a 
condition of 1 2 3, ,α α α : 

1 2 3, 1α α α+ + =  
      The kind of expression is called GMM. In order to 
simply the calculation, we let the covariance matrix of 
each Gaussian density function become: 2

j j dxdIσΣ = . 

So 

22

( ) ( )1 1( , , ) exp( )
2 2(2 )

T
j j

j j d d
jj

X X
g X

µ µ
µ σ

σπ σ

− −
= −  

      Let ( 1 1 1 2 2 2 3 3 3, , , , ,α µ α µ α µΣ Σ Σ ) = Θ , 
we use EM algorithm to find optimum Θ .  
▪ Estimation Step: 

     1. Define the initial value of Θ = 

( 1 1 1 2 2 2 3 3 3, , , , ,α µ σ α µ σ α µ σ ). We set 

1 2 3
1
3

α α α= = =  and use k-means to calculate the 

three centers of the cluster as ( 1 2 3, ,µ µ µ ). 
Initial

2 2 2 2
1 2 3

1
( ) ( )

1
T

j j jXi Xi
n

σ σ σ σ µ µ= = = = − −
−

. 

      2. Use these initial parameters to 
calculate 1 2 3( ), ( ), ( )Xi Xi Xiβ β β , i=1~n. 
▪ Maximum Step: 

1. Calculate new parameters with iteration 
loop. 

~
1

1

( )

( )

n

j
i

j n

j
i

Xi Xi

Xi

β
µ

β

=

=

=
∑

∑
,  

~
2 1

1

( )( ) ( )
1

( )

n
T

j j j
i

j n

j
i

Xi Xi Xi

d Xi

β µ µ
σ

β

=

=

− −
=

∑

∑
 

~

1

1 ( ), 1, 2, 3, 1....
n

j j
i

Xi j i n
n

α β
=

= = =∑  

~ ~ ~ ~ ~ ~ ~ ~ ~ ~

1 1 1 2 2 2 3 3 3( ) ( , , ) ( , , ) ( , , )p X g X g X g Xα µ σ α µ σ α µ σ⇒ = + +
 

If ~
( ) ( )p X p X−  is smaller than a specific value, 

then break the iteration loop or back to Maximum Step. 
This iteration loop will raise the value of ( )J Θ  step 

by step, and finally gain the local maximum of ( )J Θ . 
 

4. CLASSIFICATION RULE 
 

In this section the Bayesian Theory is used to 
derive a decision machine (classifier) used in a 
verification system. The machine is then implemented 
using GMM approach. The k-means, EM algorithm 
and maximum a posteriori (MAP) adaptation algorithm, 
used for finding GMM parameters, are described. The 
section is concluded by a discussion on implementation 
issues. 
 
4.1 Bayesian Decision Theory 
     A verification system, on the fundamental level is a 
two- class decision machine: based on given 
observation vectors, the client is either an impostor or 
the true claimant. In this section we shall use Bayesian 
Decision Theory [7] to implement the decision machine. 
       Let us denote client specific true claimant and 
impostor classes as C1 and C2 respectively, and let 

[ 1.... ]Tx x xn
→

=  be the observation vector. Moreover, 
let P(Cj) be the a priori probability of class Cj, and 

P( x
→

 | Cj ) be the conditional probability density 

function (pdf) of x
→

, given class Cj. We seek to find the 

class that x
→

 belongs to. Using the Bayes formula [9], 
we obtain: 

( | ) ( )( | )
( )

P x Cj P CjP Cj x
P x

→
→

→= , 

where
2

1

( ) ( | ) ( )
i

P x P x Ci P Ci
→ →

=

= ∑  for two-class decision. 
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Thus using the Bayes formula we obtain the a 
posteriori probability of Cj, j=1, 2. It follows that the 
Bayes decision rule is then: 

              Choose C1 if ( 1 | ) ( 2 | )P C x P C x
→ →

>  
        Or more generally, index of chosen class = 

arg max ( | )
j

P Cj x
→  which is known as the maximum a 

posteriori decision rule. It must be noted that p(x) is not 
required for making the decision. Thus the decision 
rule becomes:  

arg max ( | ) ( )
j

P x Cj P Cj
→ .  

Intuitively, the decision machine will make fewer 
mistakes when using more observations vectors. Thus 
in practice, multiple observation vectors are used: X= 
xi, i=1…n. Assuming that the observation vectors are 
independent and identically distributed (iid), then the 
joint likelihood is: 

1

( | ) ( | ) ( )
n

i
iP X Cj P Cj P Cjx

=

→
= ∏ . 

       In practice, the true form of the pdf ( | )P X Cj  is 

unknown, hence a parametric representation,
~
( | )P X Cj , 

estimated from training data, is used instead. Since 
~
( | )P X Cj is only an approximation, a correction 

function, ( | )P X Cj
≈

, is required. 
~

1

( | ) ( | ) ( | ) ( )
n

i
i iP X C j P C j P C j P C jx x

≈

=

→ →
= ∏  

                         
 
 
        Taking into account the multiple observation 
vectors and rewriting arg max ( | ) ( )

j
P Cj x P Cj

→  into ratio 

test yields: 

Choose class =

~

~

~

~

( | 1) ( | 2) ( 2)1
( | 2) ( | 1) ( 1)

( | 1) ( | 2) ( 2)2
( | 2) ( | 1) ( 1)

P X C P X C P CC if
P X C P X C P C

P X C P X C P CC if
P X C P X C P C

≈

≈

≈

≈

>

<

 

       Due to precision issues in computational 
implementation, it is more convenient to use a 
summation rather than series of multiplications. Since 
log(.) is a monotonically increasing function, the 
decision rule can be modified to: 
Choose class =

~

~
( | 1) ( | 2) ( 2)1 log( ) log( )
( | 2) ( | 1) ( 1)

2

P X C P X C P CC if
P X C P X C P C

C if others

≈

≈>  

which translates to: 

Choose class = 
~ ~ ( | 2) ( 2)1 log( ( | 1)) ( ( | 2)) log( )

( | 1) ( 1)
2

P X C P CC if P X C log P X C
P X C P C

C if others

≈

≈− >

 
Where, for clarity, ~ ~

1

log ( | ) log ( | )
n

i
iP X Cj P Cjx

=

→
= ∑  

Due to practical considerations described later, the 
number of observation vectors needs to be taken 
account.  
Choose class = 

~ ~1 1 ( | 2) ( 2)1 [log( ( | 1)) ( ( | 2)] log( )
( | 1) ( 1)

2

P X C P CC if P X C log P X C
n n P X C P C

C if others

≈

≈− >

 
Let us define 

~ ~1 1( | ) log( ( | )) log( ( | ))
n

i n
L X Cj P X Cj P x i Cj

n n

→

=

= = ∑  

This can be interpreted as the average log likelihood of 
X. Thus we can choose class = 

1 ( | 2) ( 2)1 ( | 1) ( | 2) log( )
( | 1) ( 1)

2

P X C P CC if L X C L X C
n P X C P C

C if others

≈

≈− >  

Let us define ( ) ( | 1) ( | 2)x L X C L X CΛ = −  
 
      Since the true form of the pdf p(x|Cj) is unknown, 

the correction function, ( | )P X Cj
≈

, is also unknown; 
moreover, in real life situations the a priori 
probabilities P(C1) and P(C2) are often unknown. Thus 

in practice, 1 ( | 2) ( 2)log( )
( | 1) ( 1)

P X C P C
n P X C P C

≈

≈
 is replaced with an 

experimentally found threshold, t. 
Choose class = 1 ( )

2
C if x t
C if others

Λ >   , t=0, usually. 

 
       Strictly speaking, the normalization factor 1/n is 
not necessary to make a decision. However, in practical 
situations variable length observations are often 
encountered. Since ( )xΛ  is observation length 
independent, it allows the approximation of the 
distributions of ( )xΛ  for true clients and known 
impostors, which in turn simplifies the selection of the 
threshold. 
 
4.2 Block diagram of decision procedure 
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We first calculate 3-components GMM parameters 
of each race in every two of three color space and 
average-normalize those means, covariance and 
average weightings of each training image, then put 
testing images into Bayesian Classification Rule to find 
max P(X|Cj),j=1,2,3 in two of three color space and 
make decision with majority of voting result.  

If the majority of voting result is correct, then we 
said that it is an accurate detection. If the majority of 
voting result is not correct, then we call it is an error 
detection. 

Result of Uncertainty will also be discussed.  There 
are several conditions to result in uncertainty. 

1.When the voting results of two of three color 
spaces are equal, for example, if decision is Caucasian 
in YCg, Mongoloid in YCr and Negroid in CgCr, then 
it will be an uncertainty. 

2.If | P(X|Cj)- P(X|Ci)|<t, i≠j, i,j=1,2,3 in any two 
of three color spaces, it is also  an uncertainty. 

Usually the tiny distinction of P(X|Cj) among three 
race categories are unable to make decision by the 
voting result. 

 
5. EXPERIMENT RESULT 

 
We collect two sets of three races pictures, each 

race of every set includes about more than 15 training 
images and more than 30 testing images, these pictures 
in two sets are all distinct. These pictures are collected 
from several face image databases on internet and web 
albums of daily life. So the training images and testing 
images include many different kinds of picturing 
situations such as different luminance condition, night 
model with flashlight, daytime model with much 
exposure. 

We use two of three YCgCr domains to compute 
our experiment with GMM analysis of different races’ 
pictures which only include the region of nose, because 
this region is purity of skin color without the effects on 

other colors of lip or eyes. So we cut each full-face 
picture into region with noise. 

We use MATLAB 6.5 to implement the 
experiment and count accuracy, error rate and 
uncertainty of these two sets of experiment and we will 
discuss result in the following sections. 

 
 

Training 
Images 

Races Amount 
of samples 

Set 1 Caucasian (white) 16 
 Mongoloid (yellow) 20 
 Negroid (black) 18 
Set 2 Caucasian (white) 16 
 Mongoloid (yellow) 18 
 Negroid (black) 18 
Table 1 : Amount of Training images in Set 1 and Set 2 
 
 
 
 
 

 
 
 
Table 2 : Classified Accuracy of each race in Set 1 
 

Table 3: Classified Accuracy of each race in Set 2 
 
5.1Discussion on false detection 
    According to the result, we can see that the accuracy 
of Negroid is the lowest; this is because the distribution 
of Negroid in CgCr domain shown in Fig 3 is between 
Caucasian and Mongoloid. This kind of distribution 
may result in the false judgment easily and lead to low 
accuracy.  

Testing 
Images 

Races Amount 
of 
samples 

 
Accuracy Erro

r 
rate 

 
Uncertainty 

Set 1 Caucasian 30 83.3
% 

16.7
% 

0% 

 Mongoloid 30 83.3
% 

13.3
% 

3.3% 

 Negroid 31 80.6
% 

13% 6.4% 

Testing 
Images 

Races Amount 
of 
samples 

 
Accuracy Error 

rate 
 
Uncertainty 

Set 2 Caucasian 30 80.0
% 

20.0
% 

0% 

 Mongoloid 30 86.6
% 

10.0
% 

3.3% 

 Negroid 30 80.0
% 

20.0
% 

0% 
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     For example, there are several false detections of 
Negroid in Set 1, one of these errors is show in Fig 20 
which is classified as Caucasian due to the higher 
illumination. Because the original picture of Negroid 
was taken during the daytime, the violent sunlight 
made the skin brighter than the average parameters of 
Negroid and Fig 9’s result of GMM analysis of Y 
domain is a deviation of Caucasian’s side. 
 
 
 
 
 
 
Fig 9. The false detection of Negroid due to sunlight. 
 

 Here is another error detection shown in Fig 10 in 
Set 1. Fig 10 was classified as Mongoloid; the primary 
picture of Negroid was taken at night with the 
flashlights. The strong intensity of flashlights projected 
on the dark-brown skin color and made the skin color 
look like yellow- brown. The distribution of GMM 
analysis in YCgCr domain is a deviation of 
Mongoloid’s side. Consequently, the voting machine 
classified Fig 10 as Mongoloid. 
 
 
 
 
Fig 10. The false detection of Negroid due to flashlights. 

The false classifications usually occur when the 
violent illumination changes such as sunlight and 
flashlights or strong surrounding lighting condition. 
However, the illumination Y domain still has a great 
help for the classification with the testing images under 
normal lighting condition. 
5.1Conclusion and Future Work 

We proposed new automatic skin color detection of 
human races with Gaussian Mixture Model analysis on 
a novel color space, YCgCr. It has been applied on two 
training sets of many images of different races and 
lighting conditions for obtaining the Gaussian Mixture 
Model’s parameters of YCgCr. Its performances of 
different races have been tested with two sets of images 
which only include the region of nose with several 
different lighting conditions. 

The false detections only occur when the violent 
illumination changes such as sunlight and flashlights or 
strong surrounding lighting condition. However, the 
illumination Y domain still has a great help for the 
classification with the testing images under normal 
lighting condition. The performance of Negroid is the 
poorest among three races detections because the 
distribution of Negroid in CgCr domain is between 
Caucasian’s and Mongoloid’s distributions. 

This method of skin color detection on YCgCr 
domain with GMM analysis can be applied easily on 

the interface of robot machine and security monitor in 
the future. This method also can be applied on pre-
process of face recognition to help raise the accuracy of 
recognition. 
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