
An Efficient Two-Level Partitioning Algorithm for VLSI Circuits*

Jong-Sheng Chemg, Sao-Jie Chen Chia-Chun Tsai Jan-Ming Ho

Dept. of Electrical Eng.
National Taiwan Univ. National Taipei Univ. of Tech. Academia Sinica

Dept. of Electronic Eng.

Taipei, Taiwan, R.O.C. Taipei, Taiwan, R.O.C. Taipei, Taiwan, R.O.C.

Institute of Information Science

Abstract
In this paper, a new two-level bipartitioning algorithm TLP,

combining a hybrid clustering technique with an iterative improvement
based partitioning process, is proposed. The hybrid clustering algorithm
consisting of a local bottom-up clustering technique to merge modules
and a global topdown ratiocut technique for decomposition can be
used to reduce the partitioning complexity and improve the
performance. To generate a highquality partitioning solution, a module
migrahon based partitioning algorithm MMP is also proposed as the
base partitioner for the TLP algorithm. The MMP algorithm implicitly
promotes the move of clusters during the module migration processes
by paying more attention to the neighbors of moved modules, relaxing
the size constraints temporarily during the migration process, and
controlling the module migration direction.

Experimental results obtained show that the TLP algorithm
generates stable and highquality partitioning results. The TLP
algorithm improves the unstable property of module migration based
algorithms such as FM [6] and STABLE [3] in terms of the average net
cut value. On the other hand, TLP outperforms MELO [2], GFM, [I I],
and C D I P L A ~ [~] by 23%, 7%, and IO%, respectively and is
competitive with hMetis [8], MLc [I], and LSIUMFFS [4] which have
generated better results than many recent state-of-the-art partitioning
algorithms.

1 Introduction
In VLSI circuit design, circuits with millions of transistors are now

common, conventional logic-level and physical-level design tools
cannot deal with the increasing complexity of VLSI circuit design
without the participation of partitioning. Currently, in submicron
designs, interconnection delays tend to dominate gate delays; therefore,
decomposing a circuit into subsets to minimize the number of
interconnections between subsets is thus of great importance. For that
purpose, a size-constrained min-cut bipartitioning problem is addressed
in this paper as follows. Given a hypergraph H(V, E) with n vertices, a
vertex weighting function s: V-+ R' , and a lower and an upper bounds
on the partition size S, and SM, the bipartitioning problem is to divide
V into two disjoint nonempty subsets L and R, where L U R = V, with
the objective of minimizing cu@, R) (which is the number of
hyperedges connecting modules in L and R) and subject to the size
constraints S, < S(L), S(R) I SW (where S(L) denotes the size of
subset L).

Since the size-constrained min-cut bipartitioning problem is
NP-coniplete [7], an optimal solution is hard to obtain when the
problem size is large and various heuristics have been developed.
Kemighan and Lin [9] proposed a well-known iterative improvement
based module interchange algorithm for graph parhtioning, which was
later improved by Fiduccia-Mattheyses (FM) algorithm [6] by
employing an efficient bucket list data structure to reduce time
complexity to be in linear proportion to the pin number. Since the
iterative improvement based FM algorithm is very efficient, much work
has sought to improve upon the FM algorithm [IO] [I I] [5].

On the other hand, module clustering has been shown to reduce
the complexity of the partitioning problem and enhance the
performance of an iterative improvement algorithm [3] [I] [8] [4]. The
goal of clustering algorithms is to identify the natural clusters in a

circuit, where a cluster is a group of highly connected modules in a
circuit. One of the most important classes of clustering based
partitioners is the two-level partitioners [3] [4]. At the fust level of these
partitioners, clustering techniques are first applied on the original circuit
H to derive a contracted circuit H c and then partitioning techniques are
applied on H c to derive a partitioning solution P c . At the second level,
PC is used to obtain a new partitioning solution PI of H and then a
final partitioning solution P is thus obtained by applying partitioning
techniques on H using P I as its initial solution.

In this paper, we propose a novel clustering based partitioner
Two-Level-Pariitioning (TLP) based on the two-level methodology.
TLP integrates an efficient hybird clustering technique into a module
migration based partitioning algorithm MMP. The proposed hybird
clustering technique tries to combine the merits of the bottom-up and
topdown clustering techniques by using a local bottom-up clustering
technique to merge modules and a global topdown ratio-cut technique
for decomposition. The proposed iterative improvement based MMP
partitioning heuristic implicitly promotes the move of an entire cluster
into one of the two subsets by paying more attention to the neighbors of
moved modules, relaxing the size constraints temporarily during the
partitioning process, and controlling the module migration direction. An
overview of the TLP partitioner is shown in Section 2.

2 Two-Level Partitioner

The following shows the proposed partitioning heuristic TLP,
which consists of two levels: (1) hybrid clustering and contracted
hypergraph partitioning, and (2) unclustering and original hypergraph
partitioning. .

Algorithm 1 Two-he/-Pariitioner
begin

call Hybrid-Clusteriiigt.H, cluster-size) to obtain a contracted
hypergraph Hc(VC, Ec) ;
/* apply MMP on H c using Pm,l,/o,,, as its initial solution */
call MMP(Hc, Pra,rr/om) to obtain a solution PC (L, R);
call Unclustering(Pc, H) to obtain a solution P I (L, R);
/* apply MMP on H using PI as its initial solution */
call MMP(H, P I) to obtain a solution P(L, R);
retum the bipartition solution P(L, R);

end

At the first level of Algorithm I , the Hybrid-Clustering procedure
accepts the original hypergraph H as input along with a parameter
cZuster-size, which sets a threshold to bound the size of each cluster
formed in H. Any time as long as the size of a cluster in His larger than
cluster-size, the hybrid clustering technique is continued until every
cluster has its size threshold satisfied. The contracted hypergraph H c
obtained is relatively smaller than the original hypergraph H.
Empirically, the ratio of the number of vertices in the original
hypergraph to the number of vertices in its corresponding contracted
hypergraph is about 100. Therefore, H c is relatively denser than H. The
MMP partitioning procedure is subsequently applied on H c using a
random initial partitioning solution Pm,,,,o, to obtain a good

*This work was supported by the National Science Council, R.O.C.,
under Grants NSC87-2218-E002-033 and NSC87-22 18-E027-005

0-7803-5012-X /99/$10.00 01999 EEE. 69

partitioning solution P c(L, R) spending only short computational time.
In fact, the first level tries to search a good initial partitioning solutim
for the second level as efficiently as possible. Using the iterative
improvement partitioning techniques, although a partitioner can be
devised to be less dependent on the initial partitioning solution, the
initial partitioning solution is indeed crucial for the generation of
highquality solutions. Therefore, the obtained partitioning solution after
the first level plays a very important role in promoting the performarce
of the whole two-level partitioner.

At the second level of Algorithm 1, the Unclustering procedure: is
used to uncluster each cluster formed in the Hybrid-Clustering
procedure. This is done by simply decomposing each vertex in L (or R)
of P into original modules and putting these modules into L (or R) of
P I , where P 1 is used as the initial partitioning solution used in [:he
subsequent MMP partitioning process. We describe the procedures
Hybrid-Clustering and MMP in detail in the following sections

3 Hybrid Clustering Algorithm
In this section, we introduce the hybrid clustering technique used

in TLP. The following is the Hybrid-Clustering procedure, when: a
bottom-up merging process and a topdown ratio-cut decompositon
process are altematively applied until a desired clustering is reached

Algorithm 2 Hybrid-Clustering(H(V, E), cluster-size)
begin

/* the following Top-Down-Clustering procedure contains a bottcm-
up clustering process described in Algorithm 3 */
call Top-Down-Clustering(H, cluster-size) to obtain a clustering I-;
call Grouping(H, r) to obtain a contracted hypergraph Hc ;
retum the contracted hypergraph Hc ;

end

Algorithm 3 Top-Down-Clustering(H(V, E), cluster-size)
begin

if ((S(V) 5 cluster-size) or (Ill = 1))
then retum a cluster containing all modules in V;
else begin

call Bottom-Up-Clustering(H, cluster-size) to obtain a set of
clusters C= (CI , CZ, ..., Cj };
call Grouping(H, C) to obtain a contracted hypergraph H, (V,, E ,);
call Ratio-Cut(H,)to generate two sub-hypergraphs H I and HZ ;
call Top-Down-Clustering(H I , cluster-size) to obtain a set of

call Top-Down-Clustering(H2, cluster-size) to obtain a set of

concatenate CL and CR to form { CI , CZ, . . . , ck } ;
retum the set of clusters { C I , CZ, .. . , ck } ;

Clusters CL= {CI , C2, ..., Ci };

Clusters CR = { Ci+l, Ci+2, .. ., ck } ;

end;
end

The Bottom-Up-Clustering procedure begins with a random
permutation of the module set and then visits each in tum. To solve the
clustering problem efficiently, only modules contained by the same net
are considered to merge. Therefore, for a given unmerged module v
(i.e., a module that has not yet been assigned to a cluster), the procedure
first identifies all neighbors of v and then finds an unmerged module U
from them that maximizes connectivity(v, U) (defined below). If such a u
exists and the merge of v and U does not violate the cluster size
constraint, form a new cluster by merging v and U; otherwise, v is
assigned to its own cluster. The connectivity between v and U car1 be
evaluated by the following equation:

connectivity(v, U) = connection-strength(v, U) * size(v, U) (I)

1 where connection_strength(v, U) = 2 and size(v, U) = -i;;i.
connection_strength(v, U) is a measure of the connection strength

~ starting point ,+N;wsdF reversing

acceptable size
ratio range

point backwa

migration direction \ T A s , given size

Fig. 1 : Pass operation of the MMP algorithm.

between v and U. Term A represents the total contributed weight of the
nets connecting v and U, and term B the minimum of the total
contributed weight of the nets connecting v and the total contributed
weight of the nets connecting U. size(v, U) is devised to encourage
merging modules with smaller sizes to form clusters of uniformly sizes.

The Ratio-Cut procedure, which is used to perform the topdown
decomposition process by using the ratiocut [I21 as its objective,
consists of three phases: initialization phase, neighbor migration phase,
and local neighbor migrution phase. In the initialization phase, a
module v is randomly selected as a seed. After the seed v has been
determined, v forms the subset R and the other modilles form the subset
L. Afterward, the procedure travels the circuit starting from v and each
time moves one best candidate into R until b\ = 1. The decomposition
giving the minimum ratio forms initial L and R for the hypergraph
concemed.

Once an initial decomposition is derived, an iterative improvement
technique is utilized to achieve improvement in the subsequent neighbor
migration phase. In this phase, module migration is performed first from
R to L and then from L to R. Considering module migration direction to
be from R to L, any time the procedure selects a neighbor of L to be
moved into L. We call a module in a certain subset X a neighbor of a
subset Y if it is adjacent to at least one of the modules in Y. The best
neighbor is one that can generate the best (i.e., smallest) ratio value after
its movement. Each time the procedure moves one best neighbor into
the destination subset L until /RI = 1. The new best decomposition
obtained is thus used as the initial decomposition for the other module
migration process from L to R.

To achieve further improvement, the result obtained from the
second phase is used as a starting point for the local neighbor migration
phase. The basic idea adopted in the third phase is the same as the
second phase, that is, both phases repeatedly move one best neighbor
into the destination subset. The difference is that in the second phase,
neighbors of the destination subset are considered to be moved into the
destination subset; in the third phase, however, only neighbors of the set
of previously moved modules are considered for migrahon. In
Algorithms 2 and 3, the Grouping procedure is simply used to construct
a contracted hypergraph from an obtained clustering.

4 Module Migration Partitioning Algorithm
After clusters are formed, a partitioning algorithm must be applied

to rearrange the clusters into two subsets with prespecified sizes. In this
section, we develop a module migration partitioning algorithm MMP.
In a circuit, some clusters exist such that the connections among
modules in a cluster are denser than others, and dividing these clusters
into different subsets will increase the number of nets cut. Therefore, if
we can move some modules to make these straddled clusters not to be
cut, the net cut number will be fewer. This concept is used as the main
guideline in the MMP partitioning heuristic. An overview of the MMP
algorithm is shown as follows:

Algorithm 4 Module Migration Partitioning(H(V, E), P i,,ilil,i (L, R))
begin

for counter = 1 to number-of-iterations do begin
randomly select a seed v from L;
while (L is not empty) do begin

if (the total accumulated size TAS of moved modules exceeds b*
S(L) and the reversing point is found) then break;
move the selected module v from L to R;
update associated information;

70

select from L a next module v, having the strongest connection to
previously moved modules and a maximal FM gain, to move;

end;
randomly select a seed v from R;
while ((S(L)IS(R)) I (SMIS,)) do begin

if (current parhtioning result satisfies the size constraints and
generates a minimal net cut)
then record this partitioning result;
move the selected module v from R to L;
update associated information;
select from R a next module v, having the strongest connection to
previously moved modules and a maximal FM gain, to move;

end;
scale the value of p ;
assign the current best result as a new initial partitioning Pini,ic,, ;

end; I* end of for *I
report the best partitioning result;

end

From the initial partitioning solution obtained in advance, MMP
attempts to move the modules in a cluster from one subset to the other
to improve the existing solution. This is achieved by futing the
migration direction and choosing modules to be moved with great care.
This "forward" migration process is continued until the assumed cluster
is entirely moved into the other side. Next, the migration direction is
reversed and the modules are moved to keep the size ratio of two
subsets fall into an acceptable range. We call apass is done when this
"backward" migration process is completed. The best feasible solution
will be used to form a new starting point for the next pass. The above
pass operation will be applied iteratively to improve the result. Note that
we have relaxed the size constraints temporarily during apass process.
The basic operation of a pass (i.e., two while loops in Algorithm 4) is
shown in Fig. 1.

We hope only modules in one cluster are moved during forward
or backward migration. Thus it is undesirable to choose a module which
has no connection to the previously moved modules as the next target to
move. Therefore, a module v chosen for migration must have the
strongest connection to previously moved modules and have a maximal
FM gain (here gain means the decrement of the net cut number if v is
moved into the opposite subset). An important parameter p (0 [3 <I),
which controls size relaxation, is devised to determine the size of
module set to be moved in the forward migration process. Empirically,
to obtain good solutions, the value of p is set to be high at the
beginning to allow larger clusters to be pulled first, and is gradually
decreased in the followingpasses to keep smaller clusters moving.

Backward migration is essential to search acceptable size ratio
results and to find better solution for each pass. Naturally, the change of
migration direction occurs when modules in a cluster have just been
moved into one side. By direct observation, when such a cluster is
moved into the opposite side, the net cut number will fall into a minimal
point. If we still continue the moving operation unaware, the net cut
number will certainly increase. Under this consideration, when the
accumulated size of moved modules is greater than the given value, we
begin to keep record of the decreasing net cut number and it is time to
reverse the migration direction when this value begins to increase.

In TLP, we apply the MMP algorithm five times to obtain a good
result on the contracted hypergraph and once to the original hypergraph
to fine tune the partitioning result. In next section, experiments on
benchmarks are performed to verify the superiority of our two-level
partitioning algorithm TLP.

5 Experimental Results
Our two-level algorithm TLP was coded in C language and

implemented on a Sun SPARC I O workstation. We evaluate the TLP
algorithm with other algorithms by finding solutions with different
devjutions, where deviation from the exactly balanced bipartition is
defined as 6 = (SM - S,) I (SM + S,) .

5.1 Partitioning Circuits with Actual Module Size
In this experiment, each module was given the actual area size. In

Table I , we compare the results of the TLP algorithm to those of the
FM and STABLE algorithms with the size of each subset being allowed
to have 1% deviation. We implemented the FM algorithm [6] and the
STABLE algorithm [3]. The runs of STABLE and TLP are set to be 20.
The g value of STABLE is set to be 50 based on [3]. We set the run of
FM to be 500 for meaningful comparison.

In Table 1, we demonstrate that TLP performs much better than
FM and STABLE in terms of both the minimal net cut number and the
average net cut value when a strictly balanced bipartition is required. On
average, TLP shows a 19% and 26% improvements over the best
results and a 50% and 45% improvements over the average results
achieved by FM and STABLE, respectively, for all the 18 test circuits.
In Table I , we also find that TLP and STABLE have the same time
magnitude, and the average time used in FM is much less than others.
Although FM works very fast for each run, more than 500 runs are
required to derive the same solution quality as TLP. Therefore, TLP is
superior to FM with the whole performance consideration.

Additionally, the stability of FM and STABLE is much worse
than TLP when comparing the difference between the average net cut
value and the minimal net cut value of each circuit. Therefore, TLP
provides a more predictable behavior in net cut number than FM and
STABLE when a Strictly balanced bipartition is considered.

5.2 Partitioning Circuits with Unit Module Size
In this experiment, each module was given a unit area size. In

Table 2, we compare the minimal net cut results of the TLP algorithm to
those of some state-of-the-art partitioning algorithms with the size of
each subset being allowed to have a up to 10% deviation. The
parhtioning results of MELO, GFM,, CDIPu3, hMetis, MLc , and
L S W F F S were from [2], [1 I], [5], [8], [I], and [4], respectively.

In Table 2, on average, TLP outperforms MELO, GFM,, and
CDIPLA~ by 23%, 7%, and IO%, respectively and is competitive with
hMetis, MLc , and LSWMFFS which have generated better results than
many recent state-of-the-art partitioning algorithms. Since a large
tolerance (10% deviation) on each subset size has been allowed, all of
the partitioning algorithms have more chances to search for better
partitioning solutions. Consequently, different algorithms generate
similar solutions for some circuits for this case with loosely balanced
subset sizes.

6 Conclusion
A new two-level partitioner TLP has been developed. The hybrid

clustering strategy adopted in TLP, which is the combination of a local
bottom-up clustering approach and a global top-down recursive
clustering approach, was shown very efficient. Also, to generate a stable
and high-quality partitioning solution, a module migration based
partitioner was proposed as the base partitioner for TLP. Experimental
results obtained indicate that the TLP partitioner generates promising
results in either the minimal net cut or the average net cut. On the other
hand, the TLP partitioner also improves the unstable property of
module migration based partitioners such as FM and STABLE in terms
of the average net cut value.

References
[I] C. J. Alpert, J. H. Huang, and A. B. Kahng, "Multilevel circuit partitioning,"

in Proc. ACMJEEE Design Automotion ConJ, 1997, pp. 530-533.
[2] C. J. Alpert and S. 2. Yao, "Spectral partitioning: the more eigenvectors, the

better," in Proc. ACM/IEEE Design Automation Con$, 1995, pp. 195-200.
[3] C. K. Cheng and Y. C. Wei, "An improved two-way partitioning algorithm

with stable performance," IEEE Trots. Computer-Aided Design, vol. IO, no.
12,pp. 1502-1511,Dec. 1991.

[4] J. Cong, H. P. Li, S. K. Lim, T. Shibuya, and D. Xu, "Large scale circuit
paititioning with loosdstable net removal and signal flow based clustering,"
in Proc. IEEE Int. Con$ Computer-Aided Design, 1997, pp. 441 446.

71

[5] S. Dutt and W. Deng, "VLSI circuit partitioning by cluster-removal using
iterative improvement techniques," in Proc. IEEE Int. Conj
Computer-Aided Design, 1996, pp. 194-200.

[6] C. M. Fiduccia and R. M. Mattheyses, "A linear-time heuristic for improving
network partition," in Proc. ACMOEEE Design Automation ConJ, 1982, rip.
175-181.

[7] M. R G a y and D. S. Johnson, Computers ntui Intractability: A Guide to
the 7heory ofNP--cOmpleteness, San Francisco, CA: Freeman, 1979.

[8] G. Karypis, R. Agganval, V. Kumar, and S. Shekhar, "Multilevel
hypergraph partitioning: application in VLSl domain," in Proc. ACM/IEKE
Design Automation ConJ, 1997, pp. 526-529.

1028 151.60 41.43
51 70.90 6.46

169 266.85 32.95
50 71.75 7.17

17:! 249.50 32.14
1011 163.25 14.64
71 112.20 13.71
4:s 73.15 13.16
64 92.25 24.13
70 85.20 21.41

1 3 34.95 2.32

58 76.65 6.41
31 77.95 30.09

938 1139.90 189.82
409 932.05 370.76

501 615.65 1,744.04
536 711.05 1868.18 -

[9] B. W. Kemighan and S. Lin, "An efficient heuristic procedure for
patitioning graphs," Bell System Technical Journal, vol. 49, no. 2, pp.
291-307, Feb. 1970.

[IO] B. Krishnamurthy, "An improved mincut algorithm for partitioning VLSl
networks," IEEE Trans. Compuiers, vol. C-33, no. 5, pp. 438-446, May
1984.

[I I] L. T. Liu, M.T. Kuo, S. C. Huang, and C. K. Cheng, "A gradient method on
the initial partition of Fiduccia-Mattheyses algorithm," in hoc. IEEE lnr.
Conz Computer-Aided Design, 1995, pp. 229-234.

[I21 Y . C. Wei and C. K. Cheng, "Towards efficient hierarchical designs by ratio
cut partitioning," in Proc. IEEE Int. ConJ Computer Aided Design, 1989,
pp. 298-301

89 97.80 45.38
47 48.55 8.26

134 140.60 28.35
47 49.27 9.85

133 135.80 34.70
90 97.30 43.46
56 58.70 20.35
44 44.00 28.66
51 53.06 49.00

60 68.51 19.72

14 14.65 4.33

49 53.29 8.81

24 30.64 27.70

202 254.30 363.39
273 303.20 283.55

214 315.87 5077.43
206 337.30 5617.85

19ks

19kstw
irimGAl
>rimGAZ
primSCl
priniSC2

test02

test03
test04
test05
test06
8.870
5.655

industry1
industry2
industry3
ivg.small

avg.large

20runs 20runs 100 runs 20runs 20runs
min min min min min min min

119 - 105 106 106 - 110

64 51 52 50 47 43 45
169 139 152 145 139 119 119
106 - 90 88 89 - 94

I

l 60 - 57 58 56 - 53
61 - 52 51 48 - 50

102 - 74 71 71 - 77
90 - 60 60 60 - 60

319 175 190 167 164 - 187
- 244 243 254 243 - 243

- 148 130 128 127 130
- 145 127 128 127 128

I

I , 28 28 27 27 27 27 27

1 79 44 44 40 40 40 40

48 - 52 51 47 - 47

1 38
36 36 33 33 33 33

115 92 83 83 83 84 83

104 61 70 55 55 61 55
46 67 42 44 43 44

43
- 54 47 47 47 47 47
- 62 79 51 49 50 51

~ :2 44 73 42 41 44

Example

#nets #modules #pins
3,282 2,844 10.547

3,658 3,079 11,248
902 833 2,908

3.029 3,014 11,219
829 752 2,705

2,961 2,907 10,965

1.720 1,663 6,134
1,618 1.607 5.807
1,658 1,515 5,975

2,750 2,595 10,076

1.541 1,752 6,638
307 286 1,137

689 801 2,756

2,186 2.271 7,731
13.419 12,637 48.404

21,923 15,406 65,791

22,124 21,918 76.231

25.384 25,178 82,751

MELO GFM. CDIPLl hMetis ML, LSWMFFS
niin min min min min min

8 - 5 - 4 - 4
30 12 13 IO 4 - 5
30 14 22 I8 14 0
1 1 - - 4 - 7 - 6

12 - 7 9 5
18 - 4 2 - 4

- 4 - 8 - 8 25 -
33 - 0 0 0
41 - 7 2 -12 -14 -
- 0 0 4 0
- - 12 0 - 2 - 2

- - 12 - 1 0 - 1
0 0 4 4 0 0

2 - IO 8 0

0 0 13 8 8 0

28 IO 0 0 0 I
49 9 9 0 0 0

47 IO 21 0 0 IO
15 4 34 - 5 0 - 2
- 2 41 - 2 - 5 2

0 0 - 13 0 0
- 18 35 0 - 4 - 2

Table 1 . Partitio
FM

500 runs
min avg secirur
126 183.59 8.40

97 165.19 11.71

47 77.40 1.06
161 286.89 6.80
47 79.07 1.04

172 286.56 6.88
121 233.71 1.03
65 129.13 2.02
69 91.36 0.59

62 115.34 1.05
68 87.87 4.97

16 40.77 0.01
54 82.46 0.81

27 72.35 3.53
1,065 2023.47 6.08

355 684.03 23.00
257 648.32 173.63

320 826.31 234.66

Average

ig results allowing I % deviation. -
STABLE I TLP

20 NnS 20 runs

154. 184.45 34.24 126.76 39.45

lniproveinent over (Oh)

FM STABLE
niin avg min avg

7 31 24 31

8 41 15 36
0 37 8 32

17 51 21 47
0 38 6 31

23 53 23 46
26 58 17 40
14 55 21 48
36 52 2 40
18 54 20 42
8 22 14 20

13 64 22 58

9 35 16 30
1 1 58 29 61
81 87 78 78
23 56 33 67
17 51 57 49
36 59 62 53

19 50 26 45

Table 2. Partitioning results allowing up to 10% deviation.
Example IMELO GFM, CDIP,.,, hMetis MLc LSWMFFS TLP I Improvement over (%)

19ks
primGAl
priniGA2

test02

test03
test04

test05
test06

industry2

industry3

avgsmall

avg.large

balu
bm 1

s m c t

biomed
s9234

SI3207

SI5850
~35932
~38584
~38417

#nets #modules #pins

3,282 2,844 10.54;
902 833 2,90€

3.029 3,014 11,215

1,720 1.663 6,134
1.618 1,607 5.80;
1,658 1.515 5,975
2.750 2.595 10.07C
1,541 1,752 6,63€

13,419 12,637 48,404

21,923 15,406 65,791

22,124 21,918 76,231

25,384 25.178 82,751
735 801 2.69;
903 882 2,91(

1.920 1,952 5,471

5,742 6,514 21.04C
5,844 5,866 14,065

8,651 8,772 20,60C

10,383 10,470 24,712
17,828 18,148 48.145
20,717 20,995 55,201
23.843 23.849 57.612

Average 1 23 7 IO 1 - 1 n

12

