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Abstract 

Positive realness and bounded realness are 
two important issues in system theory. Some re- 
lated applications about these notions include 
analysis and synthesis of passive networks, optimal 
designs in control and estimation, stability investi- 
gations in lineadnonlinear closed-loops; etc.. In 
this paper, we propose the equations of constant 
matrices, which are stabilizable and detectable re- 
alizations of impulse-free generalized state-space 
systems, to describe the positive real and bounded 
real properties. The established generalized posi- 
tive real lemma and generalized bounded real 
lemma are necessary and sufficient. They are the 
extensions of results in [5], in which the state- 
space realizations are considered. The impulse-free 
generalized state-space systems contain both finite 
and nondynamic infinite modes. The state-space 
systems contain finite modes only. To express those 
algebraic restrictions among state variables is eas- 
ier in the generalized state-space. 

1. Introduction 

The studies of positive realness and 
bounded realness have played essential roles in lin- 
ear time-invariant lumped passive network analysis 
and synthesis. There are two important lemmas to 
interpret the positive real and bounded real con- 
straints in terms of the matricas of a state-space re- 
alization of the given transfer function [ 5 ] .  The 
applications of the positive real lemma include the 
followings: spectral factorization in robust control 
[lo], 1171 and Wiener-Hopf design [121, [24], sta- 
bility analysis in circle criterion [5] and Popov cri- 
terion [5], [22]; etc.. Also, the applications of the 
bounded real lemma are H, control [lo], inner- 
outer factorization [ I], [ 101 for model reduction; 
etc.. 

The state-space representation of a dynamic 
system has been extended to the generalized state- 
space representation recently [9], [ 151, [2 I] .  The 
behaviors of a generalized state-space system (also 
called as a singular system or a descriptor system) 
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contain exponential modes, nondynamic modes and 
impulsive modes. The another terms of these three 
conducts are finite poles, static infinite poles and 
dynamic infinitc: poles respectively. The state-space 
systems posses!; exponential modes only, however. 
Also, the algebraic restriction between state vari- 
ables can be explicitly expressed by the generalized. 
state-space representation. To describe those re- 
stricted state variables in state-space representation 
is difficult in general. 

In this paper, we will extended the interpre- 
tation for the positive real and the bounded real 
properties from the state-space [5] to the general- 
ized state-space. In section 2, the definitions of 
positive real and bounded real in terms of fre- 
quency domain are briefly reviewed. Then, some 
results about linear-quadratic optimal regulation 
problems for singular systems are summarized 
therein. The generalized algebraic Riccati equa- 
tions are needed in the next section. The general: 
ized positive real lemma and the generalized 
bounded real le.mma ;%re proposed in section 3.  The 
proposed lemmas are established on the stabilizable 
and detectable. impulse-free generalized state-space 
systems. Our results are sufficient and necessary. 
The conclusions are finally given in section 4. 

2. Preliminaries 

First, we give the definitions about positive 
real and bounded real systems. There are several' 
different definitions of a positive real system. One 
can see [ 5 ] ,  [6]!, [lo], [18]. Throughout this paper, 
we will use the following definition [ 181. 

Definition 1: (Consider a transfer function matrix 
G(s), and assume that G(s) is square. Then 

l.G(s) is said to be positive real (PR) if G(s) is 
analytic: in :Re(s)>O and G(s)+G'(s*)z 0, V 
Re(s)>O . 

2.G(s) is said tal be strictly positive real (SPR) if it 
is. analytic in Re(s)>O and satisfies 

3.G(s) is said to be extended strictly positive real 
G(jw)+G''(-jw)>O,  WE [O, OD). 

(ESPR) if it is SPR and G(iC0) + G'(--w)>O. 
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The above definitions are expressed in the 
frequency domain. However, the time domain prop- 
erty of positive realness can be viewed as follows. 

Definition 2[5]: A system I: (see Fig. 1) is said to 
be positive reai if for all real-valued piece- 
wise continuous function U(.), and t2 0 

whenever the system is relaxed at time t=O. 
(i.e. initial state is zero) 

U 

Fig. 1 System C, its input U@) and output f i t )  

where y(.), U(*) E Rnx’ 

The definition o f  bounded realness is fairly 
standard, we will use the following definition 
throughout this paper. 

Definition 3[10]: Consider an mxm matrix of real 
rational functions S(s). S(s) is bounded real if 
it is analytic in Re(s)rO and Z-S/(-jo)S(icu) 2 0 

for all real o. Furthermore, S(s) is strictly 
bounded real if it is bounded real and 
I - S/(-jo)S~o) > 0. 

We will review some results on the linear- 
quadratic optimal regulation problem for general- 
ized state-space systems, which will be useful for 
the proofs of the next.section, in the remaining part 
of this section. 

invariant generalized state-space system C 
Consider the continuous-time linear time- 

E (t) = h ( t )  + Bu(t) (1) 
y(t) = Cx(t) + Du(t), Ex(0-) = Ex0 (2) 

whereE E R-, A E; R“‘”, B E R“””, C E R p x m  and D E RPx”. x ( t )  
is the n-dimensional state vector, u(t)  is the m- 
dimensional control vector‘ and y( t )  is the p -  
dimensional output vector. The matrix E is, in gen- 
eral, a singular matrix with rankE=r<n. 

u(t)=Kx(t), such that the feedback system 
E ;  (f) = (A+  ~ & ( t )  is regular, impulse-free and stable, 
then { E ,  A + B K )  is said to be admissible and the 
feedback gain K is called an admissible feedback 
gain [7], [13]. 

Now, consider a linear quadratic regulation 
problem with the cost function 

If there exists a state-variable feedback 

where Q is honnegative definite, R is positive defi- 
nite. Choose the Hamiltonian function H(X, h, U) as 

For solving the optimization problem, the 
following assumption is made 

Assumption 1: The generalized state-space system 
(l), (2) is regular, impulse-free and finite dynamics 
stabilizable [7], [ 131, [ 151. 

According to the theory of the Lagrange 
multiplier, we know that the necessary conditions 
for J to be minimal is that 

which will result in the following homogeneous sin- 
gular system (or called the Hamiltonian system) 

The following assumption is made for the system 
(3) 

Assumption 2: The system (3) is regular impulse- 
free and no finite dynamic modes lie on the imagi- 
nary axis. 

For the detail solution of this regulation 
problem, one can see [12], 1131. In this paper, we’ 
will need the following result of the infinite- 
horizon problem (i.e. taking limit of T+ a). 

Lemma 1[13]: Under Assumptions 1 and 2, 
there  exists a solution X E R ” ~  satisfying the 
following generalized algebraic Riccati 
equations (GARE) 

Xd + A’X+ Q- ( X B  +S)R-’(S’i B‘X) = 0 
Y E  = E’X 

such that ( E ,  A+BK) is admissible, where 
Kk -R-I(S/ iBlX). 

3. Main Results 

In this section, we will derive the general- 
ized positive. real lemma and the generalized 
bounded real lemmas. Sufficient and necessary con- 
ditions for an impulse-free generalized state-space 
system to be positive real or bounded real are 
proposed. 
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Let G(s)=D+C(sE-A)-'B. Throughout this 
section, we will further assume p=m,  i.e. G(s) is 
square. 

Assume that {E,  A ) i s  regular and impulse- 
free, {E, A, B) is finite dynamics stabilizable and 
{E, A, C] is finite dynamics detectable [SI, [7] 
~ 3 1 .  

The following lemmas are needed 

Lemma 2[5]: Consider the cost function 

qx,, U, t)  = I;,'(.'R~ +Wc'u)dr 

subject to  the system Z, where R=D'+D is 
positive definite. Then, there  exists a lower 
bound for  the cost function if and only if 
the system Z is positive real. 

Sufficiency: Equations (4a) and (4d) satisfy the 
generalized Lyiipunov theorem, guarantee that {E, 
A} is stable. So, G(x) is a n a l y t i c h  the right half 
plane. Next, we mU!jt check the nonnegativity of  
G*(s)+G(s). 

G*(s)+(i(s) 
=D'+DSB'( S*E'-,~')"C"C"E-A)''B 
=WO' Wo+B'I ( S  *E'-A')-'P '+P( sE-A)"]B+ 

=WO' Wo+B'( S* E'-.~')-'[P'E(s+s*)-P'A-A'P]x 
(sE-A)"B+B'(s*E'-A')"L' WO+ W,'L(sE-A)-'B 

B'(s*E'-A')-'L'wo+ W,'L(sE-A)-'B 

= W,,' W0+B!(s*E'-,4')-'L'L(sE-A)-'B 
+B'(s*E'-A')''L'WO 

+ W , ~ L ( ~ E - A ) - ' , ~ + B ~ ( . S * E ' - A ~ ) - ~ ~ ' E ( ~ E - A ) - ~ B ( ~ + ~ * )  
=[ W,I+B'(s*'E'-A')-'L'] [ Wo+L(sE-A)-'B]+ 
B'(~*E'-A')-'P'E(~E-A)-'B(~+~*) 

Since P'E=E'Pa:O and W,'W, form the last equa- 
tion, we see that G*(s)+G(s)>O whenever Re(s)>O. 

Necessity: From Lemrma 2 and the remark therein, 
we see that there exist a optimal solution to the 
cost function 

R e m a r k  The cost function can be rewritten as 

~ ( x , ,  U, t) = J;,'u(t)u(t) + u'(t)~(l))dt = 2 J:v(t)u(t))dt 

If u ( t ) ~ O ,  then V = O  for all xo and t , .  We see that 
the optimal solution for the cost function Vmust, at 
least, be less than zero. Y = 1: ( u ~ ' ~ u  + 2x/C/u)dr. 

Lemma 3[201: (Generalized Lyapunov Theo- 
rem) Let {E, A )  be regular a n d  {E, A, C} be 
impulse observable and finite dynamics de- 

By solving the optimization problem, we will meet 
the following Hamiltonian system 

tectable. Then (E, A} is stable and impulse- 
free if and only if there exists a solution X A O B  E O 0  
to  the generalized Lyapunov equation 
(GLE) -- , 

[; ; ;][ = [ E  ;/ ;I[ 5 j 
a .  31 

A 'X+X'A + C'C=O, E 'X-X'E2 0. 

We are now ready to show the generalized 
positive real lemma and the generalized bounded 
real lemma. 

Lemma 4: Generalized Positive Real Lemma 
Consider the system X. Assume that 

R=D+D'>O and no finite dynamic modes of 
{E, A )  lie on the imaginary axis. Then G(s) 
is ESPR if and  only if there  exist matrices 
P, L and WO with the appropriate dimen- 
sions, such tha t  

A 'P + P 'A = -L 'L , 

P 'B = C '-L ' WO, 

WO' Wo=D+ D', 

E'P=P'ElQ. 

since (E, A) has no pure imaginary finite-dynamic 
modes and G(s) is IESPR, {E, 31) will not have 
finite-dynamic modes lying on the imaginary axis. 
Therefore, Lemma 1 also guarantees there exists an 
optimal solution to the cost function. Also, from 
Lemma 1, the solutioin X will satisfy the following 
GARE 

X A  + A'X- ( Y B  + C')R-'(YB + C')' = 0 
l?X= X.E S 0 

choose 
(4b) 

will meet the matrix equation (4a)-(4d). Q.E.D'. 
( 4 4  

Lemma 5: Geaeralized Bounded Real Lemma 
Consider the system Z. Assume that 
R=I-D'D>(I and no finite dynamic modes of 

Proof. 
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{E ,  A )  lie on the  imaginary axis. Then G ( s )  
is strictly bounded real if and only if there 
exist matrices P, L and WO with the appro- 
priate dimensions, such that 

A 'P f P 'A = - C 'C-L 'L , 

-PIE =CID f L 'WO, 

I-D'D= W,l WO, 

E'P=P'E> 0 

Proof. The proof can be made in a similar manner 
as in [5]. 

4. Conclusions 

We have developed the generalized positive 
real lemma and the generalized bounded real 
lemma. The results are all necessary and sufficient. 
State-space representations can be considered as 
special cases in generalized state-space representa- 
tions whose matrices E are nonsingular. Hence, our 
derivations will cover a wider range. However, 
there are still confined conditions: dynamic infinite 
modes and pure imaginary finite modes are not al- 
lowed in the proposed lemmas. How to relax these 
limitations will leave as future works. 
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