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Abstract: We investigate the possibility of input-output decoupling without stability a square continuous-time LTI plant (C, A, B) 
by designing discrete devices, the generalized sampled-data hold functions. By adopting sequential design procedures for the 
resulting diagonalizing problem, two cases are found to be solvable and yield nontrivial solutions: (1) CB nonsingular; (2) 
m ~< n ~< 2m, rk(C ±B) = n - m where n, m are the number of states and inputs (outputs) respectively; C • = I n - cT(ccT) - IC. 
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1. Introduction 

The  use of  gene ra l i z ed  s a m p l e d - d a t a  hold  funct ions  ( G S H F ) ,  as a means  of  pe r iod ic  cont ro l  of  
s am p led  con t inuous - t ime  l inear  systems, has  been  inves t iga ted  in var ious  cont ro l  system design p rob lems ,  
e.g. p o l e / z e r o  ass ignment  [2,4,6], s imu l t aneous  s tab i l iza t ion  and  decoup l ing  [6] in r ecen t  years .  T h e  
G S H F  con t ro l l e r  can be  v iewed as a s amp le r  with a p re sc r ibed  per iod ica l ly  switching hold funct ion which 
is t a i lo red  to the  pa r t i cu l a r  p lan t  and  the  p r o b l e m  u n d e r  invest igat ion.  D e sp i t e  some promis ing  resul ts  
for  d i sc re t e - t ime  systems using this idea,  the  po ten t i a l  of  G S H F  cont ro l  m e t h o d  for  con t inuous - t ime  LTI  
systems has not  yet  been  fully unde r s tood .  This  p a p e r  will invest igate  one  such possibi l i ty  of  G S H F  
cont ro l  m e t h o d  for  decoup l ing  con t inuous - t ime  LTI  systems. 

T h e  p l an t  cons ide red  here  is a con t inuous - t ime  l inear  t ime- invar ian t  system desc r ibed  by 

~ ( t )  = A x ( / )  + B u ( t ) ,  y ( t )  = C x ( t ) ,  (1)  

whe re  x ( t )  E R n, u(t) ,  y ( t )  ~ ~m, and B, C a re  of  full r ank  m ~< n. The  G S H F  cont ro l  law 

u ( t ) = F ( t ) x ( k T )  + G ( t ) r ( k T ) ,  kT<<,t < ( k  + l ) T ,  (2)  

F ( t + T ) = F ( t ) E ~  m×n, G ( t + T ) = G ( t ) ~  m×m 

is app l i ed  to system (1), whe re  T is the  sampl ing  pe r iod  and F( t ) ,  G ( t )  are  p iecewise  cont inuous ,  
b o u n d e d ,  T-per iod ic  mat r ices .  The  overal l  b lock  d i a g ra m is shown in F igure  1. A mot iva t ing  ques t ion  for 
ou r  s tudy is: Is it poss ib le  to use  d igi ta l  con t ro l l e r  (2) l ike an ana log  control  device so as to control ,  in 
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particular decouple continuous plant (1) for all time instants, not just at the sampling instants. 
Specifically, our objective is to design F(t) ,  G(t) such that the closed-loop continuous system (1)-(2) is 
input-output decoupled, where stability of the closed-loop decoupled system is not taken into account in 
this study. 

The organization of this paper is outlined as follows. Section 2 contains the formulation of the 
decoupling problem by GSHF control into a pair of diagonalizing problems. Two sequential design 
procedures for diagonalization are provided and situations under which nontrivial solutions exist are 
revealed in Section 3. Section 4 provides examples to illustrate the findings. Conclusions are made in 
Section 5. Throughout thispaper, we use the following notations: N for null space, R for range space, rk 
for rank, Ker for kernel, M(s) for the Laplace transform of the time function M(t), and I n for the n × n 
identity matrix. The rank of a transfer matrix, rk(W(s)), is defined as the normal rank of W(s) [5]. 

2. Problem formulation 

The state response of the closed-loop system (1)-(2) is 

fkT+,~ eA(~v+~_~)B[ F(.r)x( kT)  + G( z)r(  kT)] dz x( kT + o') = eA'~x( kT)  + .kv 

:=M((r)x(  kT)  + U(~r)r(kT) ,  cr~ [O, T], (3) 

where 

Jo M(o')  := e A'* + eA(~-')BF(r) dr, (4) 

g ( ~ )  .-= eA(~-')BG(~ -) d~-. (5) 

M(.) is T-periodic, piecewise continuous and bounded. The output response is thus given by 

y ( k T  + ~r) =Cx(kT+cr)  

= CM((r)[Mk(r)x(O)  + M k - ' ( T ) N ( T ) r ( O )  

+ M k - 2 ( T ) N ( T ) r ( T )  + . ' .  + N ( T ) r ( ( k -  1)T)] 

+CX(o ' ) r ( kT ) .  (6) 
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The decoupling matrix of plant (1) is [3] 

B *  :~ 

C1Aa~B 

CmAdmB 

(7) 

where C i is the i-th row of C and the decoupling index di is defined by 

min{k: CiA~'B 4= 0}, 
d i := 

n - l ,  i f C i A k B = 0 f o r a l l k = 0 , 1 , - - ' .  

Throughout this paper, we assume that the plant (1) is decouplable by static state feedback, or B* is 
nonsingular. 

From the expression (6) and arbitrariness of reference r(-), we see that the input-output response is 
decoupled for all time if 

CM(o- )Mk(T )N (T )=A (kT+o ' ) ,  k = 0 ,  1,2 . . . . .  (8) 

CN(cr) = A(cr) (9) 

where .4, A are m × m diagonal matrices. Observe that the left-hand-side of (8) can be generated from 
the output equation of the following matrix differential equation, in view of (4), 

)~/(¢r) =AM(~r) + BF(o'), M(O) =In, (10) 

Y( kT + or) = CM(o')Mk( T) N( T). 

One of our aims is to diagonalize output Y of (10) by designing F(cr), which corresponds to the 
requirement (8). In the light of standard linear decoupling theory [3], we then choose F(cr) of the 
constant gain form 

F(~r) =KM(cr) ,  o-~ [0, T). (11) 

With this choice, the solution of (10) is 

M(~r) = exp((A +BK)o-) ,  ~r~ [0, T),  (12) 

and 

Y( kT + o') = C exp((A + BK)(kT  + o'))N(T).  

The decoupling objective (8)-(9) by GSHF control is then transformed 
diagonalizing problems: 

Find hold functions F(t) (of the form given by (11)) and G(t) such that 

into 

(13) 

the following pair of 

C exp((A + B K ) t ) N ( T )  =.4( t )  = diag(Ai(t)), (14) 

CN(t) =A(t)  = diag(Ai(t)), t >~ 0. (15) 

If case (14)-(15) can be achieved, the decoupled input-output response is, with zero init, ial state, 

Yi( kT + o') = A i ( ( k -  1)T + ~r)ri(O ) + "'" +-Ai(~)ri( ( k -  1)T) 

+Ai(o')ri(kT), i=1  . . . . .  m. (16) 
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3. Two sequential design procedures 

Depending on which equation of diagonalizing requirements (14)-(15) is to be tackled at first, two 
sequential design procedures for hold functions F(t) and G(t) are presented in this section. 

3.1. Approach 1: solving (14) first by designing F(t) 

To meet the requirement (14), we choose, motivated from continuous-time linear decoupling theory 
[3], matrices K and N(T) as the standard decoupling gain matrices 

K =  - ( B * )  -~ 

dl 
C1Aa~ +1 + y' pt jClA j 

j=O 

dm 

Cm mdm+l + E PmjCm A j  
j=0 

and 

Pit > 0, (17) 

N(T)  =B(B*)-~F (18) 

where F =  diag(ri) is any m × m diagonal matrix. Then (14) is accomplished. Indeed, the Laplace 
transform of (14) is immediately seen to be a diagonal transfer matrix of the form 

( r ) 
C( sI, - ( A + BK ) ) -  I N( T) = diag sd i+  1 _}_ PidiSd~ ..]_ . . .  -}-Pio 

=: diag(~i(s)) .  

Finally the required hold function F(t) can be calculated by using (11), (12), (17). This completes the 
design of F(t). 

Next we should meet the requirement (15) under the boundary constraint (18). The overall require- 
ments of G(t) are collected in the following equation: 

CN(t)  = A ( t )  = diag(Ai(t)) ,  (19) 

N(0) = 0, N ( T ) = B ( B * )  'F. (20) 

Note that by (20) we have 

A(O) = CN(O) = O, 

A( T) = CN( T) = CB( B* ) -1F = diag(0 , . . . ,  ri, 0 . . . . .  O) 

where the ri's appear in those i-th positions with i ~ I where 

I =  {k: d k = 0}. (21) 

In summary, we have: 

Lemma 3.1. The admissible diagonal matrix A(t ) must satisfy the constraints 

A,(0) = 0 ,  A,(T) = / 0, 
i f~I, 

ri, i ~ I .  (22) 
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A possible candidate solution of N( t )  to (19)-(20) is provided in the following lemma. 

Lemma 3.2. A family of  solutions N( t  ) to (19)-(20) has the form 

N ( t )  = C+A( t )  + C ± B ( B * ) - a F Q ( t )  

where C += c T ( c c T )  -1, C ± = I  n - C+C, Q(t)  is an m × m square matrix with Q(O) = O, Q(T)  = I  m. 

Proof. The general solution to the algebraic equation (19) is 

U ( t )  = c + a ( t )  + H ( t )  

where H(t )  ~ Ker(C),  i.e. CH(t)  = 0. The constraints (20) on N( t )  are then transfered to H:  

H(O) = O, H ( T )  = N ( T )  - C+A(T)  = C ' B ( B * ) - ' F ~  K e r ( C ) .  

So we can choose 

H ( t )  = C ±B( B * ) - l F Q (  t)  

with Q(0) = 0, Q(T) = I  m. [] 

Remark.  It is easily shown that rk(C ± ) =  n - m .  

In the sequel, we need the following. 

Fact 3.3 [3]. Let U, V be q × n and n x m matrices, then 

rk (UV)  = r k ( V )  - d 

where d = d im(N(U)  cq R(V)).  

Given N(t) ,  the hold function G(t)  is related to N(t )  via the overconstrained equations 

BO( s) = (s i  n - A ) I V (  s) = (sin - A ) [  C+A( s) + C" B( B*)-I FO.( s)] (23) 

by taking the Laplace transform of (5). Since B is of full column rank, we can premultiply the above 
equation by 

["+1 B ± ' B+B = Im' B ' B  = 0 (24) 

so that (23) is t ransformed into 

An important  property of equation (25) is revealed in the following result. 

Proposition 3.4. r k ( i v ( s ) ) =  rk(C ±B). 

Proof. IV(s)= B ±(si  n - A ) C  ± B ( B * ) - I F ,  by Fact 3.3 we have 

r k ( I V ( s ) )  = rk (C  ±B) - d  
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where d = dim S and 

S : = N ( B ' )  C~R( ( s I . -A )C±B(B*) - 'F )  

= R ( B ) ~ R ( ( s I  n - A ) C "  B( B*) - jF) .  

We claim that  S = {0} so d = O. To show this, let v be any element  of  S, then there exist w, z so that 

v =Bw = (sI. - A ) C ± B ( B * ) - I F z  

o r  

(sin - A ) - l B w  = C±B(B *) 1FZ. 

Premultiplying both sides of  the above equat ion by C yields 

P(s)w=O or w = 0  

since the plant square transfer  matrix P(s) = C(sl, -A)-~B is of  full rank m and thus is invertible. This 
completes  the proof  that v = 0 and thus d = 0. [] 

The  proposi t ion tells us that the upper  part  of  (25) 

G( s) = TA( s) + ~'( s)Q( s) (26) 

can be expressed in terms of  ?~(s) only. In fact, the Laplace t ransform of (9) yields the unique solution 

G( s) = P- ' (  s)A( s) (27) 

which basically amounts  to extracting from (23) m linearly independent  rows. 
We say that the solution given by (27) is nontrivial if all Ai(t) a r e  nonzero  functions. This corresponds 

to the physical situation where all reference input channels are not blocked. Whe the r  or not we can 
obtain one, in part icular  a nontrivial G(t) is de termined by the consistency of  the constraint  equat ions 
(cf. the lower part  of  (25)) 

T(s)A(s) + W(s)Q.(s) = 0. (28) 

The  above mat r ix  equat ion can be regarded as n - m equat ions in  m unknowns  Q.i(s). I ts i - th  co lumn is 

Ti( S)~ti( S ) -}- W(  s )O i (  s ) = 0 

where Ti(s), Q.i(s) denote  the i-th column of  T(s), Q.(s), respectively. For  solvability, n - m  ~< m must 
hold in general. Two cases are distinct in nature:  

(i) rk(C I B )  = n - m. In this case, rk[W(s)] = rk[W(s) ] T,.(s)] = n - m, for all i = 1 , . . . ,  m. All ~i(s) 
are nontrivial, so G(t) is nontrivial. 

(ii) rk(C ± B ) <  n - m .  Two subcases are examined: 
(iia) (generic case) rk[W(s)lTi(s)] > rk[W(s)] for some i. This gives hi(t) = 0 and thus the i-th column 

of  G(t) is zero. 
(iib) Otherwise,  rk[W(s)l  T/(s)] = rk[W(s)] for all i = 1 . . . . .  m. This yields a i ( t )  * 0 for all i. 

3.2. Approach 2." soh'ing (15) first by designing G(t) 

The hold function G(t) solving (15) is already given in (27). With G(s)  given as (27), we examine (14) 
in some detail. First note that each row of (14) has the property 

C i ( A + B K ) ~ N ( T ) = C i A N ( T  ), k=O, 1 . . . . .  d i, (29) 

and 

Ci(A + BK) d*+ I N ( T )  = (Ci Aai+' + CiAaiBK)N(T). (30) 
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Table 1 
Applicability of Approach 1 and/or 2 

67 

Cases B * = CB is B * ~ CB is B * is 
nonsingular nonsingular singular 

m ~< n ~ 2m rk(C ±B)= n -  m 1 and 2 1 - 
rk(C ±B) < n - m 2 

n>2m 2 - 

From (29)-(30),  we see that  in general  (14) cannot  be diagonal ized by designing F(t )  if G(t)  is given by 
(27). However ,  when  d i = 0 for all i = 1 . . . . .  m, (14) can be diagonalized (cf. [7]). 

Proposi t ion 3.5. Suppose CB is nonsingular. Then the design 

F ( t ) = K  e x p ( ( A + B K ) t ) ,  K = ( C B ) - I ( - C A + J C )  

where J is any diagonal matrix with negative diagonal elements, can achieve the diagonalizing objective (14). 

Proof.  We only need  to verify (14) is achieved. Note  that  by the given design C(A  + BK)  = JC and thus 

C e x p ( A  + B K ) t  = exp(J t )C.  

So the left-hand-side of  (14) is equivalent  to 

exp( J t ) C N ( T )  = e x p ( J t )  A ( t ) .  

It is indeed diagonal.  [] 

Remark .  It can be shown that  when  both approaches  are applicable, they yield the same designs of  F(t )  
and G( t ). 

The  discussions so far are summarized  in Table  1. 

4. Examples 

(1) In this example, we will illustrate the effect of  A upon  the solution of  G(t)  when using approach  1 
and rk(C ±B)  < n - m. Let  

[,3] 
B =  0 0 , c = [ I 3  0].  

0 0 

Then  

B * = C B = I 3 ,  r k ( C ± B ) = l < n - m = 2 .  

(a) A = - I s ;  then (25) is given by 

I'ol ([ ' ]  Ill ° ] ) ( ~ ( s ) = ( s + l )  - 1  0 0 ~ { ( s ) +  0 0 F Q ( s )  
- 1  0 0 0 0 

so G is solvable and given by t~(s) = (s + 1)A(s) (cf. (27)). 
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(b) A -- diag( - 1, - 2, - 3, - 4, - 5); then (25) is given by dia  s+ls+ls+2,] I: 0] 
- ( s + l )  o o X(s)+ +3 o o rO.(s) 
- ( s + l )  0 0 + 4  0 0 

so Al(t) = 0, A2(t) and A3(/)  n o n z e r o  functions and G is trivial. 
(2) Let A = d iag(-  1, - 1, - 2, - 3), 

B = l i l l  1 o o11 1 , C =  0 0 

Then rk(C J-B) = n - m = 2, and 

B* [CIAB] = 
=[ C2B ] [-41 O 4 ] 

is nonsingular. Approach 1 can be applied and expected to give nontrivial solutions; (25) is given by 

o (s+l) ] 
0.5(s + 1) - 0 . 5 ( s  + 1) /l(s~ 
- ( s + l )  ( s + l )  

- s + l  - 2  

0 
-0 .25 ( s  + 1) 

+ 
-0 .5  

1 

o ] 
- 0 . 5 ( s  + 1) r ,~,s ,  

- ( s + 3 )  

2 

so (~(s) is nontrivial and given by (27), that is 

I 0 1 ] 3~(s) G(s):(s+l)  0.25(-s+3) -1 

where the constraints (cf. (22)) a r e / ~ 1 ( 0 )  = AI(T)  = A 2 ( 0 )  = 0. 

5. Conclus ions  

We have investigated the possibility and limitation of input-output  decoupling without stability a 
continuous-time decouplable plant using GSHF control. Two sequential design procedures for designing 
hold functions F(t) and G(t) have been presented and situations under which the two approaches are 
applicable and yield nontrivial solutions have been revealed. From this study, it seems that GSHF based 
digital control of a continuous-time system is very limited if the hold function F(t) is given by 
constant-gain form (10), (11), (17). The proposed GSHF decoupling control, in the solvable case, can 
make the closed loop input-output behavior decoupled for all time instants, not just at the sampling 
instants, in sharp distinction with earlier decoupling results [1,6]. Since stability analysis was not done in 
this paper, further study taking into account the stability issue is needed. 
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