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ABSTRACT 
Several quadratic signid representation methods have been 

successfully iised in signal processing. Four quadratic: signal 
rcpresent,ations, Wigner distribution, Ambiguity function. 
signal correlation function and spectral correlation function 
arc thc traditional oncs. In this paper, we proposc a gener- 
alized distribution of tlie four quadratic time-frequency r e p  
resentat,ions. The proposed distributions can have partial 
t,iine/frequcncy-lag and partial time-laglfrequeiicy charac- 
tc,ristics of signals. 

1. INTRODUCTION 
Several quadratic signal representation methods are siic- 
cpssfully iised in signal processing[l]. Four basic quadratic 
signal representation methods are thc prototypes of 
quadratic signal rcpresentation, and they are signal correla- 
tion fiinction: spectrum correlation function, IVigner tlistri- 
bution and Arnbiguity function. These four representations 
iLre de f in~d  zts follows: 

e Signal Correlation Function 

C,.(t, r )  = z ( t  + ?).*(t 2 - T )  2 (1) 

Spectral Correlation Function 

Wigner Distribution 

e Ambiguity Function 

where t i s  used to indicate the time variable, -r is the 
timc.-lag variable, w is the frequency variable, and q is the 
frequency-lag variable. The relationship of tlie above four 
signal representation methods are presented in [l]. Figure 
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1 quotes that the quadratic signal representations C,(t, T ) ,  

SJ;(7j,u))  LVz(t>u) and A z ( q > r )  arc interpreted by Fourier 
transforms. 

Successive applications of the forward Fourier trans- 
form F on the signal z ( t )  several times, and we will get 

Based upon the above notation, the Fourier transform of 
signal can be interpreted as a 5 angle rotation of signal 
in the time-frequency plane. A generalization of Fourier 
transform, FR.FT, is developed and treated as a rot,at,ion 
of signal to any angles in the time-frequency plane. The 
transform kernel of continuous fractional Fourier transform 
(FRFT) is defined as follows [ 2 ] [ 3 ]  [4]: 

F-"[.(t)] = z ( - t ) ,  P [ z ( t ) ]  = X(-uJ ) ,  P [ [ . ( t ) ]  = z ( t ) .  

nhere cy indicates the rotation angle of transformed signal 
for FRFT.  In [SI1 the 2D FRFT transform lccrnel with var- 
ious orders in the two dimensions is defined as follows: 

K n . 3 ( . 9 , t , 2 L ,  U )  

= 1 J m d m e J  Cot O - J S "  C s C  0 

27l 

where CY and /? indicate the rotation angles of the  trans- 
formed signal for 2D FRFT. 

2. DEVELOPMENT OF FRACTIONAL 

If the Figure 1 is rotated by 45 degrees counterclockwise, 
a square can be obtained. We can find that there always 
mist a Fourier transform relation from T to w in the  horizon- 
tal direction and another Fourier transform relation from t 
to 71 in tlie vertical direction. Moreover, we can generalize 
t,he Fourier transform with the fractional Fourier transform. 
Thus Figure 1 will become Figure 2. All the points located 
in the square of Figure 2 can have the time-frequency dis- 
tributions. These distributions can have partial time and 
frequency-lag, partial time-lag and frequency characteris- 
tics of signal. They are called fractional time-frequency 
distributions. The fractional time-frequency distributions 
with parameter 0 1 ,  a2 can be computed as: 

TIME-FREQUENCY DISTRIBUTIONS 

The traditional four quadratic signal representation are spe- 
cial cases of fraction time-frequency distribution, and they 



are located in the corners of the square. Four special cases 
of fractional time-frequency distributions can be obtained: 

ri,,o,o(v, I L )  = G, (7)) p )  
rn;.o,s (7/, P )  = WL ( U ,  

rz,q,0(7/,P) = &(v,CL) 

r,,: E /1) = sz(71! p )  ' 2 ' 2  

In [6], a definition of fractional Wigner distribution has been 
defined. Tlic fractional Wigner distribution in [6] is a ro- 
tation of Wigner distribution in the time-frequency plane. 
The fractional hie-frequency distribution defined here in- 
dicates partial time/frequency-lag and frequency/tirne-lag 
characteristics of signal. Figure 3 shows the different con- 
cepts of our fractional time-frequency distribution and Frac- 
tional Wigrier distribution. 

3. PROPERTIES OF FRACTIONAL 
TIME-FREQUENCY DISTRIBUTIONS 

For any signal z ( t ) ,  the signal correlation function of 
thc time-lag signal z;(t - A) can be computed as: 

0 Time-shift 

C,(t - X,7)  (10) 

So the fractional t,ime-frequency distributions of the 
tirnelag signal can be computed as: 

(11) 

where I?,,,, , cx2  (v, p )  is the fractional time-frequency 
distributions of signal z ( t )  with parameters (cy1 ~ ~ 2 ) .  

Thc time-shift invariant property can be preserved 
while c y 1  = 0. 

The frequency-shift propertay can be satisficd while 
c y ,  = ?L 

Figure 4 shows t,he angular scope of fractional tirne- 
frequency distribution for the time-shift signal that  
have time-shift and frequency-shift in distribution. 

For m y  signal z ( t ) ,  the signal correlation function of 
t,he frequency-shift signal z( t )e jx t  can be computed as: 

r , ~ , ~ l , o ~ ( v - ~ c o s ( ~ ~ , P ) ~ 7 ~  s i n a l  c o s a i - - J V ~ s i n e i  

rr,o,n2 (v - A,  PI (12)  

2 '  

r r , + 2 ( v , / w 3 V X  (13) 

0 Frequency-shift 

C,(t, .),.?AT (14) 
The fractional time-frequency distribution of the 
frequency-shift signal can be computed as: 

(15) r , . , , ,1 , "2(v ,P-XSin(*2)e-J~  s i l l a z  c o ? n a + J / L ~ c o s a 2  

where rT,o,  , a 2  (v, 11,) is the fractional time-frequency 
tiistrihut,ions of signal z ( t )  with parameters (cy,, 0 2 ) .  

The frequency-shift invariant property can be pre- 
served while 02 = 0 

rr,nl,O(v, /- l )eJkLx (16) 

r z , a ,  ,q (VI P - (17) 

The time-shift property can be satisfied while a2 = :. 

Figure 5 shows the angular scope of fractional time- 
frequency distribution for the frequency-shift signal 
that  have time-shift and frequency-shift in distribution. 

0 Integration. in time/fi-equency-lag paraimeter 
If we calculate the integration of fractional tirne- 
frequency distribution in the time/frequency-lag van- 
able, the following result is obtained: 

Equation (18) indicatcs that  the intcgration of 
time/frequency-lag varkble for a fractional time- 
freqiicncy distribution with parameter (a, ,  a2) will 
cause the dc value of the distribution with parameter 
(01 + :, a ~ ) .  In the Wigner distribution case(cy1 = 0, 
cy2 = ;)) equation (18) becomes: 

We can verify that the Wigner distribution can pre- 
serve thc frcquency marginal propcrty[l]. In tlie Am- 
biguity function case(a1 = ;, cy2 = 0) ,  eqimtion (18) 
becomes: 

0 Integration in frequency/time-lag parameter 
If we calculate the integration of fractional time- 
frequency distribution in the frequcncy/tinie-lag vari- 
able, the following result is obtained: 

Equation (19) indicates that  the integration of 
frcquency/time-lag variable for a fractional time- 
frequency distribution with parameter ( ( X I ,  cya) will 
cause the dc value of the distribution with parame- 
ter (nl, a2 + f ) .  In the Sliigner distribution case(c~1 = 
0,nz = ;), equation (19) becomes: 

rz,o,5(v,P)dv = rz,O,T(v,o) = c,(Y,o) = IIT ; (V) I I~  J 
We can verify that the Wigner distribution can pre- 
serve t,he time marginal property[l]. In the Ambiguity 
function case(cx1 = ;,cy, = O ) ,  equation (19) becomes: 

0 Scaling 
For any signal z ( t ) ,  the fractional time-frequency dis- 
tributions of tlie scaled signal ~ ( c t )  can be computed 
as: 

&cota,~I-=&% a1 

where pl=tan- '(a2 t a n a l )  and P2=tan-'(n' ' tanoz). 
r ,c ,p l  ,pz is the fractional time-frequency distribution of 
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signal z ( t )  with angular parameters /?I and p2. While 
a l  = 0 and cy2 = 5 (Wigner distribution), the distri- 
bution of the scaling signals becomes: 

(21) 
/I w,. (cv, - -) 
c 

While 0 2  = 0 and ai = 
distribution of the scaling signals becomes: 

(Ambiguity function), the 

(22) 
V 

A,(--,+) 

Inverse  P r o b l e m  
For any fractional time-frequency distribution with a ~ i -  
gular parameters ( 0 1 1 , a i 2 ) ~  the Signal correlation func- 
tion C,(t,.r) can be obtained by a 2D FRFT compu- 
tation with angular parameter ( -a l> -m).  
How to compute the signal from its Signal correlation 
function? There exist a strip T = 2t  in the C,(t,.r). 
Taking the strip of C,(t, T )  will reach the original sig- 
nal. 

So t h t  original signal can be recovered by the follo~r-ing 
eauation: 

C,(t ,2t)  = z (2 t )2* (0 )  

4. A P P L I C A T I O N S  
In this section, we will introduce an application of the frac- 
tional time-frequency distribution: ch i rp  s ignal  de tec-  
t ion .  To begin with, we simplify the general chirp signal 
as: e . f 2 t 2 .  The fractional time-frequency distribution of this 
chirp signal is equal t o  e7(Au2+BYp+Cp2): 

1 -a2 tan cy1 - tan cy2 
2 1-a2tancul tanaiZ 

a sec NI sec cy2 
1-a2tana i l tancuz  
1 - tan a1 - a2 tan cy2 
2 1 - a.2 tan cy1 tan 

A = -  

B =  

c = -  

The peaks are occurred while the phase of the distribution 
are equal to zero or multiples of 27r. Obviously, there exist 
infinite peaks in the distributions. We can find that the 
phase of the distribution is a quadratic function, and its 
shape is depended on the discriminant of quadratic func- 
tion. 

A < 0 ellipse 
A = 0 parabola i A > 0 hyperbola 

The discriminant of the phase of the distribution can be 
computed as: 

The condition to  decide the shape of fractional tirne- 
frequency distribution can be simplified as: 

If a, > 1 

;;z < tancy1 tarla2 < aa 
5 > tancul tancuz or tancul t a n a z  > a2 

Ellipse 
Hyperbola 

I f a = l  
The discriminant will be equal to  1 except the case 
tanail tan02 = 1, so the shape of fractional tirne- 
frequency distribution of chirp function will be with 
hyperbola shapes 
I f a < 1  

< tan 011 tan a2 < a2 Hyperbola 
Ellipse 5 > tan cy1 tan cy2 or tan cy1 tan cy2 > U’ 

If the shapes of fractional time-frequency distribution are 
hyperbolas, the asymptotes are: 

- (csccu2 + cot a 2 ) p  = n 
v - ( C S C ~ ~  - cot a2)p = n 

The geometric center is always located in the original 
point of pv plane. The condition, t a n a 1  tanaiz = 1, 
will cause a peaks in distribution, so it can be used to 
detect a chirp signal. Now, wc analyze the generalized 
chirp signal: Comparing the distribution of 
the generalized and simplified chirp signals, we can find 
that the fractional time-frequency distribution of a gener- 
alized chirp function is a translated version of the chirp 
signal The geometric center of distribution be- 

). in the pv plane. 
IVhile the shapes of fractional distribution of a generalized 
chirp signal are hyperbolas, the asymptotes of the hyper- 
bola are: 

e’ ( 4 t 2  +6t)  . 

a6 sec n - b s e c a  t ann  
comes ( -a2 - t anu l  t L a 2  a2-tanlal t a n i z  

2 j - m l p - p  = 0 
V - m a } L - q  = 0 

w 11 er e 

m2 

P 
q = 6 - U  

6 =  

tan 01 sec 0 2  

az  tan ry1 + tan cy2 
U = ob 

Example :  
In this example, we will compute the real part of the frac- 

tional time-frequency distribution of chirp signal eJ ( t2+t ) .  
Figure 6 shows the fractional time-frequency distribution 
of the chirp signal. I t  can be found that  the center of the 
distribution is located in (- sec ~ 2 ,  - tan ~ 2 ) .  The peaks oc- 
curred while the angular parameters a~ = 2 and a~ = ;. 
So the parameter a can be detected as 1, and the parameter 
h is also 1. 
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Figure 1. The quadratic signal representations rep- 
resented by Fourier transforms 

‘4, (17,  sr (?7, w) 

1 I I I I  
WZ(t> w) 

C(t’G!)Signsl: 
Distribution: time-shift Distribution: frequency-shift 

Figure 4. The angular scope of fracticinal time- 
frequency distribution for the time-shift property 

r 
Distribution: time-shift Distribution: frequency-shift 

Figure 5. The angular scope of fractional time- 
frequency distribution for the time-shift property 
preserved 

a,=O,q=d3 

-2 0 2 

a,=ld4,c12=d3 

Figure 2. Quadratic signal representation and Frac- 
tional Time-Frequency distributions 

Nrl 7) S(17 ,(I)) 

ai=l ld24,a+3 

Figure 3. The different concepts of fractional 
Wigner distribution and fractional time-frequency 
distribution 
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a,=d3,a,=nl3 
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Figure 6. 
tion of the chirp signal 

The fractional time-frequency distribu- 
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