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Abstract--The cross terms arean inherent consequence of 
the second order nature of Cohen's class TFDs (Time 
Frequency Distribution) [ I ] ,  [2]. They are manifest in 
a TFD of multi-component signals as spurious artifacts 
arising from interactions between the various signal 
components, and they can often appear at times and/or 
frequencies inconsistent with the underlying physical 
nature of the signal as a result to misinterpretation 
C31, [41, [51. There are so many time frequency dis- 
tributions to avoid cross termeffect, the bestare Choi- 
Williams ED (Exponential Distribution) [61 and Levin's 
IPS (Instantaneous Power Spectrum) [71. In this paper, 
we combine the cross term reducing philosophy of ED and 
IPS, to obtain a new TFD which most effectfy reduce the 
cross term. Surprising, the new TFD also satisfies most 
desired properties of TFD. 

INTRODUCTION 

The cross terms are an inherent consequence of the 
second order nature of Cohen's class TFD's. They are 
manifest in a TFD of multi-component signals as 
spurious artifacts arising from interactions between 
the various signal components, and they can often 
appear at times and/or frequencies inconsistent with 
the underlying physical nature of the signal as a 
result to misinterpretation. 

Generally speaking, there are two alternative 
methods to control cross terms interference: 

(1) Interference attenuation: For example, Choi- 
Williams exponential distribution [61 effectively 
attenuates cross interference including satisfying 
many desirable properties of time-frequency distribu- 
tion. 

(2) Interference concentration: For example, Levin's 
IPS [ 7 ]  produces cross terms only at signal fre- 
quencies, and only during time intervals that the 
signal is nonzero. 

In this paper, we will promote a new time-frequency 
distribution,which not only canmeet interference attenu- 
ationconstraint but also can approximately satisfy inter- 
ference concentration constraint including satisfying 
manv useful time-frequency distribution properties [ 21, 
[8]"and t91. DESIGN PHILOSOPm 

First , we recall the definition of Cohen's class 
[11 for signal s(t): - je tr j w ~ +  jeu 
P( t ,w =&llle @( e,T)S(U+&T IS* ( U - & T  )dpdTde ( 1 

- jw t  where 
s(w)=ls(t)e dt 

' f ' ( l J ,  T )=j@ (e ,  T )e 
-jeu 

dB 

(4) 

A ( @ , T I  is the ambiguity function of s(t),and  de,^) 
i8 an arbitrary function called the kernel function by 
Claasen [SI. Kernel function of Cohen's class is the 
key to properties of TFD. The properties of TFD can 
be corresponding to constraints on kernel function 
C21, E91 and Cl01. 

P. Flandrin [81 pointed out that the desired compo- 
nents of the ambiguity function fall along the e , r  
axes in (O,T) plane. so, the interference attenuation 
constraint required that 

@(e,~) is low-pass in (9)  

P. J. Loughlin [SI pointed out that the constraints 
on @ (0  ,T ) for preventing cross term appearing at 
nonsignal frequencies and appearing in time intervals 
where signal is zero in TFD are 

cp(e,n)=o, for I r l l * & l e l ,  (10) 

' f ' ( v , ~ ) = O ,  for Iulf&l~I (11) 

Eq.(lO),(ll) are interference concentration constraint. 
Interesting, the kernel function of ED C61, 

e2T2 -- 
@ED(e,?)=e (12) 

strongly satisfies the interference attenuation con- 
straint eq.(9) and the kernel function of IPS C71 

meets the interference concentration constraint eq.(lO), 
(11). Now, we think how about a kernel function equal 
to product of ED'S and IPS'S kernel function. Will the 
new TFD have strongly anti-interference effect? Next, 
we will prove that the new TFD not only has least inter- 
ference effect but also meets more useful properties of 
TFD. 

THE NEW TIME-FREQUENCY DISTRIBUTION 

We define the kernel function of the new TFD to be 
product of ED [SI and IPS 171. 

A 2 T Z  -- 
QNEw(e,T)=e cos(ge.r), (14)  

which the former is famous for interference attenuation 
and the latter is well known for interference concen- 
tration. The other form of kernel function can be 
expressed by 

From.these alternat'v k can et the 
properties of new TFD t27 ,  f8?mdf"m! "fn tabak 1 we 
list some famous TFDs. In table 2 we compare the and 
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properties of new TFD with other famous TFDs. Although 
it is impossible to satisfy all the desirable properties 
of TFD because of trade-off, we already make new distri- 
bution meet various requirements as much as we can. 

Table 1 

TFD Kernel @ ( e , ? )  Formulation P(t,w) 

Some popular distributions and their kernels 

-jwr 
Levin's IPS C71 cos($er) Re s(t)S*(w)e 

Kirkwood c111 e s (t IS* ( w)e 
jer/2 -jwr 

(U-? ) 2  -82 + / a  - 
Choi, Williams e j j J  *2 e- 
ED C6l 

Table 2 Some popular distributions and their properties 

IPS 
Shift-invariant * 
Reality * 
Scale-invariant * 
Marginal * 
Mean Conditional * 
Frequency/Time 
Range of distribution * 
Interference 
attenuation 

Spectrogram WVD ED New TFD 
* * *  * 
* * *  * 

* *  * 
* *  * 
* *  * 

Interference * * 
concentration 
Moyal Formula 
w. s. s. * 
random signal 

* 
* * *  

* 

* 
* *  * 

Substituting eq.(l4) into eq.(l), we get the defini- 

e2 72 1 -jet-jwr+jep - - 
tion of new TFD, 

U er PNm( t ,U 1 =zJJJe e COSTS(M+&T)S* 

(P-@ )&drde - (17) 

Similarly, express in terms of spectrum, 

1 -jet-jwt+jTv e U cosFs*(v+@). PNEw( t ,U )=4n2//Je 

S(p-jO)dpdrde. (18) 

We can further simplify eq.(17) into more meaning form. 

(19) 

Recall the definition of Choi Williams ED C61 

and the definition of Levin's IPS C71, - jwr 
PIps(tp )=fr/CS(t+?)S*(t)+s(t)S*(t-r)le dT. (22) 

Comparing eq.(19) with (21) and (221, we recognize 
imediately that, the new TFD is just the mixture of ED 
and Levin's IPS. 

There is a parameter, U, in new TFD, like Choi- 
Williams ED and plays the same role in both cases. In 
order to obtain sharp auto term resolution, U should be 
larger. On the other hand, in order to reduce the 
effects of the cross terms, a should be small. One 
will note soon that there should be a trade-off between 
the auto term resolution and the'cross term suppression. 
The optimal choice of U for a given situation needs 
more study, but a good choice of U will be found in the 
range from 0.1 to 10 as will be shown in simulation. 
When 0 approaches infinite, , T )  will approach 
cos(8T /2), so new TFD approh@!!eLevinfs IPS, while 
Choi-Williams ED approaches WVD. We will conclude that 
the role new TFD playing respect to Levin's IPS is just 
the counterpart of Choi-Williams ED respect to WVD. 

DISCRETE FORM OF NEW TFD AND COMPUTER SIMULATION 

When one is dealing with sampled signals or digital 
signals, it is necessary to consider a discrete version 
of the TFD. The transition from the new TFD of conti- 
nuous time signals to the new TFD of discrete time 
signals is not a trivial problem. Several cautions and 
approximations have to be made for this transition. 
This section gives the definition of the new TFD for 
discrete time signals and gives some computer simula- 
tions. We derive the following definition of the new 
TFD for discrete time signals, 

s* (P)+S( VIS* (V-T )I 1 - (23) 

Compared with the ED C6l for discrete time signals, 

the major advantage of new TFD over ED for discrete 
time signals is 

Referring eq.(26), we must double the Nyquist rate to 
sample the continuous signal to avoid alias. Alter- 
natively, just only for real valued signal, we can use 
discrete analytic version of signal to avoid alias 
instead of over-sampling. However, new TFD for discrete 
time complex valued signal does not need over-sampling 
still, because its period in frequency is sampling 
frequency, while ED needs over-sampling. Hence, new 
TFD is more suitable for complex data application than 
Choi Williams ED. 

For signals consisting of many samples it is no 
longer possible to calculate the time-frequ6ncy distri- 
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bution for the complete signal. That is, for computa- 
tional purpose it is necessary to apply the weighting 
windows, h (T ) and $( T ) ,  for surrnnations in eq.(26) 
before evayuating the new TFD at each time index n. 
Then, by sliding these windows along the time axis, one 
can obtain the running window new TFD, which is defined 
as follows: 

- j w l  

7 E - W  

& [ s (  u+T)s* ( P ) + s  ( U)s* ( V - T )  1 1 ,  (27) 

where h ( T )  is a symmetric window, hN(i)=O for lrl>N/2, N 
hM(p) is a rectangular window, hN(u)=O for Iu(>M/2, 
s(n) is discrete analytic version of the signal. 

From eq.(27) it is clear that as long as M is large 
enough, the RWNEW is a smoothed version of the new TFD 
in the frequency domain, since multiplication in the 
time domain corresponds to convolution in the frequency 
domain. That is, the parameter N, the length of the 
window hN(T) and the shape of this window determine the 
frequency resolution of the RWNEW, while the parameter 
M, the length of the window hM(p 1, determines the range 
from which the time indexed autocorrelation function is 
to be estimated . Through experimental observations, 
it is found that oscillatory fluctuations of the cross 
terms can be reduced by decreasing the length of the 
window hN(i). On the other hand, it is also noted that 
the frequency resolution of the auto terms decreases as 
the length of the window h ( 7 )  decreases. That is, the 
length of the window hJi ) determines a trade-off 
between the high frequency resolution of the auto term 
and the smoothed cross terms. 

In order to perform a real time analysis, a FFT 
technique can be utilised for the evaluation of the 
RWNEW. For this purpose, one can set w=2nk/N. Then, 
eq.(27) can be rewritten as follows: 

RWNEW(n,k)= hN(r)e Z %(v)Je2e 
7=-- NE-- 

u2 
4r2/a . -j2nki/N 

& [ s (n+ P+ 7) S* (n+~ )+s (n+N ) S* (n+V-T )I ( 28 

Following, we will make some computer simulation. 
In simulation, we take window function needed in RWED, 
RWPTD and IPS all to be rectangular window and M=64, 
k64, excluding PWVD being Hamming window. Three 
different signals listed below are used in simulations. 
Simulation 1: 

s1 (t ) =sinC21(0.4t+o. 7t2 )l+sinC2n ( 1 1.6t-0. 7t2 11. 

Simulation 2: 

where 
sin(0.2rt2) O<t<32 

S20(t)= { 
s 2 p =  { 

elsewhere 
1 1.1875<t(27.1875 

elsewhere 

sin[2x( 6t+O .2t2 )I  

Simulation 3: 

s (t):sin[2~(0.4t+0.6t2)]+sin[2~(0.4t+0.8tz)]. 

All signals are sampled to 512-point sequence with 
32 Hz sampling frequency, and the results for various 
distribution are shown in Fig. 1 to Fig. 10. From 
these figures, we will clearly observe the role play- 
ing at determining cross term attenuation and auto term 

3 

sharpness in ED and new TFD. Make the following 
conclusions : 

(1) If U is small, order of U is about to be 1: Both 
kernels of ED and new TFD will attenuate cross terms 
effectively, so both distributions look similarly and 
new TFD's cross term concentration property take a 
minor benefit. However, the smaller o is, the auto 
t e m  of both distribution spread more. 

(2) If o is large, order of o is about to be 10: The 
auto terms of both distribution become sharper than 
small 0, while paying cross term attenuation for return. 
In ED, cross term will appear obvious gradually, but 
in new TFD cross terms will be still under control due 
to cross term concentration property. 

(3) If U approach infinite, order of U is about to 
be 100: ED will approach WVD, while new TFD will 
approach WVD, while new TFD will approach Levin's IPS. 

CONCLUSION 

Time frequency distribution is a powerful tool to 
analysis time varying signal. However, the cross term 
effect due to second order form of COhen's class severe- 
ly blocks its application. In this paper, we promote a 
new TFD, which not only meets several useful TFD's 
requirements but also has good interference immunity. 
We also induce that the role new TFD playing respect to 
Levin's IPS is just the counterpart of Choi-Williams ED 
respect to WVD. 
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Fig 1 ED of SI([) with a = I 

4 Y  
Fig 2 NTD of sl(t) with U =  1 

4Y 
Fig 3 ED of %(I) with U = I 

P(l.0) 

Fig 7 NTD of h(t) with G = I 

P!!.O) 
,,&I 

Fig 8 NTD of s2(t) wilh U =  13 

w s  

Fig 6 PWVD of %(I) with Hammi ng window 
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Fig 10 Levin'r IPS of .\:I\ 


