
A Distributed Key Management Protocol for Dynamic Groups

Jen-Chiun Lin� Chun-Yen Chouy Feipei Laiz Kuen-Pin Wux

Abstract

With the popularity of group-oriented applications, se-
cure and efficient communication among all group mem-
bers has become a major issue. In this paper, we propose
a distributed key management protocol for group members
to share a secret group key, which can be used to protect
shared information. The protocol manages the group key of
a dynamic group, where members can freely join or leave,
and each time the key is updated using two broadcast mes-
sages. The protocol algorithms provide group key secrecy,
forward group key secrecy, and backward group key secrecy.
The complexities of the group key computation time, the
storage space for every member, and the total communica-
tion bandwidth to update the group key are approximately of
logarithmic order of the group size, which make the proto-
col attractive for environments with less computation power
and smaller storage.

1 Introduction

Information confidentiality is an important issue in com-
munication. With the popularity of group-oriented applica-
tions, such as teleconferencing, chat rooms, and collabora-
tive groupware, to name a few, there are increasing demands
for secure and efficient information sharing among group
members. Though numerous schemes have been developed
for two communicating entities, the solutions for a group
of more than two entities, in particular, key management,
remain research challenges.

When concerning the information confidentiality prob-

�Department of Electrical Engineering, National Taiwan University,
Taipei 106, Taiwan, simon@orchid.ee.ntu.edu.tw.

yDepartment of Mathematical Education, National Hualien Teachers
College, Hualien 970, Taiwan, choucy@sparc2.Nhltc.edu.tw.

zDepartment of Electrical Engineering & Department of Computer Sci-
ence and Information Engineering, National Taiwan University, Taipei
106, Taiwan, flai@cc.ee.ntu.edu.tw.

xInstitute of Information Science, Academia Sinica, Taipei, Taiwan,
kpw@iis.sinica.edu.tw.

lem for groups, rather than directly applying point-to-point
solution to each pair of the group members, it is often more
desirable to reduce the performance overhead by sharing
keys, or by partitioning the groups into smaller subgroups.
In both cases, key management plays a crucial role. Current
solutions can be classified into two categories: the central-
ized approach [16, 10] where keys are managed by servers,
and the distributed approach [2, 4, 7] where keys are dis-
tributed among all members. While both approaches have
their own advantages and disadvantages, the centralized ap-
proach often suffers from the fact that servers need great
computation power, large communication bandwidth, and
considerable storage space. These servers tend to be the
performance bottleneck of the entire system. If the servers
are not group members, the entire system needs additional
resources for them. If the servers themselves are also group
members, then the imbalance of server members’ duty and
non-server members’ duty might cause problems in fair-
ness. The distributed approach is attractive if the above is-
sues are major concerns.

For the above reasons, we focus on providing a dis-
tributed group key management solution. In this paper, we
propose a secure, efficient and distributed key management
protocol for dynamic groups using broadcast network. Our
goal is that all group members can securely and efficiently
share a common group key, which can be used to protect
shared information. The protocol supports operations for
dynamic groups, including group key updating, member
joining, and member leaving. The protocol algorithms are
based on the extension of two-party Diffie-Hellman key ex-
change (2DH). Our solution uses a variation of key trees to
speed up key computation. Each group member keeps only
partial group information to run the protocol, which makes
the communication bandwidth and storage requirement low.

The rest of the paper is organized as follows. Sec-
tion 2 discusses the general requirements and issues in se-
cure group communication systems. Section 3 introduces
related work of this field. Section 4 gives the protocol ter-
minology and algorithms. Section 5 discusses the proto-

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02)
0742-1303/02 $17.00 © 2002 IEEE

col security, complexity and other issues. The last section
gives conclusions and explores possible future research di-
rections.

2 Overview

The protocol uses atomic and reliable network broad-
casts to send request messages and updating messages.
Here “a broadcast service is atomic and reliable” means that
either a broadcast message is successfully received by all
entities or the operation fails. The reason using broadcasts
is that, most of the time, one group member, or a new join-
ing member, does not know all other group members, but
it still has to send messages to all group members without
relying on servers.

The protocol supports three kinds of operations: group
key updating operations, member joining operations, and
member leaving operations. Two broadcast messages, a re-
quest message and an updating message, are required to
perform any one of such operations. A request message is
broadcast for a member to initiate a group operation. An up-
dating message is then broadcast to all members to compute
the new group key.

Since the order of these operations are crucial to the con-
sistency of the group, every group member must receive the
request messages in the same order. The protocol itself does
not provide any ordering mechanism, and it depends on the
underlying network support for total ordered message deliv-
ery. More rigorous discussion of the communication mod-
els can be found in [11].

All messages of the protocol operations should be signed
and authenticated. We use signatures for two reasons. First,
signatures provides mechanisms for source authentication,
that is, group members receiving the message can verify if
the message really comes from the claimed group member.
This ensures that the messages cannot be faked by mali-
cious entities. Another reason is that message integrity can
be guaranteed by checking the signatures, which is also im-
portant that the message information is not altered during
transmission. There are several public key algorithms, such
as RSA, that can produce strong digital signatures. There
are also popular authentication systems based on signatures,
including Pretty Good Privacy (PGP) [17] and Public Key
Infrastructure (PKI) [13]. For more general discussions of
signatures and authentication, please refer to [12].

Conceptually, each group member uses two threads to
run the protocol. One thread, the command thread, waits for
client commands and uses appropriate algorithms to send

request messages. Another thread, the protocol thread, re-
ceives request messages and uses appropriate algorithms to
handle them. While handling the request, one of the group
members broadcasts an updating message, and all group
members, including the updating message sender, receive
the message and update their member information. The
pseudo-code of these two threads is listed in Figure 1. The
algorithms used by these threads are discussed in section 4.

command thread
while the protocol works correctly do

accept a command from the client
select a protocol algorithm to send request message

protocol thread
while the protocol works correctly do

receive a request message
select a protocol algorithm to handle the message

Figure 1. Pseudo-code of the threads

3 Related Work

The distributed schemes are often based on the two-
party Diffie-Hellman key exchange (2DH) or its extensions.
In [14], Steer et al. proposed a key agreement protocol
STR for secure audio conferencing. The solution is not
suitable for large groups because its computation and mes-
sage size grow linearly with the group size. Burnmester
and Desmedt [6] present several conference key distribu-
tion systems. Among them, the tree-based system and the
broadcast system are particularly interesting. All N mem-
bers in the tree based system agree upon a group key in
O(logN) rounds, and in each round, two members perform
the 2DH protocol to compute a common key for the next
round. In the broadcast system, only two rounds are needed
to reach the agreement, but each round needs N broadcast
messages. Steiner, Tsudik, Ateniese, and Waidner have a
series of work about the dynamic peer groups key agree-
ment system, the CLIQUE protocol suite [15, 1, 3, 2], based
on the group Diffie-Hellman (GDH) protocol. However, the
solution aims at small dynamic peer groups, and it does not
scale well when the group size becomes large.

Becker and Wille [4] study contributory key distribu-
tion systems based on the 2DH key exchange protocol, with
or without broadcasts. They give theoretical lower bounds
of the total number of messages, the total number of ex-
changes, and the total number of simple rounds. In addi-
tion, they proposed the 2d-octopus and the 2d-cube proto-
cols. While these protocols can deal with group key agree-
ments efficiently in terms of the number of messages or

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02)
0742-1303/02 $17.00 © 2002 IEEE

rounds, the member leaving operation is not handled well
according to [7]. Kim et al. [7] propose a tree based group
Diffie-Hellman protocol (TGDH). One potential problem is
the broadcast bandwidth required, since it is proportional to
the group size. Each member must store the whole group
tree, which requires considerable storage.

4 The Protocol Algorithms

A group key management protocol must update the
group key according to group key updating requests or
group membership changes. The protocol supports two
kinds of group membership operations, the joining oper-
ations and the leaving operations. A new member initi-
ates the joining operation to be added to the group. A
member leaves the group after it has successfully noti-
fied all group members. The protocol uses an extended
Diffie-Hellman key agreement algorithm based on two-
party Diffie-Hellman key exchange [8, 9]. Every group
member keeps partial group information to compute the
group key and maintain membership consistency. The data
structures and algorithms of the protocol will be explained
in the rest of the section. The notations used throughout this
paper are listed in Table 1.

Table 1. Notation

p a large prime number
GF (p) the finite field of order p
g a generator of GF (p)�

m a group member
x a secret key
k a key computed by the 2DH protocol
h an agreement key used in the 2DH protocol
'(x) gx mod p
V the ordered tuples of agreement keys
v an internal node
G the group
I a unique identity in G
W a weight factor
D node information (Is;Ws; ks; It;Wt; ht)
E node updating information (Is;Ws; hs; It;Wt; ht)
P path information, a sequence of Ds
U path updating information, a sequence of Es
M member information (I; x; kG; P)
L the length of the specified path
i, j indices

4.1 Basic Concepts

The key management mechanism is based on a variation
of key trees. A leaf node of the key tree represents a group
member or the secret key it holds, and an internal node rep-
resents the information shared by members whose paths to
the root contain the node. Figure 2 shows a sample key tree.

v0

m3

�

�
	

�

�
	

Z
ZZ}

�
��>��
�

Z
Z
Z

J
JJS
So��7

h3;0 = '(x3)h1;0 = '(k1)

h2;1 = '(x2)h1;1 = '(x1)

m1

v1

m2

Figure 2. A key tree

In Figure 2, assume that there are three members in the
group, m1, m2 and m3, and each mi holds a secret key xi.
The internal nodes are labeled v0, v1. First, m1 and m2

perform a two-party Diffie-Hellman key exchange (2DH)
and produce a shared key k1 = '(x1x2), which can be
treated as the secret key of v1. Then v1 and m3 perform a
2DH and produce a shared key

k0 = '(k1x3) = gg
x1x2 �x3 mod p:

The key k0 can be viewed as the group key shared by m1,
m2 and m3. The sample implies that if all group members
can be arranged into leaf nodes of a binary key tree, the
group key can be easily computed by successive applica-
tions of 2DH.

Without centralized servers, it is not suitable for every
group member to keep a copy of the key tree, since the cost
is considerably high considering the space used to store it
and the bandwidth used to transmit it. Instead, every group
member just keeps the information of those nodes on the
path from the root node of the key tree to the leaf node rep-
resenting itself. Every group member keeps partial group
information M � (I; x; kG; P), where I is its identity, x
is its secret key, kG is the group key, and P is the path in-
formation as illustrated in Figure 3. Each node information
is a six-tuple D � (Is;Ws; ks; It;Wt; ht). The values ks,
ht are used to compute the group key, and Is, Ws, It, Wt

are used for group membership management. These nodes
are indexed from the root node to the leaf node, beginning
from 0. The subscripts s and t mean self and peer respec-
tively. The concept of self and peer can be explained using

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02)
0742-1303/02 $17.00 © 2002 IEEE

Dj

�

�
	

@@I
�
�
�
�

��
��

@@
�� AA

�� AA

@@��
��
AA

T
T
T
T

x

ht;j

ks;j

(peer subtree)

(self subtree)

ts

(path)
P

D0

�

�
	

Figure 3. Path notation

Figure 2. From m1’s point of view, the self and peer sub-
trees of v1 are m1 and m2 respectively; from m2’s point of
view, they are m2 and m1 respectively. The weight factor
Ws and Wt are the number of group members in the self
and peer subtrees respectively. These data are used to keep
the average path length of all group members small, so that
the key tree constructed by these paths is more balanced.
Every node is associated with two identity Is and It, each
denotes the identity of the representative group member in
the two subtrees labeled as “self” and “peer”. The protocol
uses these identities to identify subtrees.

To compute the group key, we observe that, for a node,
the value ks can be viewed as its secret key or a key
shared by the members in its self and peer subtrees, and
the 2DH agreement key ht is '(kt) = gkt (mod p), which
can be used to further compute a shared key '(kskt) =

gkskt (mod p) = (gkt)ks (mod p) = hkst (mod p). In
general, given a path with L nodes, we can compute ks;0,
the group key, using the following recurrence relations:

ht;j = '(kt;j+1) = gkt;j+1 mod p;

ks;j = '(ks;j+1kt;j+1) = h
ks;j+1
t;j mod p;

where 0 � j � L� 1. The algorithm in Figure 4 computes
the group key and updates the weight factors along the path.

algorithm ComputeGroupKey()
L jP j; k x
for j = L � 1 down to 0 do
ks;j hkt;j mod p
k ks;j
if j 6= L� 1 then Ws;j Ws;j+1 +Wt;j+1

kG k

Figure 4. ComputeGroupKey algorithm

Every time a new member joins the group or a mem-
ber leaves the group, all members’ path information (which
containing some 2DH agreement keys) must be updated to

reflect group membership changes. To update those infor-
mation, the path updating information U is broadcast. U is
similar to the path information, except that it is composed of
a sequence of node updating information E, which is a six-
tuple (Is;Ws; hs; It;Wt; ht). The only difference between
E and D is hs, which stores the 2DH agreement key com-
puted by the message sender. The algorithms manipulating
U and P are shown in Figure 5.

algorithm CreateU()
U 0 P ; L jP j; k x
for j = L� 1 down to 0 do
h0s;j gk mod p

k h0t;j
k
mod p

if j 6= L � 1 then W 0
s;j W 0

s;j+1 +W 0
t;j+1

return U 0

algorithm UpdatePath(~U)
L jP j
for j = 0 to L� 1 do

if (Is;j = ~Is;j) and (It;j = ~It;j) then
Ws;j ~Ws;j ; Wt;j ~Wt;j

else if (Is;j = ~It;j) and (It;j = ~Is;j) then
Ws;j ~Wt;j ; Wt;j ~Ws;j ; ht;j ~hs;j
break

Figure 5. Algorithms manipulating U and P

Algorithm CreateU is used to create updating informa-
tion U from a member’s path P and its secret key x. Every
group member uses algorithm UpdatePath to update its own
path according to the path updating information. It can be
observed that the agreement keys are computed in algorithm
CreateU, and every member runs algorithm UpdatePath to
replace agreement keys in P by corresponding agreement
keys in ~U . If the agreement keys in a path are changed, the
computed group key is also changed.

4.2 The Group Key Updating Algorithms

The group key updating algorithms are used when a
group member wishes to update the group key. A group
member uses algorithm SendRekeyRequest to initiate a
group key updating operation. All group members, includ-
ing the sender, then proceed to finish the operation using al-
gorithm HandleRekeyRequest. In the algorithm, the sender
selects a new secret key, and broadcasts the path updating
information U . All group members modify their path infor-
mation and compute the new group key. The algorithms are
listed in Figure 6.

Take the key tree in Figure 2 as an example. Assume that
the identity of each member mi is Ii, and the representative

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02)
0742-1303/02 $17.00 © 2002 IEEE

algorithm SendRekeyRequest()
broadcast REKEY REQUEST[I]

algorithm HandleRekeyRequest(~I)
if I = ~I then
x randomly select a new secret key
U CreateU()
broadcast REKEY UPDATE[U]

receive REKEY UPDATE[~U]
UpdatePath(~U)
ComputeGroupKey()

Figure 6. The group key updating algorithms

member of m1, m2 is m1 (at node v1). Let Pi be the path
information of mi, then we have:

P1 = ((I1; 2; '(x3'(x1x2)); I3; 1; '(x3));

(I1; 1; '(x1x2); I2; 1; '(x2)));

P2 = ((I1; 2; '(x3'(x1x2)); I3; 1; '(x3));

(I2; 1; '(x1x2); I1; 1; '(x1)));

P3 = ((I3; 1; '(x3'(x1x2)); I1; 2; '(x1x2))):

Assume thatm1 broadcasts a REKEY REQUEST message.
After receiving the request message, m1 itself selects a new
secret key x01 and broadcasts the REKEY UPDATE mes-
sage including

U = ((I1; 2; '('(x
0

1x2)); I3; 1; '(x3));

(I1; 1; '(x
0

1); I2; 1; '(x2))):

Then all group members update their path information, and
the new path information are:

P 0

1 = ((I1; 2; '('(x
0

1x2)x3); I3; 1; '(x3));

(I1; 1; '(x
0

1x2); I2; 1; '(x2)));

P 0

2 = ((I1; 2; '('(x
0

1x2)x3); I3; 1; '(x3));

(I2; 1; '(x
0

1x2); I1; 1; '(x
0

1)));

P 0

3 = ((I3; 1; '('(x
0

1x2)x3); I1; 2; '('(x
0

1x2))):

4.3 The Member Joining Algorithms

The member joining algorithms are used when a new
member wishes to join the group. To become a group
member, one uses algorithm SendJoinRequest to select
a secret key and broadcast the request message. The
JOIN REQUEST message includes an additional field, the
agreement key h, which will be used by the group mem-
bers to compute the new group key. All group members
will receive the request message, and they use algorithm

HandleJoinRequest to handle it. In algorithm HandleJoin-
Request, one of the group members will find itself to be
responsible for the joining operation. It selects a new secret
key, computes the path updating information U , and then
broadcast it to all group members including the new mem-
ber. Group members useU to update their path information,
and the new member uses algorithm CreatePath to create its
path information from U . Now the new member becomes
a group member, and it can compute the group key with
its path and secret key. The member joining algorithms are
listed in Figure 7.

algorithm SendJoinRequest()
x randomly select a new secret key
h gx mod p
broadcast JOIN REQUEST[I , h]

algorithm HandleJoinRequest(~I , ~h)
if I 6= ~I and IsLeader() then
x randomly select a new secret key
D (I , 1, 0, ~I , 1, ~h)
append D to P
U CreateU()
broadcast JOIN UPDATE[U]

receive JOIN UPDATE[~U]
if I = ~I then CreatePath(~U)
else UpdatePath(~U)
ComputeGroupKey()

algorithm IsLeader()
L jP j
for j = 0 to L� 1 do

if Ws;j > Wt;j then return false
if Ws;j =Wt;j and Is;j < It;j then return false

return true

algorithm CreatePath(~U)
P ~U ; L jP j
Is;L�1 ~It;L�1; It;L�1 ~Is;L�1; ht;L�1 ~hs;L�1

Figure 7. The member joining algorithms

As can be seen in algorithm IsLeader, only one of the
group members will get a positive result after evaluat-
ing their paths. The member is responsible to make the
JOIN UPDATE message and to broadcast it. The algorithm
IsLeader examines the path nodes from the root node to the
leaf node. For those members who are in a subtree with
greater weight factor, they are not considered as candidates
of the temporary leader. The idea is that, to place a new
member as a leaf node in a key tree, the node should be
placed in a subtree with less leaf nodes to make the tree
more balanced. As shown in algorithm HandleJoinRequest,
it is simple for the temporary group leader to change its
path to reflect the addition of a new member. It only has to

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02)
0742-1303/02 $17.00 © 2002 IEEE

append a new node to its path, and to update the path infor-
mation henceforth. These two members are peers of each
other afterwards. Figure 8 illustrates the concept.

m2

�� @@
m1 m2

m1
��
HH

S
So

�

�
	

Figure 8. Handling the joining member

To demonstrate the algorithms, we assume that initially
there are two members m1,m3 in the group with I1 < I3,
and a new member m4 wishes to join the group. Let the
original path information of the group be:

P1 = ((I1; 1; '(x1x3); I3; 1; '(x3)));

P3 = ((I3; 1; '(x1x3); I1; 1; '(x1))):

Now the new member m4 is ready to join the group. Be-
cause the weight factors of both child subtrees are the same,
and I3 > I1, m3 will be the temporary leader. Member m3

selects a new secret key x03 and broadcasts the path updating
information

U = ((I3; 2; '('(x
0

3x4)); I1; 1; '(x1));

(I3; 1; '(x
0

3); I4; 1; '(x4))):

The final path information would be:

P 0

1 = ((I1; 1; '(x1'(x
0

3x4)); I3; 2; '('(x
0

3x4))));

P 0

3 = ((I3; 2; '(x1'(x
0

3x4)); I1; 1; '(x1));

(I3; 1; '(x
0

3x4); I4; 1; '(x4)));

P 0

4 = ((I3; 2; '(x1'(x
0

3x4)); I1; 1; '(x1));

(I4; 1; '(x
0

3x4); I3; 1; '(x3))):

If another new member m2 wishes to join the group, this
time, m1 will be the temporary leader since W1;0 < W3;0.
It is easily verified that the resulting path length of every
member is 2.

4.4 The Member Leaving Algorithms

The member leaving algorithms are used when a group
member wishes to leave the group. The leaving member
uses algorithm SendLeaveRequest to notify all group mem-
bers that it is going to leave. The algorithms require the
leaving member to remain in the group until the request
of leaving is successfully handled. It is because that the
protocol relies on the underlying network system to order

requests from different members. The leaving member can-
not just broadcast the request and quit, since it may have to
handle other requests broadcast prior to its leaving request,
but not received yet. The peer member of the leaving one is
responsible to select a new secret key, to make the path up-
dating information U , and to broadcast it. Algorithm Han-
dleLeaveRequest uses algorithm ReplaceMember to replace
the leaving member with its peer member. These algorithms
are listed in Figure 9.

algorithm SendLeaveRequest()
broadcast LEAVE REQUEST[I]

algorithm HandleLeaveRequest(~I)
if I = ~I then leave the group
if IsPeer(~I) then
x randomly select a new secret key
ReplaceMember(~I , I)
U CreateU()
broadcast LEAVE UPDATE[U]

receive LEAVE UPDATE[~U]
L j ~U j; I 0 ~It;L�1
ReplaceMember(~I , I 0)
UpdatePath(~U)
ComputeGroupKey()

algorithm IsPeer(~I)
L jP j
for j = 0 to L� 1 do

if Is;j = I and It;j = ~I and Wt;j = 1 then return true
return false

algorithm ReplaceMember(~I , I 0)
L jP j
for j = 0 to L� 1 do

if Is;j = ~I then Is;j I 0

else if It;j = ~I then
if Wt;j = 1 then remove Dj from P
else It;j I 0

Figure 9. The member leaving algorithms

Conceptually, if a group member leaves the group, the
leaf node representing the member must be removed from
the key tree. As illustrated in Figure 10, the new tree be-
comes (a) when the leaving member itself forms one sub-
tree, or (b) when the leaving member is in one subtree with
more than two members. If algorithm ReplaceMember finds
that the peer subtree identity of a node is the same as the
leaving member’s identity and its weight is one, the situ-
ation belongs to case (a) and the node should be removed
from the path. Otherwise, it just replaces the leaving mem-
ber’s identity with its peer member’s identity.

Following the previous sample, we assume that m3

wishes to leave. Member m3 leaves after it receives the

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02)
0742-1303/02 $17.00 © 2002 IEEE

(b)m

�

�
	v1

�

�
	v2

�

�
	v1

PPPq
�� AA�� AA

@@
�� AA

@@��

�� �

�
	v2

�

�
	v1

�� AA

HH��
�� AA �� AA

�� @@

�� AA

@@
�� AA

@@��

��

(a)

Figure 10. Handling the leaving member

LEAVE REQUEST message it broadcast. All other mem-
bers receive the message, and m4 finds itself to be the peer
member of m3. Member m4 then selects a new key x004 ,
fixes its path using algorithm ReplaceMember to

P 00

4 = ((I4; 2; '(x1'(x
0

3x4)); I1; 1; '(x1));

and broadcasts the path updating information

U 00 = ((I4; 1; '(x
00

4); I1; 1; '(x1))):

Then both m1 and m4 receive the updating message, and
only m1’s path is modified and

P 00

1 = ((I1; 1; '(x1'(x
0

3x4)); I4; 2; '('(x
0

3x4)))):

Finally, m1 and m4 update their path information to

P 000

1 = ((I1; 1; '(x1x
00

4); I4; 1; '(x
00

4)));

P 000

4 = ((I4; 1; '(x1x
00

4); I1; 1; '(x
0

1))):

5 Discussion

We first give a security analysis by proving several the-
orems and propositions. Then we discuss the time, space
complexities, and communication costs of the protocol.

5.1 Security Analysis

The underlying algorithm of our key management pro-
tocol is an extended Diffie-Hellman (EDH) key agreement
algorithm, which is based on iterations of the two-party
Diffie-Hellman key exchange (2DH). It is clear from sec-
tion 4 that EDH is contributory, that is, each group member
makes an independent contribution to the group key. The
protocol also provides key integrity that the group key is a
function of every member’s secret key, and no other enti-
ties contribute to the computation of the group key. If EDH
provides group key secrecy, forward group key secrecy and
backward group secrecy, then we will show that our proto-
col is secure for dynamic groups.

Group key secrecy means that it is computationally in-
feasible for a passive adversary to compute the group key.
Forward group key secrecy guarantees that it is computa-
tionally infeasible for passive adversaries to derive the new
group key from old secret keys and old group keys. Back-
ward group key secrecy guarantees that it is computation-
ally infeasible for passive adversaries to derive old group
keys from new secret keys and new group keys. These
properties together ensure that a group member only has
the knowledge of its own secret keys and the group keys
computed when it is in the group.

The security of EDH is based on two more fundamen-
tal problems: the difficulty to the solve discrete logarithm
problem (DL), and the 2DH problem. The DL prob-
lem is hard to solve in general, but if p is a composite
of small primes, efficient algorithms, such as the Silver-
Pohlig-Hellman algorithm [8], exist. The security of 2DH
relies on the decisional Diffie-Hellman assumption (DDH),
which states that given arbitrary a, b, c inGF (p), and the tu-
ples ('(a); '(b); '(ab)) and ('(a); '(b); '(c)) in random
order, no polynomial time algorithms can determine which
one is the 2DH tuple with probability substantially greater
than 1=2 [5, 9].

Since all information an adversary can get is in expo-
nential form, to derive the exponents, and hence the secret
keys of group members, is as hard as to solve the DL. It
follows that every group member’s secret key is hard to de-
rive for any adversary. In order to prove that the protocol
provides group key secrecy, forward group key secrecy and
backward forward secrecy, we use an equivalent form of
the EDH, which looks like the key computation algorithm
in section 4.1 rewritten in recursive form.

algorithm EDHS(S, Xn)
if n = 1 then return (('(x1)); x1)
else if n = 2 then return (('(x1); '(x2)); '(x1x2))
else

partition Xn to Xi, Xj using S
(VS;i; kS;i) EDHS(S, Xi)
(VS;j; kS;j) EDHS(S, Xj)
return ((VS;i; VS;j ; '(kS;i); '(kS;j)); '(kS;ikS;j))

Figure 11. EDH simulation algorithm (EDHS)

Figure 11 shows the simulation algorithm EDHS for
EDH. EDHS has two inputs: Xn � (x1; x2; : : : ; xn) is an
n-tuple and each tuple is the secret key of a group member;
S is a protocol dependent algorithm to partition the n-tuple
Xn to an i-tuple Xi and a j-tuple Xj . It controls the out-
put of the simulation algorithm. To simulate the EDH used
in our protocols, S must be deterministic and independent

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02)
0742-1303/02 $17.00 © 2002 IEEE

of the values of X , since all our algorithms are not prob-
abilistic and run independently of the secret key values or
computed key values. S is open to adversaries since the
protocol is public. Note that the order of Xi and Xj is not
important, since '(kikj) = '(kjki). Switching Xi and Xj

only affects the order of the tuples of Vn. There are two
parts of the output:

� kS;n(Xn) simulates the key value computed by all
group members;

� VS;n(Xn) is the ordered 2(n � 1)-tuple that simu-
lates all values needed to be transmitted to compute
kS;n(Xn).

For instance, in the example given in section 4.1, we have
n = 3, and X3 = (x1; x2; x3). The algorithm S will parti-
tion X3 to two ordered tuples, (x1; x2) and (x3). The out-
puts of EDHS(S;X3) are:

kS;3(X3) = '('(x1x2)x3);

VS;3(X3) = ('(x1); '(x2); '('(x1x2)); '(x3)):

We follow a similar approach used in [4]. To prove that
the EDH provides group key secrecy, we only need to show
that the key generated by EDHS is polynomial time indis-
tinguishable from a random number of GF (p), with all the
values transmitted by the protocols are known. For a ran-
dom value y 2 GF (p), consider

AS;n(Xn) = (VS;n(Xn); y);

FS;n(Xn) = (VS;n(Xn); kS;n(Xn)):

We write An �poly Fn to mean that A and F are polyno-
mial time indistinguishable, no matter what protocol depen-
dent algorithm S is.

Theorem 1 The computational infeasibility to solve DDH
implies An �poly Fn for all n � 2.

Proof: We prove it by an alternative form of induction.
Given n = 2, x1, x2 belonging to GF (p), and the
protocol dependent algorithm S, we have AS;2(X2) =

(VS;2(X2); y) = ('(x1); '(x2); y), and FS;2(X2) =

(VS;2(X2); kS;2(X2))) = ('(x1); '(x2); '(x1x2)). In al-
gorithm EDHS, S is ignored for n = 2, so the assump-
tion that it is computationally infeasible to solve DDH im-
plies that A2 and F2 are polynomial time indistinguish-
able. Assume that for all n = 2; 3; : : : ;m � 1, m > 2,
Am�1 �poly Fm�1 is true. Now we only have to show that
for n = m, m > 2, Am �poly Fm to complete the proof.

In order to do so, we rewrite Am, Fm and define several
ordered tuples:

AS;m(Xm) = (VS;i(Xi); VS;j(Xj);

'(kS;i(Xi)); '(kS;j(Xj)); y);

BS;m(Xm) = (VS;i(Xi); VS;j(Xj);

'(a); '(kS;j(Xj ; S)); y);

CS;m(Xm) = (VS;i(Xi); VS;j(Xj); '(a); '(b); y);

DS;m(Xm) = (VS;i(Xi); VS;j(Xj); '(a); '(b); '(a � b));

ES;m(Xm) = (VS;i(Xi); VS;j(Xj); '(a);

'(kS;j(Xj)); '(a � kS;j(Xj)));

FS;m(Xm) = (VS;i(Xi); VS;j(Xj); '(kS;i(Xi));

'(kS;j(Xj)); '(kS;i(Xi) � kS;j(Xj)));

where a 6= kS;i(Xi) and b 6= kS;j(Xj) are random values
chosen from GF (p). Since Am �poly Bm, Bm �poly Cm,
Cm �poly Dm, Dm �poly Em, Em �poly Fm together
imply Am �poly Fm, it only has to be shown that each one
of them is true to complete the proof.

Proposition 1: Am �poly Bm, for all m > 2.
Assume that for some protocol algorithm S, there
exists a polynomial time algorithm M that distin-
guishes between AS;m and BS;m. For some instance
� = (VS;i(Xi); VS;j(Xj); '(z); '(kS;j(Xj)); y), M dis-
tinguishes whether � belongs to AS;m(Xm) or BS;m(Xm).
The algorithm EDHS uses S to partition Xm to two tu-
ples Xi and Xj when m > 2, and we choose i and
j such that i � j (recall that the order of Xi and Xj

is not important). Now we want to determine whether
� = (VS;i(Xi); z) belongs to AS;i(Xi) or FS;i(Xi).
We choose random value y0, and j random values from
GF (p) to make X 0

j . Run EDHS(S;X 0

j) to generate
V 0

S;j(X
0

j), and the value k0S;j(X
0

j). The new instance �0 =

(VS;i(Xi); V
0

S;j(X
0

j); '(z); '(k
0

S;j(Xj)); y
0) is fed to M . If

M tells us that �0 belongs to AS;m, then � belongs to FS;i
(since in this case z = kS;i(Xi)). If M tells us that �0 be-
longs to BS;m, then � belongs to AS;i (since in this case
z = a). It is shown that M is a polynomial time distin-
guishing algorithm for AS;i and FS;i, where i � j � 1

and i + j = m > 2. It contradicts Ai �poly Fi, for
2 � i � m� 1, so we conclude that Am �poly Bm, for all
m > 2.

Proposition 2: Cm �poly Dm, for all m > 2.
Since XS;m, VS;m are independent of a, b, y, these values
are redundant and can be ignored, the problem can be di-
rectly reduced to DDH, which implies Cm �poly Dm.

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02)
0742-1303/02 $17.00 © 2002 IEEE

Proposition 3: Bm �poly Cm, Dm �poly Em and
Em �poly Fm, for all m > 2.
It can be proved analogously to proposition 1, with suitable
choices of � and �.

Theorem 1 confirms us that the EDH used by our algo-
rithms provides group key secrecy. For more powerful ad-
versaries, such as the left group members or current valid
members, we have to show that EDH provides both forward
group key secrecy and backward group key secrecy. We use
�Xn to denote the n-tuple of secret keys known by the adver-

sary, andFS;i;n(�Xi; VS;n(Xn)) is an ordered tuple of values
computable from �Xi and VS;n(Xn) in polynomial time. We
further define the ordered tuples:

HS;i;n(�Xi; Xn) = (�Xi; VS;n(Xn);

FS;i;n(�Xi; VS;n(Xn)); y);

KS;i;n(�Xi; Xn) = (�Xi; VS;n(Xn);

FS;i;n(�Xi; VS;n(Xn)); kS;n(Xn));

where y is chosen from GF (p) randomly.

Theorem 2 An �poly Fn implies Hi;n �poly Ki;n, for all
n � 2 and i > 0.

Proof: Suppose for some protocol algorithm S, there ex-
ists a polynomial time algorithmM distinguishing between
HS;i;n and KS;i;n. For the instance � = (VS;n(Xn); z),
we select i random values from GF (p) to make the tu-
ples �X 0

i and compute F 0

S;i;n(
�X 0

i ; VS;n(Xn)). The instance
�0 = (�X 0

i; VS;n(Xn); F
0

S;i;n(
�X 0

i ; VS;n(Xn)); z) is fed toM .
If M tells us that �0 belongs to HS;i;n, � belongs to AS;n

(since in this case z = y). If M tells us that �0 belongs to
KS;i;n, � belongs to FS;n (since in this case z = kS;n(Xn)).
Using the procedure,M is able to distinguish betweenAS;n

and FS;n for protocol algorithm S, which contradicts theo-
rem 1. So there is no such M for any protocol algorithm S,
and Hi;n �poly Ki;n.

From theorem 2, knowing �Xi, VS;n and algorithm S,
the adversary can compute more information in polynomial
time, but the information is useless against kn. It follows
that the EDH used by our algorithms provides forward and
backward group secrecy. Theorem 2 tells us that it is in-
feasible to break those group keys without corresponding
secret keys, and it implies that the protocol resists collusion
attacks of several adversaries.

5.2 Complexity Analysis

The computation complexity of the algorithms is mea-
sured in terms of loop operations, and all these loops are

single loops and the iteration counts depend on every mem-
ber’s path length. The storage complexity is measured by
the space required for every member to keep the group in-
formation M . For every member, it only depends on the
path information length, since all other information takes
constant space. The communication complexity is mea-
sured by the number of messages, and the total bandwidth
required. All kinds of request messages use only con-
stant bandwidth, and all kinds of updating messages contain
path updating information U , whose size is proportional to
the message sender’s path length. The group operations
costs are summarized in Table 2, and they are compared
to GDH.2 [15] and TGDH [7].

Table 2. Costs of group operations

The group key updating operation
protocol GDH.2 TGDH our scheme

computation O(N2) O(logN) O(L)
unicasts N � 1 0 0
broadcasts 1 1 2
total bandwidth O(N2) O(N) O(L)

(a)

The member joining operation
protocol GDH.2 TGDH our scheme

computation O(N) O(logN) O(L)
unicasts 1 0 0
broadcasts 1 2 2
total bandwidth O(N) O(N) O(L)

(b)

The member leaving operation
protocol GDH.2 TGDH our scheme

computation O(N) O(logN) O(L)
unicasts 0 0 0
broadcasts 1 1 2
total bandwidth O(N) O(N) O(L)

(c)

The member storage requirement
protocol GDH.2 TGDH our scheme

storage O(N) O(N) O(L)
(d)

From Table 2, the average length of all group mem-
bers’ paths should be minimized for our scheme to work
efficiently. Algorithm IsLeader in subsection 4.3 places
new members to subtrees with less leaf nodes by examin-
ing weight factors, and thus makes the average path length

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02)
0742-1303/02 $17.00 © 2002 IEEE

small. For a sequence of N new members joining an ini-
tially empty group, each member’s path length is at most
dlogNe. We can roughly estimate that the average path
length of all group member is of order O(logN), where N
is the number of group members.

6 Conclusion and Future Work

In this paper, we propose a distributed key management
protocol for dynamic groups, and each operation only takes
two broadcast messages. The protocol algorithms are prov-
ably secure. The orders of the computation time to derive
the group key, the storage space for every member, and the
bandwidth for all kinds of messages are all small compared
to the number of group members.

We are planning to improve the protocol to support sub-
groups. Scalability and efficiency can be improved, if every
group operation only affects members in a subgroup. We
are devising the protocol for non-broadcasting network en-
vironments, and developing more fault-tolerant algorithms.

References

[1] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated group
key agreement and friends. In 5th ACM CCS, pages 17–26,
Nov. 1998.

[2] G. Ateniese, M. Steiner, and G. Tsudik. Key agreement in
dynamic peer groups. IEEE Transactions on PDS, 11(8),
Aug. 2000.

[3] G. Ateniese, M. Steiner, and G. Tsudik. New multiparty
authentication services and key agreement protocols. IEEE
JSAC, Apr. 2000.

[4] K. Becker and U. Wille. Communication complexity of
group key distribution. In Proceedings of the 5th ACM CCS,
Nov. 1998.

[5] D. Boneh. The decision Diffie-Hellman problem. In Third
Algorithmic Number Theory Symposium, volume 1423 of
Lecture Notes in Computer Science, pages 48–63. Springer-
Verlag, 1998.

[6] M. Burmester and Y. Desmedt. A secure and efficient con-
ference key distribution system. In Eurocrypt ’94, volume
950 of Lecture Notes in Computer Science, pages 275–286.
Springer-Verlag, 1995.

[7] Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant
key agreement for dynamic collaborative group. In Proceed-
ings of ACM CCS (CCS-7), Nov. 2000.

[8] N. Koblitz. A Course in Number Theory and Cryptography,
2nd edition. Springer-Verlag, 1994.

[9] U. M. Maurer and S. Wolf. The Diffie-Hellman protocol.
Designs, Codes and Cryptography, 19(2/3):147–171, 2000.

[10] S. Mittra. Iolus: A framework for scalable secure multicast-
ing. In ACM SIGCOMM, pages 277–288, Sept. 1997.

[11] L. E. Moser, Y. Amir, P. M. Melliar-Smith, and D. A. Agar-
wal. Extended virtual synchrony. In International Confer-
ence on Distributed Computing Systems, pages 56–65, 1994.

[12] B. Schneier. Applied Cryptography, 2nd edition. John Wiley
& Sons, Inc., 1996.

[13] W. Stallings. Cryptography and Network Security: Princi-
ples and Practice, 2nd edition. Prentice-Hall Inc., 1999.

[14] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A
secure audio teleconference system. In Crypto’ 88, volume
403 of Lecture Notes in Computer Science, pages 520–528.
Springer-Verlag, 1988.

[15] M. Steiner, G. Taudik, and M. Waidner. CLIQUES: A new
approach to group key agreement. In IEEE ICDCS, pages
380–387, 1998.

[16] C. Wong, M. Gouda, and S. Lam. Secure group commu-
nications using key graphs. Proceedings of the ACM SIG-
COMM’98, pages 68–79, Sept. 1998.

[17] P. R. Zimmermann. The Official PGP User’s Guide. MIT
Press, 1995.

Proceedings of the 27th Annual IEEE Conference on Local Computer Networks (LCN�02)
0742-1303/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

