Single-switch soft-switching electronic ballast with high input power factor

C.-S.Lin
C.-L.Chen

Abstract

Design and analysis of a new singleswitch soft-switching class-E electronic ballast with high input power factor is presented. Design equations for the optimum operating condition are derived and complete computer analysis performed. It is shown that low duty-cycle control of the class-E ballast can reduce the voltage stress of the controlled switch. A $40-\mathrm{W}$ fluorescent lamp ballast is implemented and experimental recordings verify the analytical results.

1 Introduction

High-frequency electronic ballasts have attracted much attention in recent years. Electronic ballasting for fluorescent lamps greatly improves efficacy, efficiency and compactness. Moreover, with the goal of alleviating problems of noises, line-voltage distortion, and enforcement of new harmonic regulations on the utility line, there is a growing need for electronic ballasts with high input power factor. For this purpose an input current shaper power factor corrector (PFC) can be used in the input stage, in place of the usual diode rectifier followed by a bulk capacitor. This solution, however, may result in unacceptable cost for ballast applications.

Single-switch high input power factor electronic ballasts have been proposed [1,2] to improve efficiency, reliability, size and weight. The input current shaper and the output high-frequency inverter are combined into one stage. Only one active switch is used. Yet, the single-switch ballast presented by Licitra, etc. [1] would dim when the input sinusoidal voltage crosses zero. Flickering of twice line frequency might appear. Deng and Cuk presented a family of class-E ballasts [2]. Simple structure and high performance are achieved. However, with fixed 50% duty cycle control, the maximum voltage stress on the controlled semiconductor switch is 3.56 times the peak AC input voltage [3, 4]. This peak stress would reach $604 / 1108 \mathrm{~V}$ for $120 / 220 \mathrm{~V}$ AC input.

In this paper a new single-switch soft-switching electronic ballast with high input power factor is presented. Low duty-cycle control is proposed for this class-E bal-

© IEE, 1008

IEE Proccedings online no. 19981802
Paper first received 14th April and in revised form 25th November 1997
The authors are with the Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan, Republic of China
last to reduce the maximum switch voltage stress. Design equations for the optimum operating condition to facilitate soft switching are derived and complete computer analysis is performed.

2 Circuit description

The proposed circuit topology is shown in Fig. 1. The basic functions of the subcircuits are:
EMI filter : filters high-frequency noise
$B D 1$: bridge rectifier; converts line-frequency AC power to DC
$C_{i} \quad:$ prefilter of the EMI filter; filters switching noise
$L_{1}-D_{1} \quad$: current shaper; shapes input current waveform
$S_{1} \quad:$ controlled active switch; controls charging/ discharging of L_{1}
$C_{1}-D_{2} \quad$: soft switching components; facilitates soft switching of S_{1}
$C_{2} \quad$: energy storage capacitor; reduces output ripples
Tx : transformer; isolates lamp load from source
$L_{r} C_{r} \quad$: resonant tank; correct load angle [5] of resonant tank affects soft switching condition under proper design of L_{r} and C_{r}
$C_{s} \quad:$ start-up capacitor; preheats lamp filaments and starts lamp
$R_{L} \quad$: equivalent resistance of lamp

Fig. 1 Circuit diagram of proposed single-switch electronic ballast

3 Analysis

3.1 Equivalent circuit

The equivalent circuit of the proposed ballast circuit presented in Fig. 1 is shown in Fig. $2 a$. $V_{D C}$ represents the rectified and filtered direct voltage before L_{1}, L_{m} is the magnetising inductance of the transformer, R represents the primary-side equivalent lamp resistance R_{L}, Fig. $2 b$ gives the further simplified high-frequency equivalent circuit model. The bulk capacitor C_{2} does not affect the high-frequency operation, so it is shorted
in the simplified equivalent circuit. A dummy inductor L_{1} is introduced to represent the equivalence of L_{1} paralleling L_{m}. It is exactly a class-E inverter.

b
Fig. 2 Equivalent circuits of proposed electronic ballast a Equivalent circuit of Fig. 1
b Simplified equivalent circuit as class E converter

To facilitate the analysis, the main switch and all other components of the circuit are assumed ideal, so the efficiency of the converter is 100%. The load quality factor of the resonant tank must be high enough to generate a pure sinusoidal output current [6-8]. The damping ratio of the circuit is assumed small enough so that the damping of the switching waveforms can be neglected. The inductor L_{1}, need not be infinity to act as a constant-current source. The class-E inverter with finite $D C$-feed inductance can also perform the soft switching $[9,10]$.

3.2 Circuit operation

There are two stages of operations in the class-E simplified equivalent circuit:
Stage 1: S_{1} turned off, L_{1}, discharged: The equivalent circuit of this stage is depicted in Fig. 3a. The supply current $i_{L 1^{\prime}}$ and the output current i_{o} pass through C_{1}. The voltage across $C_{1}, V_{C 1}$, forms a tilted sine wave as shown in Fig. 4.

Fig. 3 Equivalent circuits representing circuit operation
a Stage 1: S_{1} off, current $i_{L^{\prime}}$ and i_{o} pass through C_{1}
b Stage $2: \mathrm{S}_{1}$ on, $L_{1^{\prime}}$ charged and current $i_{L^{\prime}}$ and i_{o} pass through S_{1}

Stage 2: S_{1} on, $L_{1^{\prime}}$ charged: The equivalent circuit of this stage is depicted in Fig. $3 b$. In this stage the supply current $i_{L 1^{\prime}}$ and the output current i_{o} pass through S_{1}. The current across S_{1} forms a tilted sine wave as shown in Fig. 4.

Fig. 4 Key waveforms of class E inverter $V_{C 1}$, $i_{S 1}$ and i_{o}

3.3 Circuit analysis

Two differential equations can be used to describe the waveform of $V_{C 1}$ and $i_{L 1^{\prime}}$ in stage 1

$$
\left\{\begin{array}{l}
V_{C_{1}}=V_{D C}-L_{1} \frac{d i_{L_{1}^{\prime}}}{d t} \tag{1}\\
C_{1} \frac{d V_{C_{1}}}{d t}=i_{L_{1}^{\prime}}-I_{o} \sin (\omega t+\varphi)
\end{array}\right.
$$

with the boundary conditions for $V_{C 1}$

$$
\begin{equation*}
\left.V_{C_{1}}\right|_{t=0}=0,\left.\quad V_{C_{1}}\right|_{t=t_{o n}}=0,\left.\quad \frac{d V_{C_{1}}}{d t}\right|_{t=t_{o n}}=0 \tag{2}
\end{equation*}
$$

where $\omega=2 \pi f_{s}$ and f_{s} is the switching frequency. φ is the lagged load angle when the output current passes through the resonant network $L_{r}-C_{r}-R$; $t_{o n}=(1-D) T$, T and D are the switching period and duty cycle, respectively. The $V_{C 1}$ waveform can then be solved as

$$
\begin{align*}
V_{C_{1}}(t)= & k_{1} \sin \left(\omega_{1} t\right)+k_{2} \cos \left(\omega_{1} t\right) \\
& +\frac{\omega}{C_{1}\left(\omega^{2}-\omega_{1}^{2}\right)} I_{o} \cos (\omega t+\varphi)+V_{D C} \tag{3}
\end{align*}
$$

where k_{1} and k_{2} can be solved by the boundary conditions in eqn. 2

$$
\begin{aligned}
& k_{1}=\frac{k_{2} \cos \left(\omega_{1} t_{o n}\right)+\frac{\omega I_{o} \cos \left(\omega t_{o n}+\varphi\right)}{C_{1}\left(\omega^{2}-\omega_{1}^{2}\right)}+V_{D C}}{-\sin \left(\omega_{1} t_{o n}\right)} \\
& k_{2}=-V_{D C}-\frac{\omega I_{o} \cos \varphi}{C_{1}\left(\omega^{2}-\omega_{1}^{2}\right)}
\end{aligned}
$$

and $\omega_{1}^{2}=1 / L_{1} C_{1}$. The load angle φ can be found numerically from eqn. 4 when the duty cycle is not 50% :

$$
\begin{equation*}
(1-D) \sin \left(\omega t_{o n}+\varphi\right)+\frac{1}{2 \pi}\left[\cos \left(\omega t_{o n}+\varphi\right)-\cos \varphi\right]=0 \tag{4}
\end{equation*}
$$

The output current I_{o} can be calculated by solving

$$
\begin{equation*}
I_{o} \sin \left(\omega t_{o n}+\varphi\right)-\left(I_{D C}-\frac{D^{2} T V_{D C}}{2 L_{1}^{\prime}}\right)=0, \quad I_{o} \geq 0 \tag{5}
\end{equation*}
$$

The output lamp resistor R can be determined from the assumption of input/output power equality as a
first-cut estimate

$$
\begin{equation*}
P=V_{D C} \times I_{D C}=\frac{V_{o} I_{o}}{2}=\frac{R I_{o}^{2}}{2} \tag{6}
\end{equation*}
$$

C_{1} can be found by observing no direct voltage across $L_{1^{\prime}}$

$$
\begin{equation*}
\frac{1}{T} \int_{0}^{t_{o n}} V_{C_{1}} d t=V_{D C} \tag{7}
\end{equation*}
$$

i.e.

$$
\begin{align*}
& \frac{k_{1}}{\omega_{1}}\left[1-\cos \left(\omega_{1} t_{o n}\right)\right]+\frac{k_{2}}{\omega_{1}} \sin \left(\omega_{1} t_{o n}\right) \\
& +\frac{I_{o}}{C_{1}\left(\omega^{2}-\omega_{1}^{2}\right)}\left[\cos \left(\omega t_{o n}+\varphi\right)-\sin \varphi\right] \\
& +\left(t_{o n}-T\right) V_{D C}=0 \tag{8}
\end{align*}
$$

Once the circuit parameter has been determined, the voltage stress of S_{1} can be found by solving the instant when the maximum $V_{C 1}$ occurs

$$
\begin{equation*}
\left.\frac{d V_{C_{1}}}{d t}\right|_{t=t_{V_{\max }}}=0, \quad 0<t_{V_{\max }}<t_{o n} \tag{9}
\end{equation*}
$$

i.e.

$$
\begin{align*}
& \omega_{1} k_{1} \cos \left(\omega_{1} t_{V_{\text {max }}}\right)-\omega_{1} k_{2} \sin \left(\omega_{1} t_{V_{\max }}\right) \\
& -\frac{\omega^{2} I_{o} \sin \left(\omega t_{V_{\max }}+\varphi\right)}{C_{1}\left(\omega^{2}-\omega_{1}^{2}\right)}=0 \tag{10}
\end{align*}
$$

Then the peak voltage stress is derived

$$
\begin{equation*}
V_{S_{1_{\text {mait }}}}=\left.V_{C_{1}}\right|_{t=t_{V_{\text {max }}}} \tag{11}
\end{equation*}
$$

the switch voltage stress is the maximum voltage of $V_{C 1}$ in eqn. 9 .

In the second stage, the current passes through S_{1} can be mathematically expressed as

$$
i_{S_{1}}=i_{L_{1}^{\prime}}-i_{o}
$$

Fig. 5 Voltage and current waveforms of S_{1} varied with duty cycle D a Continuous mode operation of L_{1}
b Discontinuous mode operation of $L_{1^{\prime}}$
5.5 A . Thus in class- E ballasts one can transfer the voltage stress to the current stress by low duty-cycle operation.

4 Power factor correction

For single-stage electronic ballasts, a front-ended discontinuous inductor current mode power factor correction is utilised. The discontinuous-current inductor can be considered as L_{1} in the class-E electronic ballast in Fig. 1. The inductor L_{1} has a critical value when operating at the boundary of continuous and discontinuous mode [11]

$$
\begin{equation*}
L_{1_{\max }}=\frac{D T V_{S_{m}}}{2 I_{S_{m}}}=\frac{D R_{i}}{2 f_{s}}, \quad L_{1}<L_{1 \max } \tag{16}
\end{equation*}
$$

where R_{i} is the equivalent resistor seen at the input of the ballast. The voltage conversion ratio is

$$
\begin{equation*}
M \equiv \frac{B_{b o o s t}}{V_{S_{m}}} \tag{17}
\end{equation*}
$$

where $V_{s m}$ is the maximum value of input alternating voltage, $V_{\text {boost }}$ is the boost power factor corrector output direct voltage. In this circuit $V_{\text {boost }}$ is the DC component of $V_{C 1}$ in stage 1

$$
\begin{equation*}
V_{b o o s t}=\frac{1}{t_{o n}} \int_{0}^{t_{o n}} V_{C_{1}} d t=\frac{1}{1-D} V_{D C} \tag{18}
\end{equation*}
$$

then

$$
\begin{equation*}
V_{D C}=M(1-D) V_{S_{m}} \tag{19}
\end{equation*}
$$

In Fig. $1 C_{2}$ blocks the DC component of $V_{C 1}$, so

$$
\begin{equation*}
V_{C_{2}}=\frac{1}{T} \int_{0}^{T} V_{C_{1}}=V_{D C}=M(1-D) V_{S_{m}} \tag{20}
\end{equation*}
$$

C_{2} must be large enough to hold up the power while the input power decreases. The minimum value of C_{2} can be determined by

$$
\begin{equation*}
C_{2}=\frac{P}{\omega_{L} V_{C_{2}} \Delta V} \tag{21}
\end{equation*}
$$

where ΔV is the peak-to-peak ripple of $V_{C 2}$ and ω_{L} is the AC source angular frequency. Figs. $6 a$ and b show the ballast output current with large C_{2} and small C_{2}, respectively. Obviously, a large C_{2} can avoid the twice line-frequency flicker which causes low-quality lighting and shortens the lamp lifetime.

At discontinuous operation, neglecting the high-order terms, the approximate average input current can be expressed as [11]

$$
\begin{equation*}
i_{s}=I_{s m} \sin \left(\omega_{L} t\right) \frac{M D}{M-\left|\sin \left(\omega_{L} t\right)\right|} \tag{22}
\end{equation*}
$$

where $I_{s m}$ is the maximum value of the filtered input current i_{s} of the ballast. The plot of average input current against duty cycle is shown in Fig. 7. The power factor varies with duty cycle as given in Fig. 8. The low duty cycle slightly deteriorates the power factor, but it is still higher than 0.95 .

5 Design procedure

According to the foregoing analysis, the design procedure of the ballast can be outlined as follows:
(i) Determine the lamp equivalent resistance R_{L} and the switching frequency f_{s}. The fluorescent lamp can be modelled as a constant resistor at high-frequency operation [12]. The lamp resistor can be obtained from data

Fig. 6 Function of energy storage capacitor C_{2} a Output current i_{o} has no flicker for large C_{2}
b Line-frequency flicker of output current i_{o} caused by small C_{2}

Fig. 7 Input current waveforms for half cycle of line frequency varied

Fig. 8 Input power factor against duty cycle D
sheets or dividing the RMS lamp voltage by the RMS lamp current. The switching frequency is usually in the range of $20 \mathrm{k}-30 \mathrm{kHz}, 40 \mathrm{k}-50 \mathrm{kHz}$ and higher than 60 kHz to avoid interfering with other electronic apparatus. Choose the duty cycle D, usually at $0.3-0.5$ depending on the main switch voltage and current ratings. When $D=0.3$ the maximum voltage on the main switch is about 2.5 times the input direct voltage. When $D=0.5$ the switch stress is $3.5 V_{D C}$.
(ii) Choose the resonant inductor $L_{r^{\prime}}$ from the following equation:

$$
\begin{equation*}
Q_{L}=\frac{\omega L_{r}^{\prime}}{R} \tag{23}
\end{equation*}
$$

where Q_{L} is the load quality factor of the resonant tank. Q_{L} must be high enough to make the output current sinusoidal, but the higher Q_{L} also causes the larger L_{r}. The trade-off between the quality of the output and the size and weight of the ballast is the designer's choice.
(iii) The load angle φ can be found by eqn. $4,-90^{\circ}<\varphi$ $<0^{\circ}$. Computer-aided numerical approaches are convenient to cope with this nonlinear equation.
(iv) Determine the approximate value of $C_{r^{\prime}}$ from the following equation:

$$
\begin{equation*}
C_{r}^{\prime} \approx \frac{1}{\omega^{2} L_{r}^{\prime}+\frac{\omega R \sin \varphi+\frac{\omega V_{D C}}{I_{o}}}{\cos \varphi}} \tag{24}
\end{equation*}
$$

(v) Determine the approximate value of C_{1} from eqn. 8.
(vi) Calculate the voltage and current stress of S_{1} from eqns. $8-15$. The switch ratings must be greater than these values.
(vii) Determine the energy storage capacitor C_{2} from eqns. 17 and 18. The voltage across C_{2} is about the maximum of the input voltage.
(viii) Determine the input inductor L_{1} from eqn. 16. It is better to design the input inductor value near the boundary of the continuous and discontinuous mode because the maximum current of $i_{L 1}$ is smaller.
(ix) The voltage ratings of D_{1} and D_{2} are the same as the main switch. The current rating of D_{1} is the RMS value of the input current. Ideally the current passing through D_{2} is zero when at optimum operating condition, but actually a small current appears when S_{1} is turned on.
(x) The rated lamp current might not match the output current I_{0} in eqn. 5. Adjust the transformer turns ratio to make the impedance matching between the primary and secondary side. Determine the value of R, C_{r} and L_{r} from $R_{L}=n^{2} R, C_{r}=C_{r} / n^{2}$ and $\mathrm{L}_{r}=n^{2} L_{r^{\prime}}$, where n is the transformer turns ratio.
(xi) The lamp start-up capacitor C_{s} is often small compare to C_{r}, so it can be neglected at steady state. When starting the lamp the filament resistance and $L_{r}-C_{s}$ form a resonance, the lamp starting voltage and the preheat current are the ratings to determine the value of C_{s}.
(xii) All component values are derived in the ideal condition (100% efficiency), but in the real implementation of the ballast circuit, the soft-switching condition can be achieved by slightly adjusting the value of C_{1}.
(xiii) The EMI filter for the ballast is mainly to suppress the switching noise and its harmonics. Secondorder filters are often used in low-cost electronic ballasts. Fig. 9 shows a second-order EMI filter for the proposed electronic ballast. The X-capacitor $C_{X 1}, C_{X 2}$ and differential choke $L_{D 1}, L_{D 2}$ suppress the differential noise. The Y-capacitor $C_{Y 1}, C_{Y 2}$ and the common choke $L_{C 1}, L_{C 2}$ suppress the common-mode noise. The noise must be measured before the filter design. The peak magnitude of the switching noise and frequency determine the filter components. For example, if the switching noise is mainly at 50 kHz , and the peak of
noise is $100 \mathrm{~dB} / \mu \mathrm{V}$ over the EMC standard by $40 \mathrm{~dB} /$ $\mu \mathrm{V}$. It must be attenuated 40 dB at 50 kHz ; a secondorder filter at the cutoff frequency must be set below 5 kHz because a second-order filter provides 40 dB per decade attenuation. The filter capacitor C_{i} across the output of the bridge rectifier is to help filter the highfrequency switching noise.

Fig. 9 EMI filter for proposed single-switch electronic ballast

6 Experimental results

A 40 W fluorescent lamp ballast adopting the circuit is developed. Circuit parameters of the experimental ballast in Fig. 1 are $L_{1}=0.9 \mathrm{mH} ; C_{1}=14.7 \mathrm{nF} ; L_{m}=2 \mathrm{mH}$; $L_{r}=4 \mathrm{mH} ; C_{r}=100 \mathrm{nF} ; R_{L}=250 \Omega ; C_{s}=3.3 \mathrm{nF} ; C_{2}=$ $68 \mu \mathrm{~F} ; S_{1}: \mathrm{IRF} 830 ; f_{s}=50 \mathrm{kHz} ; V_{s}=110 \mathrm{VAC} ; D=0.3$; turns ratio $n=1: 1.25$. The EMI components in Figs. 1 and 9 are: $C_{i}=0.68 \mu \mathrm{~F} ; C_{X 1}=C_{X 2}=1 \mu \mathrm{~F} ; L_{D 1}=L_{D 2}$ $=2.4 \mathrm{mH} ; C_{Y 1}=C_{Y 2}=4.7 \mathrm{nF} ; L_{C 1}=L_{C 2}=1.4 \mathrm{mH}$.

Fig. 10 Measured voltage and current waveforms of main switch S1 Vertical scale: $200 \mathrm{~V} / \mathrm{div}, 1 \mathrm{~A} /$ div; horizontal scale: $5 \mu \mathrm{~s} / \mathrm{div}$

Fig. 11 Measured discontinuous current waveform of L_{I} for half cycle of line frequency
Vertical scale: $0.5 \mathrm{~A} / \mathrm{div}$; horizontal scale: $1 \mathrm{~ms} / \mathrm{div}$.

The recorded voltage and current waveforms of S_{1} are shown in Fig. 10. The discontinuous current waveform of inductor L_{1} is shown in Fig. 11. The input and output voltage/current waveforms of the ballast are shown in Figs. 12 and 13, respectively. The maximum voltage stress for S_{1} is about 400 V . The EMC spectra of the proposed ballast are shown in Fig. 14. These spectra are the composed noise of common mode and differential mode. Fig. $14 a$ shows the noise spectrum at the ballast input terminal without the EMI filter except the prefilter C_{i}. The peak noise is $100 \mathrm{~dB} / \mu \mathrm{V}$ at 50 kHz .

The cutoff frequency is set at 5 kHz at first and adjusted the components to pass the EMC standard. The final values are 1.6 kHz for differential mode and 25 kHz for common mode because the common-mode noise is smaller than the differential mode. Fig. $14 b$ shows the noise spectrum with EMI filter which meet VDE-0871 class-B EMC standard. The measured input power factor and input current THD and harmonics are listed in Table 1. The measured efficiency of the ballast is 82%.

Fig. 12 Measured input voltage and current waveforms of proposed ballast
Vertical scale: $50 \mathrm{~V} /$ div, $0.2 \mathrm{~A} /$ div; horizontal scale: $2 \mathrm{~ms} /$ div.

Fig. 13 Measured output voltage and current waveforms of proposed ballast at high frequency
Vertical scale: $50 \mathrm{~V} / \mathrm{div}, 0.5 \mathrm{~A} / \mathrm{div}$; horizontal scale: $5 \mu \mathrm{~s} / \mathrm{div}$.

b
Fig. 14 Noise spectra measured at input of proposed ballast Conducted emission high lead VDE0871 class B narrowband a Without EMI filter
b With EMI filter

Table 1: Measured input power factor, input current THD and harmonics of proposed single-switch ballast compared with IEC-1000-3-2

	IEC-1000-3-2 class C equipment	Proposed electronic ballast
Power factor	-	0.972
THD	-	14.21%
Order-2 harmonic	2%	0.03%
Order-3 harmonic	$30 \% * \lambda$	6.61%
Order-5 harmonic	10%	3.46%
Order-7 harmonic	7%	4.23%
Order-9 harmonic	5%	2.08%
Order-11 harmonic	3%	1.15%
Order-13 harmonic	3%	1.61%

λ is the power factor

7 Conclusions

A single-stage single-switch high-power-factor electronic ballast has been presented. The high-voltage stress problem of class-E type ballasts was solved by the proposed low duty cycle operation. While the duty cycle is less than 0.5 circuit parameters are difficult to determine owing to nonlinear circuit operation. We have proposed design equations and a procedure to determine the circuit parameters. A $40-\mathrm{W}$ ballast was experimentally designed and implemented. The analytical results were verified by experimental recordings.

8 References

1 LICITRA, C., MALESANI, L., SPIAZZI, G., TENTI, P., and TESTA, A.: 'Single-ended soft-switching electronic ballast with unity power factor', IEEE Trans. Ind. Appl., 1993, 29, (2), pp. 382-388
2 DENG, E., and CUK, S.: 'Single switch, unity power factor, lamp ballasts'. Proceedings of the 10th IEEE conference on Applied power electronics, APEC' '95, 1995, pp. 670-676
3 LUTTEKE, G., and RAETS, H.C.: 'High-voltage high-frequency class-E converter suitable for miniaturization', IEEE Trans., 1986, PE-1, (4), pp. 193-199
4 LUTTEKE, G., and RAETS, H.C.: ' $220-\mathrm{V}$ mains $500-\mathrm{kHz}$ classE converter using a biMOS', IEEE Trans., 1987, PE-2, (3), pp. 186-193
5 SOKAL, N.O., and SOKAL, A.D.: 'Class-E - a new class of high-efficiency tuned single-ended switching power amplifiers', IEEE J. Solid-State Circuits, 1975, 10, (3), pp. 168-176
6 RAAB, F.H.: 'Ideal operation of the class-E tuned power amplifier', IEEE Trans., 1977, CAS-24, (12), pp. 725-735
7 RAAB, F.H.: 'Effects of circuit variations on the class-E tuned power amplifier', IEEE J. Solid-State Circuits, 1978, 13, (2), pp. 239-247
8 KAZIMIERCZUK, M.K., and PUCZKO, K.: 'Exact analysis of class-E tuned power amplifier at any Q and switch duty cycle', IEEE Trans., 1987, CAS-34, (2), pp. 149-159
9 ZULINSKY, R., and STEADMAN, J.W.: 'Class-E power amplifiers and frequency multipliers with finite dc-feed inductance', IEEE Trans., 1987, CAS-34, (9), pp. 1074-1087
10 ZULINSKY, R.: 'A high-efficiency self-regulated class-E power inverter/converter', IEEE Trans., 1986, IE-33, (3), pp. 340-342
11 DENG, E., and CUK, S.: 'Single stage, high power factor, lamp ballast'. Proceedings of the 9th IEEE conference on Applied power electronics, APEC’94, 1995, pp. 441-452
12 COSBY, M.C., and NELMS, R.M.: 'Designing a parallel-loaded resonant inverter for an electronic ballast using the fundamental approximation'. Proceedings of the 8th IEEE conference on Applied power electronics, APEC'93, 1993, pp. 418-423

