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Abstract." This paper deals with chained eigenstructure 
assignment for controllable singular systems of the form 
Eic(t) = Ax(t )  + Bu(t) with constant-ratio proportional 
and derivative (CRPD) control of the form u( t )=  #Kx( t )  
- KYc(t) + w(t). The closed-loop system exhibits the following 

features: regularity, impulse-free response, and arbitrary eigen- 
value (except open-loop poles) assignment. This parametric 
characterization conveniently chooses the nonunique gain 
matrix K to modify the dynamic response of the system. 
An illustrative example is included to demonstrate our 
approach. 

Keywords: Singular systems; standard forms; controllable; 
eigenstructure assignment; regularity; constant-ratio propor- 
tional and derivative feedback. 

1. Introduction 

One of the most popular methods to modify the 
dynamic response of a singular system is pole place- 
ment. To achieve this purpose, I-6, 8] have used the 
geometric approach to investigate the state feed- 
back control problems of singular systems. Kucera 
and Zagalak [5] have proposed the fundamental 
theorem of state feedback design for singular sys- 
tems. The methods in [2, 8] need the restricted 
equivalent transformation first and then finding the 
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state feedback gain for pole placement. Hence, the 
eigenspaces discussed are in the transformed 
coordinate instead of the original coordinate. For  
controllable singular systems, a method has been 
proposed in [4] for obtaining parametric gain 
matrices in the eigenstructure assignment problem. 
However, this algorithm can only assign the 
primary eigenvectors. Furthermore, the dead-beat 
eigenstructure control problem still needs some 
further investigation, since the zero eigenvalues 
assignment is not allowed in [4]. 

The problem of eigenvalue assignment via pro- 
portional and derivative feedback has been well 
studied (see e.g. [7, 11]). Combined proportional 
and derivative (PD) feedback can modify the sys- 
tem structure by replacing the pole locations to 
decrease the susceptibility to noise, and hence im- 
prove the performance. However, dealing with PD 
feedback, determination of two gain matrices, in 
general, needs a complicated computation proced- 
ure. In [9, 10, 14] a theoretical classification of gen- 
eralized systems using constant-ratio proportional 
and derivative (CRPD) feedback was proposed. 
Compared to PD feedback, the CRPD design is 
easier, since only one control parameter needs to be 
determined. 

The published papers ([1, 2,4, 8]) have been 
focused on eigenstructure assignment with propor- 
tional state feedback. The use of CRPD and PD 
control law in singular systems has been intensively 
and widely studied for 10 years (see e.g. [10, 11]). 
This paper applies the CRPD control law to treat 
the eigenstructure assignment problem. The pro- 
posed method provides a superior feature, i.e., both 
the primary and chained eigenvectors can be 
assigned simultaneously. Also, the dead-beat con- 
trol for placing zero values as the desired closed- 
loop poles are possible. The development of this 
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method depends crucially on the properties of the 
standard form singular systems. The nonunique 
CRPD gain makes the closed-loop eigenvectors 
having adjustable degrees of freedom. Although we 
need to transform the given singular system from 
the general form to its standard one, the CRPD 
feedback gain matrix and the closed-loop eigenvec- 
tors of both forms remain invariant. We provide 
a convenient CRPD state feedback method such 
that the closed-loop system is regular, and the 
chained eigenvectors can be obtained. The com- 
putational procedures for determining gain 
matrices are also provided explicitly. 

1.1. Problem formulation 

This paper is devoted to the problem of eigen- 
structure assignment of controllable generalized 
state systems. We consider a controllable time- 
invariant singular system of the form 

S: E,~(t) = ,4x(t) +/}u( t ) ,  (1) 

where x(t)~R" is the state vector, u(t)6l~" is the 
input vector, E, A and/},  are real constant matrices 
of appropriate dimensions. We assume that /~ is 
singular whose rankfl  is less than n. Furthermore, 
we assume s E - A  is a regular pencil (i.e. 
[s~-- 2 ,4[ 50)  such that system (1) is solvable. 
{ E, A } is commonly called as the general form. 

Our purpose is to find the matrix K in the CRPD 
control law, u(t) = #Kx( t )  - KYc(t) + w(t), such 
that the closed-loop system 

z~: ~.o~(t) = ~ox(t) + ~w(t), 

where /~¢&/~+/~K and . 4 ~ A + p / ~ K ,  (2) 

satisfies the following requirements: there exist 
n finite eigenvalues (repeated roots are counted); 
their locations can arbitrarily be assigned to any 
places in complex conjugate pairs except for open- 
loop finite poles; and the regularity of the closed- 
loop system should be guaranteed. Since there exist 
no infinite poles in the closed-loop system, the 
responses caused by any initial conditions are 
impulse-free. 

which eigenstructure assignment problems with 
proportional control law are greatly simplified [1]. 

{ E, A I pair is a standard form if there exist some 
scalars ct and /3 such that ctE +/3A = I [91. If we 
premultiply (1) by (/~/~ - z]) l, the singular system 
becomes 

ESc(t) = Ax(t)  + Bu(t), (3) 

where 

E = ( ~  - ~ i ) -  ' ~ ,  A = (~,~ - ~ i ) -  1 J ,  

B = ( /~ /~  - -  ,4)- ' /~. ( 4 )  

The {E,A} pair in (3) is a standard pair since 
/~E-  A = I. In the above procedure, we do not 
change the system or the 'state' variable x. In order 
to avoid numerical error, it is better to choose 
/~ such that the number of conditions for (It/~ - ,4) 
is smaller. Some important properties of the stan- 
dard form will be investigated in the following. 

As already seen, a general form singular system 
can easily be transformed into a standard form. If 
the CRPD control law, u(t) = # K x ( t ) -  
KYc(t) + w(t), is applied to (3), the closed-loop 
system becomes 

Ejc( t )  = A~x(t) + Bw(t), 

whereEc ~= E + BK and A¢ ~- A + ItBK. (5) 

Lemma 2.1. The general form singular system (1) 
and the associated standard form singular system (3) 
have the following properties: 

(i) E and A commute, EA = AE. 
(ii) (1) is controllable if and only if (3) is 

controllable. ^ A 
(iii) {E,A} and { E, A } have the same eigen- 

structure. 
(iv) I f  (1) and (3) use the same CRPD feedback 

with the gain matrix K and the scalar ratio # then 
{Ec,A¢} pair is in the standard fflrms and these 
closed-loop pairs {E¢,A~} and {Ec,A~} have the 
same eigenstructure. 

Proof. For (i) and (ii) see [1, 13]. For (iii) and (iv) it 
is obvious from (2), (4) and (5). [] 

2. Properties of a standard pair 

An important aspect of regular pencils is that 
they can be transformed into standard forms in 

It is well known [14] that the singular system (3) 
is controllable if and only if 

n 1 

( E I B ) =  ~ I m U B = ~ " .  
i = 0  
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The eigenvalues of the singular system (1) can be 
assigned arbitrarily (subject to complex conjugate 
with number up to n) by using CRPD feedback if 
and only if the system is controllable. The closed- 
loop system has n finite eigenvalues that can be 
assigned to the stable region. As a result, the impul- 
sive and diverged responses are eliminated. To 
guarantee the regularity of the closed-loop system, 
there is no restriction on feedback gain matrix K, 
since det(sE + s B K  - A - p B K )  # 0 holds for any 
K at s = p. In the following, we provide some other 
useful properties of a standard pair. 

Lemma 2.2 (Chen and Chang [1]). Let  {E, A} be in 
the standard form and k be any positive integer. Then 

(i) E(sE  - A)  k = (sE -- a)kE.  

(ii) (sE -- A ) - k E ( s E  - A ) - 1  = E( sE  -- A)  - k -  1. 

d { ( s E -  A) k} = k E ( s E -  A)  k-1. (iii) dss 

d { ( s E -  A) -k} = - k E ( s E -  A)  - k - 1 .  (iv) dss 
d k 

(v) ~s~ {(sE - A) -1} 

= (-1)k-(k!)  • Ek(sE - A ) - k - 1  

3. Eigenstructure assignment 

It has been shown 1-14] that there are n finite 
eigenvalues that can be assigned arbitrarily with 
CRPD control law for the controllable singular 
system (1). From (5), the closed-loop characteristic 
polynomial is given as 

A¢(s) ~ [s(E + B K )  -- (A + pBK)I  = [sEc - he[. 

Lemma 3.1. Let A~(s) ~= Is(E + B K )  - (A + #BK){ 
be the closed-loop characteristic polynomial, 
Ao(s) ~ [ s E -  AI be the open-loop characteristic 
polynomial, and So(S) & (sE - A ) - 1 ;  then 

A~(s) = Ao(s)[/, -- (# - s)Kdpo(s)B[. 

Proof. The closed-loop characteristic polynomial can 
be expressed as A~(s) = I(sE - A)  - (#  - s )BKt  = 
I ( s E -  A ) [ I I , -  ( l ~ -  s ) B K ( s E -  A ) - l l  = 
I ( s E  - A ) [ [ I , -  ( # -  s ) K ( s E  -- A ) -  I BI  
= Ao(s)l/, - (p - s)Kcko(s)el .  [] 

Let the set S contain h distinct finite eigenvalues of 
( s E c -  Ac), Sf = {21 . . . . .  2h}, in which each eigen- 

value ~,~ has algebraic multiplicity m~ and geometric 
multiplicity qi. Note that h y,i=lml = n, and qi = nul- 
lity (2iE¢ - A¢). Furthermore, if P/r, J = 1 . . . . .  qi, 
denotes the length of those chained eigenvectors, 
then qi _ ' " _  ~ j =  1 Plj = ml, Pil ~ Pi2 > > Piqi" 

As described in [6], the closed-loop system 
(5) has the set of eigenvectors associated with n finite 
eigenvalues. Let us define the V matrix as follows: 

V~= Vf & [V~(21) V2(22) . . .  Vh(~-h)], (6) 

where Vf are the finite eigenvectors, Vi(2i) =~ 
[V,  Vii2 . . .  V~q,], i = 1 , 2  . . . . .  h. and V~j& 
[1;I0) . (1)  l~(pij- 1)-] • vij . . . .  ij j, j =  1,2 . . . .  qi. Their 
relationships are as follows [6]: 

(,~,iEc - - _ c y V i  j . 4  ~-to) = 0 fo r j  = 1,2,. . .  , q i ,  (7a) 

( ,~ig c A ]. (k) . (k-1) - - . . ¢ l v l j  = - - E v i j  

for k = 1,2 . . . . .  (P~i- 1), (7b) 

where v o- to) and vi J(k) (for k # 0) are primary and 
chained eigenvectors, respectively. 

The closed-loop minimum polynomials Am(s) and 
the characteristic polynomials At(s)  are Am(s)= 
k ( s  --  2 1 ) P l l ( S  - -  2 2 ) P 2 1 . . . ( S  - -  2h )  phi and 

Z o ( s )  = k ( s  - ~ . l ) " ( s  - ~ .2 )  "~ • • . ( s  - 2 h )  "~. ( 8 )  

In the proposed method, it is assumed that Sf does 
not include any open-loop eigenvalue (Ao(2i) # 0). 
To assign the finite eigenvalue spectrum {2i} to the 
closed-loop system, we have 

At(2,)  = 0, i = 1,2 . . . . .  h, (9) 

and 

d k 
-z--~(A¢(2,)) = 0, k = 1,2 . . . . .  ( m , -  1). (10) 
( I s "  

If the open-loop system is controllable, 
we can find a nonunique feedback gain matrix K, 
such that (9) and (10) are satisfied [14]. By 
Lemma3.1, (9) and (10) are equivalent to 
Jl, - (kt - s)Kgpo(s)B[ = 0 and dk/dskllr -- 

( # -  s)KC~o(s)BI = 0, since 2i is not the root of 
the open-loop system. Let us define 

S(s)  & ( p -  s)dpo(s)B = (p - s ) ( s E -  A ) - t  B. (11) 
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Lemma 3.2. Let { E, A } be the standard form and k be 
any positive integer. Then 

d 
(i) ~ S ( s )  = - ( s E  - A ) -2B .  

d k 
(ii) ~ s k S ( s ) = ( - - 1 ) k ' ( k ! ) ' E k  I ( s E - - A )  -k ~B 

f o r k > 2 .  

P r o o f .  

d 
(i) ~ S ( s ) =  - ( s E -  A ) ( s E -  a ) - Z B -  

(p - s ) E ( s E -  A ) - 2 B  = - ( s E -  A ) - e B .  
(ii) From Lemma 2.2(v) and Lemma 3.2(i), the 

higher-order derivative of S(s)(k  > 2) can be found 
as 

d k d k - 1  { d  } 
~ s k S ( S ) - d s *  1 ~ s [ ( P - s ) (  s E -  A) - 1B]  

= ( _ I ) * . ( k ! ) . E k - I ( s E _  A) k XB. [] 

The determinant in (9) vanishes if and only if the 
columns of the matrix ( I , -  KS(21)) are linearly 
dependent, i.e., for some nonnull r-dimensional 
vectors r!o) satisfying d l J  

, t0) = f ! o )  (12a) K S ( z i ) f  ij ~,~ • 

Considering (9) (11) and Lemma 3.2 and recalling 
the rule of differentiating a determinant [3], we add 
(m~-  q~) equations as follows: 

K S ( ~ i ) f l ° ) - +  - S ( ) . i ) f l )  ) , , , ,  , (12b) 

1 d C p , 3  - 1) 

K (Pij 2. 1)! ds cp" l ) S (2 i ) f l  °) + " "" 

l k 
+ d__st2.lf!p,  3 k 1)_.~ . . .  

k! ds k ' " : "  

+ S(2i)fl~. '3 ' ) ]  = fc l ; ' -  
1) 

j = 1 , 2  . . . . .  qi and O < k < ( p i j - 1 ) .  

Applying Lemma 3.2 in (12), we have 

(o) _fco)  K [ ( ~  - Ai)~o(, t i )Bf  ~j ] --~ij  , 

(12c) 

(13a) 

K[(  2 co) (1) f(1) 
- -  1 ) f f ) o ( / ~ i ) B f  ij  q - ( [ d - - ' ~ i ) ( ~ o ( ' ~ i ) B f  ij ] = a i j  , 

(13b) 

K I t  1) p ' - I  p,3-2 p,j " co) - E ~)o ( A i ) n f i j  - ~ - ' ' "  

+ ( _ _ l ) k E k  ~49ko+,(21)BfC~O k - l , +  . . .  

rt~2l), ~BfCp,3  - 2~ 
- -  ,r" o ' . ,  ~ i /  .,' i j  

" (p i j -1) ]  ____ f!p.,3 1) + (It -- 2i)Oo(Zl)Bfi j  ~,j , 

j =  1,2 . . . . .  qi and 0 < k < ( p o -  1). (13c) 

Before proceeding to the subsequent develop- 
ment, these r- tuplefl~ ) are in fact design parameter  
vectors. Hence, we define 

F g Ff A [F I  F2 

where 

Fi ~ [Fit Fi2 . . .  

• . .  F h ] ,  (14) 

Fiq,], i =  1,2 . . . . .  h, and 
F i  j z~ i - f  c0) f ! ! )  fop,3 ill, . = L a i j  - ' ' 3  " ' "  a i j  j = 1,2 . . . .  q i .  

Next, we try to build up the possible closed-loop 
Ok) according to some pre- finite eigenvectors vlj 

selected r-tuple vectors fl~ ) as follows: 

v(o) 2 ~ t2 ~B cc°~ (15a) ij  = (]1 - -  iy ' f 'o~ i!  J i j  ' 

.1(1) 2 " (0) (1) = -- 2 , )¢o(21)Bf i  j , (15b) 

( P i j -  1) ) P u -  I E m 3 -  z rfit~jt.~ ]Rf (o )  
Vij  = ( - 1 ~ o  .~-i1~., ,  i j  ~- " " " 

+ ( _ _ I ) k E R - 1  k+l  ( p u - k  1) ¢o (2 i )Bf i j  + " '"  

2 " t-,ij ~ - ( ] 2 -  iy'.ro', i l  J i j  , _ ¢ o ( z i ) B f l ]  -2) 2 1,4, t2 i n f  cp'3-i) 

j = l , 2  . . . . .  qi and 0 _ < k _ < ( p o - 1  ). (15c) 

Fur thermore,  we define V a Vf as in (6). 

Theorem 3.3. The closed-loop assignable chains of  
. ( k )  eigenvectors, Ui j  , can be written as 

K V =  F (16) 

under the conditions of  
(a) (space spanned by V) = g~". 

(k) ~ rr~r (b) f ij ~u~ for a real eigenvalue 2i, whereas 
fCk) = f ! k ) , a ~ ,  for a complex conjugate pair of  i2j  d l l J  - - -  

eigenvalues 2il, 2i2 = 2*. 

Proof. Condi t ion (a) is necessary due to the 
requirement that eigenvectors be independent.  
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Condition (b) is necessary because of the require- 
ment that K be a real matrix. We now prove that 
these - (k) ~U are indeed the eigenvectors of the closed- 
loop system. 

By (14) and (6), (16) is equivalent to 

Kv[~) =f!k) 
J I J  " 

We wish to show that • ¢o) ¢p,j-u V i j  , . . .  , Uij are the 
chained eigenvectors of the closed-loop system. By 
(15), / ~ E - A  = I, and the fact of E~bo(21)= 
~bo(2i)E, we have 

. (k) ( k -  1) 2 ( k -  1) 
= -- fbo(21)Bf l  j ~ j  - E ~ o ( 2 A %  

+ ( #  2 ( k - X ,  - 2 , ) E O o ( 2 , ) B f u  

( k -  1) 
+ (1~ - 2 , )~o (2 , )B f [~ '  = - E ~ o ( 2 1 ) v  u 

+ (1~ - 2 , ) C ~ o ( 2 , ) B f l ~ ' -  ~bo(2,)Bfl~ -1', (17) 

where u" {-ij 1) = 0 and f l f  1' = 0. By (7), we have 

A .  (o) ), ~ .  (o) cUij - -  i~c[/ij = 0 for k = 0, 

A . (k) . (k) ( k - 1 )  
cv i j  - -  ,~ iEcv i j  = EclPlj for k > 1, 

since the left-hand side is equal to 

- (k) (A  + # B K ) v l  k ' -  2 , ( E  + B K ) v  0 

= - ( , l , E  - + - 

. t k -  1) tk) Rftk-  1) = E " u  - (#  - 2 ~ ) B f u  + -~ o 

+ O, - 2,)Bfl ' 

(E  + BK)vI~  -1 '  l ~ ' t k - X )  (17) 
= = ~ c  v i j  " 

Hence, vl~) is an eigenvector of rank k. [] 

From (14) and (6), the CRPD feedback gain can 
easily be obtained 

K = F f  V f  I = F V  - 1  (18) 

Just as mentioned in Lemma 2.1, the closed-loop 
eigenstructure of the general and standard form 
systems will be the same if the control law 
u( t )  = l~Kx( t )  - KYc(t) + w( t )  is applied. In our 
derivation, zeroes are allowed as closed-loop eigen- 
values. Hence, the dead-beat control is possible in 
our design. Also, the chained eigenstructure assign- 
ment is considered. 

Remark. ( i )No te  that CRPD control law can 
assign n finite eigenvalues for the controllable 
singular system, the proportional control law can 

assign n -  rank(/~) finite eigenvalues. Further- 
more, to guarantee the regularity of the closed-loop 
system, there is no restriction on CRPD gain 
matrix K. 

(ii) The properties of closed-loop invariant sub- 
spaces with CRPD and PD control law have been 
examined by geometric idea in [10] and [11], 
respectively. However, the explicit numerical 
methods for eigenstructure assignment in singular 
systems with CRPD control law are still lacking in 
existing results. 

(iii) Some inefficiency can be found in our 
method. We need to choose another set of free 
parameters f!k) if V is singular. The computation J tJ 

complexity of our methods is similar to that of [3], 
in which the state feedback eigenstructure assign- 
ment in regular systems is investigated. To improve 
this computational inefficiency is a topic worth 
further investigation. 

4. Numerical example 

Consider the controllable continuous-time singular 
system of (1), where 

I 
1 0 
0 1 

i =  o o  
0 0 
0 0 
1 0 

0 0 
1 0 

/ i =  0 1 
0 0 
0 0 
1 0 

0 0 0 0 
0 0 0 0 
1 0 0 0 
0 0 1 0 ' 
0 0 0 0 
0 0 0 0 

1 0 0 0 1 0 
0 0 0 0 0 0 
0 1 0 0   =oo 
0 1 0 0 ' 0 0 
0 0 1 0 1 1 
0 0 0 1 0 0 

We will find the CRPD feedback gain matrix K 
satisfying the design requirements described in the 
problem formulation. 

Solution. We take/~ = 2 so that [#/~ - ,4[ ~ 0. The 
general f o r m  triple {/~, ,4,/~} is left-multiplied by 
(/~E - A)- i and transformed to the standard form 
triple { E, A, B }. 

We set the desired eigenvalues to be { 21 = - 1 ,  
22 = 0}; the associated algebraic and geometric 
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multiplicities are ml = 4, ql = 2; m 2 = 2, q2 = 1. 
The lengths of the Jordan chains associated with 
~1,~2 are Pll  = 3, P12 = 1 and P21 = 2. We choose 
the design parameters 

F f =  [f~o~ f~l~ f~2~ f¢1~ f(2 °~ f T / ]  

1 0 1 0 1 1 ]  

0 1 0 1 1 0 

The possible closed-loop finite eigenvectors are Vf 
(see (15)) 

I 0.0 1.50 - 1.25 1.50 0.00 0.00 ' ]  ] 0.0 - 1.50 -0.25 - 1.50 0.00 2.00 
= - 3 . 0  - 0 . 5 0  --0.25 - 1 . 5 0  - -2 .00 - 1 . 0 0  

3.0 - 1.00 0.00 3.00 0.00 --  4.00 

- 3.0 - 2.00 - 2.00 - 3.00 - 4.00 0.00 

0.0 - 3.00 4.00 --  3.00 0.00 0.00 

~iw = 

- 1 0 

0 1 
0 0 

0 0 

0 0 
0 0 

- - 1  1 

0 - I  
0 0 

0 0 

0 0 
0 0 

0 0 
0 0 
1 0 

0 1 

0 0 
0 0 

0 0 
1 0 

- 1  0 

0 - 1  

0 0 
0 0 

0 0 
0 0 
0 0 

0 0 

1 0 

0 1 

0 0 
0 0 
0 

0 

0 
0 

0 

0 

1 

0 _  

Note that, the closed-loop system has no infinite 
eigenvalues and infinite eigenvectors to avoid any 
impulsive response. It is obvious that the closed- 
loop chained eigenstructure is exactly assigned to 
the desired pattern. 

Since V = Vf is nonsingular, we know that our 
choice _c ¢tk) is admissible. Finally, we have U l  J i j  

K = F V  - l  = F f V f  1 

= [0.5648 0.0833 -0.3889 -0.1111 -0.0556 0.37961 
L0.0278 0.2500 0.5000 -0.0000 -0.5000 - 0 . 1 9 4 4 ]  

To check the result, we apply the control law 
u(t) = #Kx( t )  - K~c(t) + w(t) to the general form 
s),stem / ~ ( t ) =  ,4x~t)+ Bu(t). We have / ~ =  
E + BK, A~ = A + BK and 

F I.5648 0.0833 -0.3889 -0.1111 -0.0556 0.3796 1 
11.0000 1.0000 0.0000 0.0000 0.0000 00000 / 

[ i  °°°° ooooo 1.oooo ooooo ooooo ooooo1 
= o.oooo o.oooo o.oooo o.oooo 1.oooo o.oooo ' 

.5926 0.3333 O.1111 -0.1111 -0.5556 0.1852 
Ll.OOOO o.oooo o.oooo o.oooo o.oooo o.oooo_J 

fi 
.1296 0.1667 
.0000 0.0000 

/ic o.oooo 1.oooo 
= 0.0000 0.0000 

.1852 0.6667 
1_1.0000 0.0000 

0.2222 -0.2222 -0.1111 0.7593 1 
0.0000 0.0000 0.0000 0.0000[ 

/ 0.0000 1.0000 0.0000 0.0000 
0.0000 1.0000 0.0000 0 . 0000"  
0.2222 --0.2222 --0.1111 0.3704 
0.0000 0.0000 0.0000 1.0000/ 

Then we transform (s/~c - .~ic)^to.its Weierstrass 
form by [6], W - I ( s E c -  A~)V= (S/~w-,4w), 
where I~ = / ~  Vf, and V = Vf. The computed 

5. Conclusions 

In this paper we investigate eigenstructure 
assignment problems for CRPD control law in 
controllable singular systems. Using nice properties 
of standard form singular systems we have 
developed a computational method for CRPD 
feedback gains. We can obtain nonunique CRPD 
feedback gain K to assign n arbitrary finite eigen- 
values and associated eigenvectors in which the 
chained structure is allowed. The designed closed- 
loop system is stable, regular and impulse-free. 

The proposed method has the following advant- 
ages. (a) This paper presents a CRPD control law 
for eigenstructure assignment. (b) The computed 
gain matrix and assigned eigenvectors are in the 
original coordinate; no further transformations are 
needed. (c) The closed-loop finite eigenvectors can 
possess the chained structure. (d) Furthermore, zero 
values can be assigned as the closed-loop eigen- 
values also. Hence, this method can be applied to 
dead-beat control for discrete-time singular systems. 
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