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摘要 ─ 
 
 
 
 
在多輸入多輸出正交分頻多工系統中，空頻碼已經有廣泛的研究與討論。在這篇 
 
報告中，在兩根傳送天線的情形下，我們討論的空頻碼是把低密度同位檢查碼與 
 
阿拉姆提碼串連連結而成。也基於此種空頻碼，我們提出一種如何簡單的降低峰 
 
均值功率比之技術。因為這個技術只需在時域上做運算，而不須要在頻域上來做 
 
運算，因此傳統上使用選擇性對應技術時，會有反向離散快速傅立葉轉換計算量 
 
很大的缺點，但在此技術下會大量的減低到只需要兩個。此提出的技術用在較少 
 
的候選數目時會比較優良，不但可以簡化系統而且也不會犧牲掉錯誤率，這些結 
 
果最後都會用電腦把它模擬出來。 
 
關鍵詞 ─ 空頻碼，峰均值功率比，時域，低密度同位檢查碼，阿拉姆提碼 



Abstract

We consider the problem of space-frequency (SF) codes design for multiple-input-

multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) mod-

ulation in frequency-selective Rayleigh fading channel. In particular, we investigate

a space-frequency code with two transmit antennas that is constructed by the con-

catenation of binary LDPC code and the Alamouti space-time coding. Based on this

efficient space-frequency code, we propose a low complexity selective-mapping type

PAPR reduction technique. In the proposed technique, the candidates are generated

in the time-domain instead of the frequency domain. Thus, only two IFFT operations

are needed in the proposed technique while for the selective mapping using frequency

domain many IFFT operations are needed. In case the number of candidates is not

great (no more than 16), the proposed technique can significantly reduce the com-

plexity without sacrificing the PAPR reduction capability and error rates. Simulation

results verify the advantage of the proposed PAPR reduction technique.

Index Term –Alamouti code, Low-density parity-check (LDPC) codes,

peak-to-average power ratio, space-frequency codes, time domain.
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Chapter 1

INTRODUCTION

It has been well recognized that Multiple-input-multiple-output (MIMO) systems em-

ploying multiple transmit and receive antennas can play a significant role in the broad-

band wireless communications. By employing the diverse characteristics of channels

between each pair of transmit and receive antennas, the MIMO system can provide

a large potential capacity increase as compared with the conventional single antenna

systems. To exploit this capacity increase, many space-time (ST) codes have been

proposed, such as [1, 2, 3, 4, 5, 6]. These ST codes were basically designed for flat

fading channels. In case of broadband wireless communication systems, the channels

are frequency selective channel, resulting in inter symbol interference (ISI)[7]. Or-

thogonal frequency division multiplexing (OFDM) is a technique, which is effective

in combating the problem of ISI. [8].

1



2 CHAPTER 1. INTRODUCTION

In order to combine the advantages of both the MIMO systems and the OFDM,

space-frequency (SF) coded MIMO-OFDM systems have been proposed [9], where

two-dimensional coding is applied to distribute channel symbols across space (trans-

mit antennas) and frequency (OFDM tones). In [10], an SF coding was obtained by

exchanging the time domain arrangement for the frequency domain arrangement in

the existing ST coding.

In the ST coding, the achievable diversity advantage is bounded by the product

of the number of transmit antennas and the number of receive antennas [2]. Usually,

multiple delayed paths will deteriorate the error performance in the digital trans-

mission. However, SF codes can turn the negative effect of multiple delayed paths

into advantage. In fact, SF coding can have additional multipath diversity in case

the transmission is over the frequency-selective fading channel. Using SF coding, the

maximum diversity is product of the number of transmit antennas, the number of

receive antennas and the number of channel delay paths [9].

A well known problem for the OFDM system is the occasionally occurred high

peak-to-average power ratio (PAPR), that is due to its approximately Gaussian dis-

tributed output signal samples. An OFDM system with high PAPR requires a costly

linear power amplifier with large dynamic range for the transmitter, otherwise signif-

icant out-of-band energy and signal distortion will occur. By now, many techniques



3

have been proposed for relieving the PAPR problem in the OFDM, such as Ampli-

tude Clipping, Coding, Selective Mapping (SLM) [11, 12] and Active Constellation

Extension (ACE) [13]. For MIMO OFDM, the problem of PAPR is similar to the

conventional OFDM system. The techniques used for mitigating the PAPR effect in

the conventional OFDM system can also be applied to the MIMO OFDM systems.

However, the usage of multiple transmit antennas may somewhat deepen the prob-

lem of PAPR while also may provide additional room for executing the operation of

PAPR reduction.

In this first-year report of the three-year project, we have completed the investiga-

tion of an efficient MIMO-OFDM system, which is constructed by the concatenation

of LDPC coding and Alamouti coding. By insuring the good error performance of this

concatenated SF code, we further investigate the associated PAPR problem. We pro-

pose a low-complexity PAPR reduction technique for the investigated SF code, which

is a kind of selective mapping technique implemented on the time-domain. Compared

to a known PAPR reduction technique for MIMO-OFDM [14] that is a selective map-

ping technique implemented on the frequency domain, the proposed PAPR reduction

technique is more effective in PAPR reduction in case the number of candidates is

not large, even though the proposed technique has lower complexity.

This report is organized as follows. The review of some MIMO-OFDM properties

is given in Chapter 2. The SF code constructed from the concatenation of a binary
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LDPC code and the Alamouti code and its related performances are described in

Chapter 3. In Chapter 4, a new PAPR reduction technique for SF codes is shown.

Finally, Conclusions are given in Chapter 5.



Chapter 2

SYSTEM MODEL

2.1 Space-Time Codes

Throughout this report, we consider the MIMO system with Nt transmit antennas

and Nr receive antennas signaling over the fading channel. The received signal at

time t (t = 1, 2, · · · , T ) at the jth receive antenna (j = 1, 2, . . . , Nr) is given by

rj(t) =

√
Es

Nt

Nt∑

i=1

hj,i(t)si(t) + nj(t). (2.1)

where si(t) is the symbol transmitted from the ith transmit antenna at time t, hj,i is

the complex fading gain from the ith transmit antenna to receive jth receive antenna,

and nj(t) denotes the additive complex Gaussian noise with zero mean and unit

variance at time t. The received signal in Eqs.(2.1) can be rewritten in matrix form

5
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as

R =

√
Es

Nt

HS + N. (2.2)

where R, H, N and S are respectively

R =




R11 R12 · · · R1T

R21 R22 · · · R2T

...
...

. . .
...

RNr1 RNr2 · · · RNrT




, H =




H11 H12 · · · H1Nt

H21 H22 · · · H2Nt

...
...

. . .
...

HNr1 HNr2 · · · HNrNt




(2.3)

N =




N11 N12 · · · N1T

N21 N22 · · · N2T

...
...

. . .
...

NNr1 NNr2 · · · NNrT




, S =




s11 s12 · · · s1T

s21 s22 · · · s2T

...
...

. . .
...

sNt1 sNt2 · · · sNtT




(2.4)

The matrix S represents a codeword of the space time code. The ith row of S is

composed of the symbols transmitted from the ith transmit antenna over a period

of T . The jth column of S is composed of the symbols transmitted from all the Nt

antennas at the jth time slot.
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2.2 Space-Frequency (SF) Codes

For a space time code, its codeword consists of symbols transmitted from all the Nt

antennas over a period of time. In contrast, for a space frequency code, its code-

word consists of symbols transmitted from all the Nt antennas over a frequency band

comprising many subcarriers.

2.2.1 System Model

Consider an SF-coded MIMO-OFDM system with Nt transmit antennas, Nr receive

antennas, and K subcarriers. Suppose that all the frequency-selective fading channels,

each represents a pair of transmit antenna and receive antenna, have L independent

delay paths and the same power delay profile. The MIMO channel is assumed to re-

main unchanged over the period of each OFDM block. The channel impulse response

from the ith transmit antenna to the jth receive antenna can be modelled as

hj, i(τ) =
L−1∑

l=0

αj, i(l)δ(τ − τl). (2.5)

where τl is the delay of the lth path, and αj, i(l) is the complex amplitude of the

lth path between transmit antenna i to receive antenna j. Each αj, i(l) is a complex

Gaussian random variable with zero mean and variances E|αj, i(l)|2 = δ2
l , where E

stands for the operation of expectation. Note that the time delay τl and the variance
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δ2
l are the same for all the pairs represented by (i, j), i = 1, 2, · · · , Nt, j = 1, 2, · · · , Nr.

The variances of the L paths are normalized such that
∑L−1

l=0 δ2
l = 1. From Eqs.(2.5),

the frequency response of the channel represents the pair (i, j) is given by

Hj,i(f) =

L−1∑

l=0

αj,i(l)e
−j 2πfτl , j =

√
−1. (2.6)

We assume that the MIMO channel is spatially uncorrelated, i.e., all the αj, i(l)’s

are statistically independent. The space frequency codeword can be expressed as an

Nt × K matrix

C =




c1(0) c1(1) . . . c1(K)

c2(0) c2(1) . . . c2(K)

...
...

. . .
...

cNt
(0) cNt

(1) . . . cNt
(K)




(2.7)

where ci(k) denotes the channel symbol transmitted over kth subcarrier by transmit

antenna i. Each space frequency codeword is assumed to satisfy the energy constraint

of E[‖C‖2
F ] = NtK, where ‖C‖F is the Frobenius norm 1 of C.

The OFDM transmitter applies a K-point IFFT (inverse fast Fourier transform)

to each row of the matrix C. After appending a cyclic prefix (CP), the OFDM symbol

corresponding to the ith row of C is transmitted by the ith transmit antenna. At the

receiver, after matched filtering, removing the CP, and applying FFT, the received

1The matrix norm of an m× n matrix A is defined as the square root of the sum of the absolute
squares of its elements.
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signal at the kth subcarrier at the jth receive antenna is given by

yj(k) =

√
Es

Nt

Nt∑

i=1

Hj, i(k)ci(k) + nj(k). (2.8)

where

Hj,i(k) =
L−1∑

l=0

αj, i(l)e
−j 2πk∆fτl . (2.9)

is the channel frequency response at the nth subcarrier between the ith transmit

antenna and the jth receive antenna, ∆f = 1/T is the subcarrier separation in the

frequency domain, and T is the OFDM symbol period. Let

Λj,i =

[
αj, i(1) αj, i(2) · · · αj, i(L)

]H

(2.10)

ωk =

[
e−j 2πk∆fτ1 e−j 2πk∆fτ2 · · · e−j 2πk∆fτL

]T

(2.11)

Eqs.(2.9) can be written as

Hj,i(k) = (Λj,i)
Hωk (2.12)

We assume that the CSI (channel state information), Hj,i(k), is known at the

receiver. In Eqs.(2.8), nj(k) denotes the additive complex Gaussian noise with zero

mean and unit variance at the kth subcarrier at the jth receive antenna. The noise

samples nj(k)’s are assumed to be uncorrelated for different j and k. Using the factor

√
Es/Nt in Eqs.(2.8) can ensure that Es is the average SNR at each receive antenna
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and is independent of the number of transmit antennas.

2.2.2 Design Criteria

Consider the maximum likelihood decoding [15, 16] of the space frequency code by

Ĉ = arg min
Ĉ

Nr∑

j =1

K∑

k=1

∣∣∣∣∣yj(k) −
Nt∑

i=1

Hj, i(k)ci(k)

∣∣∣∣∣

2

(2.13)

where the minimization is performed over all possible space frequency codewords. Let

d2
H(C, Ĉ) be described as

d2
H(C, Ĉ) =

Nr∑

j =1

K∑

k=1

∣∣∣∣∣

Nt∑

i=1

Hj, i(k)[ci(k) − ĉi(k)]

∣∣∣∣∣

2

(2.14)

=

Nr∑

j =1

K∑

k=1

∣∣∣∣∣

Nt∑

i=1

(Λj,i)
Hωk[ci(k) − ĉi(k)]

∣∣∣∣∣

2

(2.15)

=
Nr∑

j =1

K∑

k=1

| ΓjWkek|2 (2.16)



2.2. SPACE-FREQUENCY (SF) CODES 11

where Eqs.(2.15) is derived from Eqs.(2.12) and in Eqs.(2.16), the new matrix Γj,Wk

and ek are shown below

Γj =

[
(Λj,1)

H (Λj,2)
H · · · (Λj,Nt

)H

]

1×LNt

Wk =




wk 0 · · · 0

0 wk · · · 0

...
...

. . .
...

0 0 · · · wk




LNt×Nt

ek =




c1(k) − ĉ1(k)

c2(k) − ĉ2(k)

...

cNt
(k) − ĉNt

(k)




Nt×1

(2.17)

Assuming that perfect CSI is available at the receiver, the pairwise error probability

of the transmitted codeword C and the erroneously decoded codeword Ĉ conditioned

on a fixed H is given by

P (C, Ĉ|H) ≤ exp

(
−d2

H(C, Ĉ)
Es

4N0

)
(2.18)

where Es is the average symbol energy, N0 is the one-sided power spectral density of

the additive white Gaussian noise (AWGN).
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Eqs.(2.16) can be written as

d2
H(C, Ĉ) =

Nr∑

j =1

K∑

k=1

(
ΓjWkeke

H
k W H

k ΓH
j

)

=

Nr∑

j =1

Γj

(
K∑

k=1

Wkeke
H
k W H

k

)
ΓH

j

=
Nr∑

j =1

ΓjDH(C, Ĉ)ΓH
j

(2.19)

where DH(C, Ĉ) is an LNt × LNt matrix given by

DH(C, Ĉ) =
K∑

k =1

Wkeke
H
k W H

k (2.20)

Note that the matrix DH(C, Ĉ) is concerned about the codeword difference and the

power delay profile of the channels. Denote the rank of DH(C, Ĉ) by γ. In Eqs.(2.20),

we know rank(eke
H
k ) = 1 if and only if ek is not a zero vector, otherwise, rank(eke

H
k ) =

0. Assume the number of nonzero vector in e1, e2, . . . , eK is γ̂. Thus, DH(C, Ĉ) is the

sum of γ̂ rank one matrices. It can be derived that

rank(DH(C, Ĉ)) = γ ≤ min(γ̂, LNt) ≤ min(K, LNt). (2.21)

since γ̂ ≤ K. For the nonnegative definite Hermitian matrix DH(C, Ĉ), its eigenvalues

can be ordered as

λ1 ≥ λ2 ≥ . . . ≥ λγ > 0 (2.22)
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By averaging Eqs.(2.18) with respect to the channel H, the pairwise error probability

can be derived from [17] as

P (C, Ĉ) ≤
(

γ∏

j=1

λj

)−Nr (
Es

4N0

)− γNr

(2.23)

Thus, the maximum achievable diversity is at most min(KNr, LNtNr). As a conse-

quence, we can formulate the performance criteria as follows

• Diversity (rank) criterion: The minimum rank of DH(C, Ĉ), i.e., γ, over all

pairs of distinct signals C and Ĉ should be as large as possible.

• Product criterion: The minimum value of the product
∏γ

j =1 λj over all pairs of

distinct signals C and Ĉ should also be maximized.



Chapter 3

LDPC Coded Alamouti Scheme for

MIMO OFDM

In the last chapter, we are aware that to achieve good error performance of a space-

frequency code, we need to maximize γ, the rank of D(C, Ĉ) , which is determined

by γ̂ and LNt, where ˆgamma is the column distance of the codeword difference

matrix C − Ĉ and L is the number of multiple delayed paths. In the following,

we investigate a space-frequency code with Nt = 2, which is the concatenation of a

binary LDPC code , signal mapper and the Alamouti space-time code. The reason for

using this concatenation is that (i) the binary LDPC code has large binary Hamming

distance which can still yield a significant amount of column distance; (ii) the full

rank characteristics of Alamouti space-time coding will enhance the column distance

14
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of the concatenated coding.

3.1 LDPC Codes

Low-density parity-check (LDPC) codes were originally proposed in 1962 by Robert

Gallager[18]. LDPC is a linear block codes with parity check matrices H and generator

matrices G. The parity check matrix H is N × K and the generator matrix G is

(N − K) × N , such that HG = 0. Suppose that we use an M × N matrix H which

has weight wc in each column and weight wr in each row. The constructed LDPC

is call a regular LDPC, denote as a (wc, wr, N) code. The associated rate of this

regular LDPC code is R = 1 − wc/wr. Gallager showed that the minimum distance

of a regular LDPC code increases linearly with N provided that wc ≥ 3. The parity

check matrix H needs not be regular. That means we can consider LDPC codes

with varying column weights. In case of very large code lengths, there exist irregular

LPDC codes with error performances superior to regular LDPC codes of similar code

lengths. In most LDPC codes, N is a large number (at least several hundreds) while

wc is usually less than 10, so the density of 1s in H is quite low. That is reason for

the name of low density parity check codes.

Since H is sparse, it can be represented by the lists of its nonzero locations. The

mth column of H represents the mth parity check, 1 ≤ m ≤ M and the nth column

of H represents the nth code bit of a codeword, 1 ≤ n ≤ N . Hence, code bits can be
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indexed by n (e.g. cn) and the parity checks can be indexed by m (e.g.zm). The set

of code bits that participate in the parity check zm (i.e. the nonzero elements in mth

row of H) is denoted

Nm = {n : Hmn = 1}. (3.1)

Thus we can write mth parity check as

zm =
∑

n∈Nm

cn. (3.2)

The set of code bits that participate in the parity check zm except for the code bit n

is denoted

Nm,n = Nm \ n. (3.3)

Let |S| denote the size of a set S. We see that |Nm| is the number of nonzero elements

in mth row of H or the number of code bits that participate in the mth parity check.

Similarly, The set of parity checks in which bit cn participates (i.e. the nonzero

elements of the nth column of H) is denoted

Mn = {m : Hmn = 1}. (3.4)

For a regular LDPC code, |Mn| = wc that is the number of parity check equations
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that check on the nth code bit. Let

Mn,m = Mn \ m. (3.5)

be the set of parity checks in which code bit cn participates except for check m. LDPC

can be regarded as the concatenation of repeatition codes (the number of repetition

is the number of checks for each code bit) and signle parity check codes (each check

checks on several code bits). Then, iterative decoding between the repetition codes

and single parity check codes can be implemented as follows.

3.2 Alamouti Space-Time Code

Alamouti space-time code is a simple design to transmit two orthogonal sequences

respectively through the two transmit antennas in the space-time coding system with

two transmit antennas. With this, full diversity, i.e., two, can be achieved, A block

diagram of the Alamouti space-time coding is shown in Fig.(3.1).
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Figure 3.1: A block diagram of the Alamouti space-time encoder.
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Algorithm 1 Iterative Log Likelihood Decoding Algorithm for Binary LDPC Codes
Input:
Parity check matrix HM×N , the maximum number of iterations L, and vector of the
channel value Lc (Lc is the LLR value).

Initialization:
Set η

[0]
m,n = 0 for all (m, n) with H(m, n) = 1.

Set λ
[0]
n = Lc[n].

Set the loop counter l = 1.

Check node update: For each (m, n) with H(m, n) = 1: Compute

η[l]
m,n = −2 tanh−1


 ∏

j∈Nm,n

tanh(−
λ

[l−1]
j − η

[l−1]
m,j

2
)


 (3.6)

Bit node update: For m = 1, 2, . . . , N : Compute

λ[l]
n = Lc +

∑

m∈Mn

η[l]
m,n (3.7)

Hard Decision: Set ĉn = 1 if λ
[l]
n > 0, else set ĉn = 0.

If Hĉ = 0, then Stop.
Else if iterations< L, go to Check node update.
Else declare a decoding failure and Stop.
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The information bits are first modulated using an 2M -ary modulation scheme.

The encoder then takes a block of two modulated symbols s1 and s2 as input in each

encoding operation and send its output to the transmit antennas according to the

code matrix[5],

S =




s1 −s∗2

s2 s∗1


 (3.8)

In Eqs.(3.8), the first column represents the two symbols transmitted through the

two tranmist antennas in first transmission period and the second column represents

the two symbols transmitted through the two tranmist antennas in the second trans-

mission period. The first row corresponds to the symbols transmitted through the

first antenna and the second row corresponds to the symbols transmitted through the

second antenna.

Consider the Alamouti scheme with two transmit antennas and two receive an-

tennas in flat fading channel. We can rewrite Eqs.(2.2) in chapter 2.1 as



r11 r12

r21 r22


 =




h11 h12

h21 h22






s1 −s∗2

s2 s∗1


 +



n11 n12

n21 n22




=




h11s1 + h12s2 + n11 −h11s
∗
2 + h12s

∗
1 + n12

h21s1 + h22s2 + n21 −h21s
∗
2 + h22s

∗
1 + n22




(3.9)

where s1 and s2 are original modulation signals such as QPSK or 8PSK, and ni,j is
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the additive complex Gaussian noise with zero mean and variance σ2.

The receiver constructs two decision statistics based on the linear combination of

the received signals. The decision statistics, denoted by s̃1 and s̃2, are given by

s̃1 = h∗
11r11 + h12r

∗
12 + h∗

21r21 + h22r
∗
22

= ‖H‖2
Fs1 + h∗

11n11 + h12n
∗
12 + h∗

21n21 + h22n
∗
22

= ‖H‖2
Fs1 + n

(3.10)

s̃2 = h∗
12r11 − h11r

∗
21 + h∗

22r12 − h21r
∗
22

= ‖H‖2
Fs2 + h∗

12n11 − h11n
∗
21 + h∗

22n12 − h21n
∗
22

= ‖H‖2
Fs2 + n

(3.11)

where n is the additive complex Gaussian noise with zero mean and variance ‖H‖2
Fσ2,

‖H‖2
F is the Frobenius norm of H.

From Eqs.(3.10) and Eqs.(3.11), we observe that s̃1 is only concerned about s1

but independent of s2. Similarly, s̃2 is only concerned about s2 but independent of

s1. Hence we can simplify the Alamouti MIMO model to two independent system,

which is shown as Fig.(3.2).

The traditional decoder of Alamouti combining is to choose a signal ŝi from the
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Figure 3.2: A simply model of the Alamouti space-time codes.

signal modulation constellation $ to minimize the Euclidean Distance

ŝ1 = arg min
ŝ1∈$

d2(s̃1, ŝ1).

ŝ2 = arg min
ŝ2∈$

d2(s̃2, ŝ2).

(3.12)

In case that the Alamouti space-time coding is only a part of a concatenated coding

system, the soft-in-soft-out (SISO) decoding of Alamouti space-time coding is de-

sired. We can use the demapper formula for modulation as in [19]. For an arbitrary

number of M modulated bits b0,··· , M−1 per symbol s̃ (s̃1 or s̃2) we obtain the LLR

(log likelihood ratio) of a posteriori probability of bit bk as

L(bk | s̃ ) = La(bk) + Le(bk)

= La(bk)

+ ln

∑2M−1−1
i=0 exp(−‖s̃ − ‖H‖2

F · map ([(ci)1: k−1 1 (ci)k:M−1])‖2

‖H‖2
F σ2 ) exp(ciLa)

∑2M−1−1
i=0 exp(−‖s̃ − ‖H‖2

F · map ([(ci)1: k−1 0 (ci)k:M−1])‖2

‖H‖2
F σ2 ) exp(ciLa)

(3.13)
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where map(·) denotes the modulation of information bits from the signal modulation

constellation $, [ci] is a row vector having the values 0 or 1 according to the binary

decomposition1 of i, and (ci)a: b denotes the part of the vector [ci] consisting of the ath

element to bth element, La(bk) and Le(bk) is are the LLR of the a priori probability

of bit bk and the extrinsic LLR value of bit bk respectively. Using the demapper,

Alamouti decoding can pass the soft value Le(bk) instead of hard value to other

decoder in the concatenated coding system for further process.

2 4 6 8 1 0 1 2 1 4 1 6 1 8 2 0

1 0 - 4

1 0 - 3

1 0 - 2

1 0 - 1

1 0 0

E b / N o ( d B )

B
E

R

A l a m o u t i s c h e m e

A l a m o u t i 2 x 2
A l a m o u t i 2 x 1

Figure 3.3: Alamouti space-time codes on flat fading channel.

Fig.(3.3) shows the bit error rate (BER) performance of Alamouti space-time code

using coherent QPSK modulation.

1If we set i = 21 = 1 · 20 + 0 · 21 + 1 · 22 + 0 · 23 + 1 · 24, the decomposition of i is a row vector
[ci] = [c1 c2 c3 c4 c5] = [1 0 1 0 1]
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3.3 The Space-Frequency Code Under Investiga-

tion
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Figure 3.4: A block diagram of the space-frequency code under investigation.

By studying [20, 21, 22, 23] and Chapter 2, we believe that LDPC coded Alamouti

Scheme is a good candidate to meet the design criteria shown in Chapter 2. The

transmitter and receiver structure of an LDPC coded Alamouti Scheme for MIMO

OFDM systems is illustrated in Fig.(3.4). We assume that the receiver has perfect

channel state information (CSI).

In Fig.(3.4), the 2NMR information bits are first encoded by a rate R LDPC

encoder into 2NM coded bits and then the binary LDPC coded bits are modulated
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into 2N 2MPSK 2 symbols. We split these 2N symbols into 2 streams, and each stream

has N symbols. The N symbols of each stream are transmitted from one transmit

antenna which has K subcarrier over an OFDM slot. Usually, we set N < K in order

to reserve subcarriers for side information (SI) or some other purposes. We have two

streams denoted Ca and Cb which will be transmitted trough two transmit antennas

respectively. The Alamouti encoder converts these two streams into a space frequency

codeword represented by [C1, C2], where C1 and C2 are described as

C1 =




Ca

Cb


 =




c1(0) . . . c1(N − 1) c1(N) c1(N + 1) . . . c1(K)

c2(0) . . . c2(N − 1) c2(N) c2(N + 1) . . . c2(K)


(3.14)

C2 =




−C∗
b

C∗
1


 =




−c∗
2
(0) ... −c∗

2
(N−1) −c∗

2
(N) −c∗

2
(N+1) . . . −c∗

2
(K)

c∗1(0) . . . c∗1(N − 1) c∗1(N) c∗1(N + 1) . . . c∗1(K)


(3.15)

each ci(j) is an 2MPSK symbol, and c1(N + 1) = . . . = c1(K) = c2(N + 1) = . . . =

c2(K) = 0. The symbols represented by C1 is transmitted in the first OFDM time

slot and the symbols represented C2 is transmitted in the following OFDM time slot.

The transmitter applies an K-point IFFT to each row of the matrix Ci and then

appends a cyclic prefix (CP), which is then used for transmission.

It is assumed that the fading process remains static during two consecutive OFDM

time slots and the fading at every two consecutive OFDM time slots is independent

2For example, M = 2 for QPSK, M = 3 for 8PSK.
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of any other two consecutive OFDM time slots.

At the receiver, we have receives signals from two receive antennas. After matched

filtering and sampling, the FFT is applied to the discrete-time signal to obtain

Y1 =




y1
1(0) y1

1(1) . . . y1
1(K)

y1
2(0) y1

2(1) . . . y1
2(K)




Y2 =




y2
1(0) y2

1(1) . . . y2
1(K)

y2
2(0) y2

2(1) . . . y2
2(K)




(3.16)

where yi
k denotes the received signal at the kth subcarriers for ith OFDM time slot,

i = 1, 2, and yi
k can be obtained from Eqs.(2.8). The decoding consists two stages,

i.e., the soft Alamouti combing and the soft LDPC decoder and the so-called extrinsic

information passed from first stage to second.

For the first stage of Alamouti combing, Alamouti decoder takes y1
1(k), y1

2(k),

y2
1(k) and y2

2(k) to a matrix as in Eqs.(3.9), which can be written as



r11 r12

r21 r22


 =




y1
1(k) y2

1(k)

y1
2(k) y2

2(k)


 (3.17)

and Alamouti soft decoding can be obtained from equations as Eqs.(3.10), Eqs.(3.11)

and Eqs.(3.13) for k = 0, 1, . . . , N − 1. For each k, there is a pair of symbols (s̃1, s̃2).

For s1 and s2, there are both M associated LLR values obtained by Eqs.(3.13), Each
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LLR value corresponds to an LDPC coded bit. A total of 2NM LLR values are used

as the vector Lc in Algorithm 1. After LDPC decoding by using Algorithm 1, we

obtain 2NM hard value (1 or 0) for coded bits. Then, 2NMR information bits are

detected. The LDPC decoding can produce soft output, which can be fed back to

the demapper of Alamouti coding for outer iterations (other than the inner iterations

inside the LDPC decoding operation). Simulation shows that such outer iterations

will be significantly reduce the BER. Hence, in the rest of this report, we only consider

the decoding without outer iterations.

3.4 Simulation Results

In this section, we provide computer simulation results to examine the performance

of the LDPC-coded Alamouti scheme. The characteristics of the fading channels are

described in Section 2.2.1. In the following simulations, the available bandwidth is

1MHz and the number of subcarriers is K = 256. Thus, the OFDM word duration

is T = 256µs without the cyclic prefix. We set the length of cyclic prefix to 5µs to

combat the effect of inter-symbol-interference, since the delay is no more than 5µs.

We simulated the space frequency codes with different power delay profiles: (i) a

two-ray equal power delay profile and (ii) COST207[24] typical urban six-ray power

delay profile. The subcarrier path gains are generated according to Eqs.(2.9), inde-

pendently for different transmit and receive antennas. The power delay profile of the
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Figure 3.5: Power delay profile of six paths and two paths.

channel is shown in Fig.(3.5) and Table(3.1). All the LDPC codes used in simulation

Six paths Two paths
Delay Fractional Doppler Delay Fractional Doppler
(us) Power Category (us) Power Category
0.0 0.189 CLASS 0.0 0.500 CLASS
0.2 0.379 CLASS 5.0 0.500 CLASS
0.5 0.239 CLASS
1.6 0.095 GAUS1
2.3 0.061 GAUS1
5.0 0.037 GAUS1

Table 3.1: Numeric power delay profile of six paths and two paths.

are regular LDPC codes with column weight wc = 3 in the parity-check matrix and

with appropriate block lengths and code rates. The modulation under consideration

are QPSK or 8PSK constellation respectively. Simulation results are shown in terms

of the information bit-error rate (BER) versus Eb/N0. The simulation MIMO system

has K = 256 subcarriers. The LDPC has code rate R = 0.5 and the iterations of
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Figure 3.6: BER of considered SF codes, Nt = Nr = 2, QPSK modulation

LDPC codes is 30.

In order to span LDPC coded bits in an OFDM word, the LDPC code length varies

with modulation. That is, the LDPC code lengths are 1008 and 1512 with respect

to QPSK and 8PSK respectively. Both cases have the same number of modulation

symbols, which is 1008/2 = 1512/3 = 504. The 504 symbols are transmitted by

two transmit antennas. Hence, there are 252 modulated symbols to be transmitted

by each antenna. Thus, 252 of the 256 subcarriers will be used to represent the 252

symbols, while 4 of the 256 subcarriers are free subcarriers which can be used to carry

side information or some other purpose. When the LDPC decoder receive (Y1, Y2),

an LDPC codeword can be completely decoded.
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Figure 3.7: BER of considered SF codes, Nt = Nr = 2, 8PSK modulation
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Figure 3.8: BER of considered SF codes, Nt = 2, Nr = 1, QPSK modulation
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Figure 3.9: BER of considered SF codes, Nt = Nr = 1, 8PSK modulation

Fig.(3.6), Fig.(3.7), Fig.(3.8) and Fig.(3.9) depict the performances of the consid-

ered space-frequency (SF) codes under the condition of various power delay profiles

and various modulation methods. We use the BPSK modulation for the case of not

using LDPC and QPSK for the case of using LDPC codes in Fig.(3.6) and Fig.(3.8).

Also, we use the QPSK modulation for the case of not using LDPC and 8PSK for

the case of using LDPC codes in Fig.(3.7) and Fig.(3.9). Thus, the transmission rate

of both cases are the same. Clearly, the performance of the SF codes without LDPC3

codes, i.e., pure Alamouti coding is much worse than the case of using LDPC codes.

3The performance of the case without LDPC is independent of the condition of the existence or
nonexistence of delay paths.



Chapter 4

PAPR Reduction in MIMO OFDM

Systems

In OFDM systems, peak-to-average power ratio (PAPR) is an important issue for the

transmitter because a system with a large PAPR requires the linear power amplifier

with a large dynamic range. The problem of PAPR is due to the fact that in OFDM

systems, the summation of various signals of many subcarriers will lead to the prob-

able occurrence of high peak power as compared to the average power. For MIMO

OFDM, the problem of PAPR is similar to the conventional OFDM system. The

techniques used for mitigating the PAPR effect in the conventional OFDM system

can also be applied to the MIMO OFDM systems. However, the usage of multiple

transmit antennas may somewhat deepen the problem of PAPR while the usage of

31
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multiple transmit antennas may provide additional room for executing the operation

of PAPR reduction.

By now, many techniques have been proposed for relieving the PAPR problem in

the OFDM systems, such as Amplitude Clipping, Coding, Selective Mapping (SLM)

[11, 12] and Active Constellation Extension (ACE) [13]. In particular, there is a tech-

nique, called the “cross-antenna rotation and inversion”[14] (CARI) which addresses

on PAPR reduction for the MIMO-OFDM systems. Our research team has recently

devised a there time-shifted PAPR reduction technique for the ordinary OFDM sys-

tem that is a modified form of selective mapping technique which has the advantage

of low complexity and will appear in [25]. We find that after some modification, the

technique is very suitable for the MIMO-OFDM system. We call this new PAPR re-

duction technique for MIMO-OFDM systems “Time-domain circular shift (TDCS)”

technique. We will compare the cross-antenna rotation and inversion[14] (CARI) with

TDCS. The numeric result will show the advantage of TDCS in Chapter 4.4.

4.1 Basics of PAPR

After the IFFT operation, the resulting complex baseband OFDM signal is

s(t) =
1√
K

K−1∑

k=0

Xk expj2πkt/K, 0 ≤ t ≤ T (4.1)
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where T is the duration of an OFDM symbol and Xk is the data symbol considered

in the frequency domain. The PAPR of this OFDM system can be defined as 1.

DEFINITION 1 For any baseband OFDM signal, the PAPR of the OFDM symbol

can be expressed as

PAPR =
max 0≤t<T |s(t)|2

E{ |s(t)|2} . (4.2)

where E{x} denotes the expectation function of x.

In case of the discrete-time OFDM system, enough oversampling on the OFDM

symbol is required to preserve the accurate PAPR value [26]. Suppose that oversam-

pling factor is J . The discrete-time OFDM signal can be written as

sn =
1√
K

K−1∑

k=0

Xk expj2πkn/JK, n = 0, · · · , JK − 1. (4.3)

Thus, the PAPR of the discrete-time OFDM signal is shown in Definition 2.

DEFINITION 2 The PAPR of the OFDM symbol in discrete-time signals is

PAPR =
max 0≤n<JK |sn|2

1
JK

∑JK−1
n=0 |sn|2

. (4.4)

The case of J = 1 is called Nyquist rate sampling or critical sampling. The case of

J > 1 is called oversampling. For J = 4, the peak of continuous-time value can be

estimated sufficiently.
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The complementary cumulative distribution function (CCDF) of the PAPR can

be used to evaluate the capability of PAPR reduction. Here, CCDF is defined as the

probability of the occurrence of PAPR exceeding a given threshold PAPR0, which is

CCDF = Pr(PAPR > PAPR0). (4.5)

Consider MIMO OFDM systems with Nt transmit antennas and Nr receive an-

tennas. Denote PAPRp as the PAPR of the pth transmit antenna. Then for multiple

transmit antennas, the PAPR is defined in Definition 3.

DEFINITION 3 The PAPR of the MIMO OFDM symbol in discrete-time signals

is as below

PAPR = max(PAPR1, PAPR2, . . . , PAPRNt
). (4.6)

PAPRp =
max 0≤n<JK |sp

n|2
1

JK

∑JK−1
n=0 |sp

n|2
, p = 1, 2, . . . , Nt. (4.7)

where Nt is transmit antenna, PAPRp is the PAPR of transmit antenna p, and sp
n

is the discrete OFDM signal of transmit antenna p.

In case that selective mapping technique is used for PAPR reduction. We assume

that the number of candidates for the selective mapping operation scheme is Q. The

selector choose the candidate with the lowest PAPR. In other words, a minimax
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Figure 4.1: Partition of the Ca and Cb.

criterion is used, which can be described as

(s1, . . . , sNt
) = arg min

s1, ... , sNt

(PAPR) (4.8)

where (s1, . . . , sNt
) are transmitted OFDM symbols with lowest PAPR, and by Eqs.(4.7)

sp = (sp,0, . . . , sp,JK) which is time-domain signal for transmit antenna p.

4.2 CARI Scheme

We now describe the CARI scheme[14] with Nt = 2 based on the MIMO OFDM

investigated in Section (3.3). We consider the space-frequency code described by

Eqs.(3.14) and Eqs.(3.15). It is easy to show that Ci and ±C∗
i (i = a, b) have the

same PAPR properties. Therefore, for the LDPC coded Alamouti scheme, the PAPR

reduction needs to be done only for C1 in Eqs.(3.14).

For CARI, we partition the Ca and Cb into W subblocks of equal sizes, denoted
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as

Ca =

[
Ca1 Ca2 · · · CaW

]
(4.9)

Cb =

[
Cb1 Cb2 · · · CbW

]
(4.10)

Each subblock has K/W elements in it as shown in Fig.(4.1). Now we perform anti-

clockwise rotation and inversion across 2 antennas, which is shown in Fig.(4.2) and

Table(4.1). That is, there are four kinds of candidates for each pair of Cai and Cbi.

With W subblocks and 2 antennas, 4W candidates can be obtained. In case that

Operation (i = 0, 1, . . . , W )

I Cai and Cbi are unchanged
II Cai and Cbi are swapped
III Cai and Cbi are inverted, i.e.,−Cai and −Cbi

IV Cai and Cbi are swapped and inverted, i.e., −Cai and −Cbi are swapped

Table 4.1: Four operations of each subblock.

M is large, this method will be impractical, since we have to search a large number

of candidates to obtain the best PAPR. Hence, a suboptimal method is considered

in [14], which is called Successive Suboptimal CARI (SS-CARI) scheme. The block

diagram is shown in Fig.(4.3). At the beginning, the operations for Ca1 and Cb1 in

Table(4.1) are executed. Then, PAPR values of the four candidates are calculated.

For example, if the operation II has the lowest PAPR, the fist subblock is fixed as

shown in 4.4. Next, four operations for Ca2 and Cb2 are performed and the PAPR
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Figure 4.2: Cross-Antenna Rotation and Inversion (CARI) scheme.

values of the four candidates are calculated. Again, the second subblock is fixed with

the lowest PAPR. By proceeding this to all W subblocks, a total of 4W candidates

can be obtained which is less than 4W candidates in CARI scheme. Note that S = 2W

bits for side information are still needed for the SS-CARI.

In Section (4.3), we will propose a novel method to reduce the PAPR of MIMO-

OFDM in time domain. To compare to the proposed time-domain scheme, we set

the partition number to be W = Q/4 for SS-CARI, where Q = 8, 16, . . . is the total

number of candidates. In Fig.(4.3), we observe that the transmitter needs 2Q IFFT

computations in order to obtain Q candidates. The proposed method described in

Section (4.3) will need only two IFFT computations.
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Figure 4.3: Block diagram of SS-CARI scheme.
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Figure 4.4: Successive Suboptimal Cross-Antenna Rotation and Inversion (SS-CARI)
scheme.

4.3 Time-Domain Circular Shift Scheme

Now we will show our main result of this research that is Time-Domain Circular Shift

Scheme (TDCS) for PAPR reduction in the MIMO-OFDM system.

4.3.1 Time-Domain Circular Shift Scheme

The time-domain circular shift (TDCS), which produces candidates in time-domain

instead of in frequency domain, is depicted in Fig.(4.5). The time-domain OFDM
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Figure 4.5: Time-domain circular shift (TDCS) scheme.

symbols for two transmit antennas are denoted as

Sa =

[
Sa1 Sa2 · · · Sa, JK

]
(4.11)

Sb =

[
Sb1 Sb2 · · · Sb, JK

]
(4.12)

We apply a circular shift1 with parameter τi on Sb (i = 1, . . . , Q). We denote the

circular-shifted signals for parameter τi by Ŝ i
b , where

Ŝ i
b =

[
Ŝ i

b1 Ŝ i
b2 · · · Ŝ i

b, JK

]
(4.13)

Then, we multiply the combination of Sa and Ŝ i
b by a unitary matrix U to obtain a

1A circular shift is a permutation of the entries in a tuple where the last element becomes the first
element and all the other elements are shifted, or where the first element becomes the last element
and all the other are shifted.
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candidate for parameter τi. The ith candidate will be

Vi =




V i
a

V i
b


 = U




Sa1 Sa2 · · · Sa, JK

Ŝ i
b1 Ŝ i

b2 · · · Ŝ i
b, JK


 (4.14)

where V i
a and V i

b are the OFDM symbols for the first and the second transmit antennas

respectively and,

U =
1√
2




1 1

1 −1


 (4.15)

We have one candidate for each shift. Hence there are Q candidates in total. We use

minimax criterion to find the lowest PAPR and transmitted OFDM symbols according

to Eqs.(4.6) and Eqs.(4.8).

From Fig.(4.5) we observe that only two IFFT computations are needed and

the number of bits for side information is S = log2 Q. Thus, TDCS can reduce

the implementation complexity as compared to SS-CARI and is more applicable to

practical systems.

4.4 Simulation Results

In this section, we provide the simulation results so that we can compare the perfor-

mances of SS-CARI and the proposed TDCS regarding CCDF and BER (bit error

rates).
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4.4.1 CCDF Performance

In our simulation, 105 random OFDM sequences are generated to obtain the CCDF.

We use Nt = 2 and K = 128 subcarriers. The modulation is QPSK. Oversampling

factor J is set to 4..

Q = 8 Q = 16

PAPR Side IFFT Side IFFT
Scheme Information Number Information Number

S bits ξ S bits ξ
TDCS 3 2 4 2

SS-CARI 4 16 8 32

Table 4.2: Comparison of information bit S and the number of IFFT needed ξ.

Fig.(4.6) shows the CCDF of PAPR for the TDCS and SS-CARI scheme using

Q = 8 and Q = 16 candidates respectively. The proposed TDCS scheme for Q = 8

achieves better performance than the SS-CARI scheme for W = 2. The TDCS and

SS-CARI schemes for Q = 16 perform almost the same. We list the number of needed

side information bits and the number of needed IFFT computations for both TDCS

and SS-CARI in Table(4.2). We can observe that both the side information S and

the number of IFFT computations needed ξ for TDCS scheme are less than that for

SS-CARI scheme.
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Figure 4.6: SS-CARI and TDCS scheme for different value of candidates Q.

4.4.2 BER Performance

In many PAPR research works, the effect on BER is neglected. In fact, the effect on

BER may be great in some cases. In our simulation, we use Nt = 2 and K = 256

subcarriers. The available bandwidth is 1MHz and the subcarrier K = 256. We

consider the channel with power delay profiles: COST207[24] typical urban six-ray

power delay profile. The subcarrier path gains are generated according to Eqs.(2.9),

independently for different transmit and receive antennas. The oversampling factor

is J = 4. All the other parameters are just the same as what we use in Section (3.4).

Fig.(4.7) and Fig.(4.8) show the performance of SS-CARI and TDCS using the
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Figure 4.7: SS-CARI BER performance for W = 4.

space frequency code investigated in Section (3.3). In the simulation, we assume

that CSI and side information can be recovered correctly by the receiver. Take 7dB

clipping ratio case as example. We can observe that the BER performance of both

schemes are around 10−4 at Eb/N0 = 3dB.

In Eqs.(4.14), multiplying unitary matrix U to the left side of a space-frequency

codeoword will not effect the BER performance. Hence the U can be designed by any

unitary matrix other than that shown in Eqs.(4.15)
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Figure 4.8: TDCS BER performance for Q = 16.

Side Information Embedded

In some situations, the side information is embedded into the system. There are many

methods to embed the side information into the system. A major concern is that

the side information must be well protected. Otherwise, serious error propagation

will occur. Here, we consider a simple method which is obtained by inserting the

side information into the zero terms of Eqs.(3.14) and Eqs.(3.15) and each reserved

subcarrier contains one side information bit. In fact, we can insert more than one

bit to one subcarrier if the system needs a large number of the side information bits.

In order to protect the side information bit, the power of side information signals

is transmitted four times of original signals. The performance of SS-CARI scheme
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remain similar to TDCS scheme, shown in Fig.(4.9) and Fig.(4.10). Take the 7dB

clipping ratio condition as example, we can observe that the BER performance of

both schemes are around 10−4 at Eb/N0 = 3dB. That is, the system suffers no BER

performance degradation by inserting the side information bits in the simple methods

described above.
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Figure 4.9: SS-CARI BER performance for W = 4 with side information embedded.
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Figure 4.10: TDCS BER performance for Q = 16 with side information embedded.



Chapter 5

CONCLUSIONS AND SELF

EVALUATION

In this three-year project, our goal is to investigate MIMO-OFDM systems so that

both low PAPR and error rates can be achieved. In the first year, we investigate a

space-frequency code with two transmit antennas that is constructed by the concate-

nation of binary LDPC code and the Alamouti space-time coding. The reason for

choosing such a design is that this construction can achieve large column distance

and full rank of the codeword difference matrix, which will ensure large diversity

for combating the multi-path fading MIMO-OFDM channel. Simulation results ver-

ify that the construct space-frequency code does perform well in the MIMO-OFDM

channel. Based on this efficient space-frequency code, we propose a low complexity

47
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selective-mapping type PAPR reduction technique. In the proposed technique, the

candidates are generated in the time-domain instead of the frequency domain. Thus,

only two IFFT operations are needed in the proposed technique while for the selec-

tive mapping using frequency domain many IFFT operations are needed. In case the

number of candidates is not great (no more than 16), the proposed technique can

significantly reduce the complexity without sacrificing the PAPR reduction capabil-

ity and error rates. Simulation results verify the advantage of the proposed PAPR

reduction technique.

Some of the results of this research comes from the PhD thesis of S.K. Deng [25]

and the master thesis of Y. H. Lo [27]

As a summary, we have a very significant research result in this first-year term,

i.e., the time-domain PAPR reduction technique for the MIMO-OFDM system. The

idea is novel and the advantage is obvious in case the number of selective mapping

is not large. We believe that this result can be published in prestigious academic

conferences and journals.
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