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Robust Control Analysis and Design for Discrete-time 
Singular Systems*t 

CHUN-HSIUNG FANGAt LI LEE§ and FAN-REN CHANGll 

A new approach to robust control analysis and design for uncertain 
discrete-time singular systems is proposed. Under the allowable structured 
perturbations, the stability robustness, regularity preservation, and impulse 
elimination are simultaneously guaranteed by the proposed method. 
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Abstract--In this paper, we propose a simple approach to 
analyse stability robustness of discrete-time singular systems 
under structured perturbations. The developed robustness 
criteria are then applied to solve robust regional pole- 
assignment problems of singular systems. A robust control 
design algorithm, via state feedback, is also given. The robust 
stability problem of singular systems is more complicated 
than that of regular systems. Not only stability robustness but 
system regularity and impulse elimination should be 
considered simultaneously. Since the results of robust 
control and analysis for singular systems is not available in 
the literature as much as other fields, the paper may be 
viewed as a complementary result in this field. Although only 
discrete-time case is discussed, several results can be directly 
applied to continuous-time systems as well. 

1. NOTATION 

THE FOLLOWINO notation will be used throughout 
the paper 
p(M): spectral radius of M E C "×" 
IMIm: modulus matrix of M ~ C nx" 
IMl: determinant of matrix M E C "×" 
JZ]: magnitude of complex number z 
D(-h, f): a disk centered at point - h  +jO with 
radius f 
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mij: the (i, j)th element of matrix M 
M>-N: mij, nijER and mij>-n~j for i , j =  
1, 2 , . . . ,  n 
AAA: end of statement in quoted lemmas 
Q.E.D.: end of proof. 

2. INTRODUCTION 

In the past ten years, there has been a growing 
interest in the system-theoretic problems of 
singular systems due to the extensive applica- 
tions of singular systems to large-scale systems, 
circuits, economics, polynomial matrices and 
other areas (Luenberger, 1977; Verghese et al., 
1981; Lewis, 1986; Dai, 1989; Fang and Chang, 
1991, 1992). Sometimes the system is called 
generalized state-space systems, or implicit 
systems, or descriptor systems or semistate 
systems (Lewis, 1986). Several important and 
fundamental results in standard state-space 
systems have been successfully extended to 
singular systems (Cobb, 1984; Bender and Laub, 
1987; Shayman, 1987; Zhou et al., 1987; Kucera 
and Zagalak, 1988; Fang and Chang, 1990). 
Many excellent design methods for singular 
system control have also been well developed 
recently (Kucera and Zagalak, 1991; Paras- 
kevopoulos and Koumboulis, 1991). However, 
little effort has been devoted to studying the 
robust control problems of singular systems. In 
this paper, we will investigate such problems. 
Consider a discrete-time perturbed singular 

where E, A e R " x -  

perturbations. 
singular. We 

system 

Ex(k + 1) = Ax(k) + AAx(k), Ex(O) = Exo, 
(1) 

and AA stands for the 
Here the matrix E may be 
will assume rank E - r -< n. In 
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system (1), AA denotes an n × n time-invariant 
structured perturbation matrix. The perturba- 
tions in the various elements of the system 
matrix A are independent of one another (Sobel 
et al., 1989; Tesi and Vicino, 1990; Juang, 1991). 
In a practical situation, the perturbation matrix 
is not known exactly but the magnitude of the 
deviation which can be expected in the entries of 
A may be known. The perturbation considered 
in this paper is described as 

IAA[m -< qH, (2) 

where q is a real positive number and H is a 
constant nonnegative matrix. The constant 
matrix H represents the highly structured 
information for the additive perturbation matrix 
AA. 

It has been known that a singular system 
generally contains three kinds of modes: 
dynamical finite modes, dynamical infinite 
modes, and nondynamical infinite modes (Ver- 
ghese et al., 1981; Bender and Laub, 1987). The 
dynamical infinite modes can generate undesired 
impulsive behaviours. Hence, to eliminate or to 
avoid inducing dynamical infinite modes is a key 
work in singular system control (Wang et al., 
1987). If we assume deg IzE - AI = r and AA = 0, 
the system (1) now has r dynamical finite modes, 
no dynamical infinite modes, and n - r  
nondynamical infinite modes. However, if the 
perturbation AA ~ 0, it would possibly introduce 
dynamical infinite modes into system (1) since it 
can change the degree of I z E - A - A , 4 1 .  
Furthermore, the perturbation AA can also 
possibly destroy the system regularity (i.e. 
I z E -  A -  AAI is identically zero). For example, 
let 

E 
E = [ ~  ~]'  A=[045  ~i~]' L 4 = [ 0 . 2  ~]" 

Here d e g l z E - A r = l = r a n k E .  It is easy to 
check deg IzE - A - AAI = 0 < rank EVE ~ 0 
and IzE ~ A -  AAI becomes identically zero for 
E = 0. This example indicates a fact that the 
robust control problems of singular systems must 
consider not only stability robustness but system 
regularity and impulse elimination. It should be 
noted that the latter two cases do not arise in the 
standard state-space systems. Therefore the 
robust control design problem of singular 
systems is more difficult than that of standard 
state-space systems. 

This paper is organized as follows: Section 3 
reviews some related results and states the 
problems concerned in this paper. The solutions 
to the problems are given in Section 4. Section 5 

makes a brief conclusion. Some examples are 
also provided at the end of each section for 
illustrating our ideas. 

3. RELATED LITERATURES AND PROBLEM 
STATEMENT 

3.1. Review of  related results 
In the literature, there are only a few papers 

dealing with the problems of robust control of 
singular systems. Mertzios (1984) developed a 
recursive formula to compute the approximated 
transfer function of perturbed singular systems. 
The sensitivity of poles and coefficients of 
transfer function to perturbations was also 
investigated. As the perturbations were given, 
Nichols (1986) used the condition number to 
measure the distance between nominal 
generalized eigenvalue and perturbed generalized 
eigenvalue. Based on the concept of eigenvalue 
sensitivity, Nichols proposed a nice algorithm to 
construct a state feedback gain such that the 
closed-loop system is insensitive to perturba- 
tions. However, since only first-order perturba- 
tion to eigenvalues is considered (other higher 
order perturbations are neglected), the pertur- 
bations allowed in her results must be small 
enough. Furthermore, her method can not be 
directly applied to calculate the upper bound of 
the perturbations under which the perturbed 
system remains stable. For checking the stability 
of perturbed systems, the perturbed ranges of all 
generalized eigenvalues must be computed. 
Syrmos and Lewis (1991) introduced a so-called 
chordal metric to replace the condition number 
used by Nichols and dealt with the problems in 
the same way as Nichols did. The problem of 
robust stability for singular systems with 
unstructured perturbations has been investigated 
by Qiu and Davison (1992). He and Ji (1992) 
proposed some sufficient conditions for practical 
stability of large scale systems with impulsive 
solutions. It seems that they are the first ones to 
discuss such a problem. 

In this paper, from a different point of view, 
we propose a simple approach, which is an 
extension of Chou's (1990), to solve the robust 
control problem of singular systems. Since the 
matrix E in this paper is not restricted to the 
identity matrix, Chou's results may be viewed as 
a special case of this paper. By our approach, it 
is easy to obtain an upper bound of perturba- 
tions under which the perturbed system is 
guaranteed regular, impulse-free and asymptoti- 
cally stable. The restriction that perturbations 
must be small is removed. To check the stability 
of perturbed systems, it is not necessary to 
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calculate the positions of all perturbed 
eigenvalues. 

4.  S O L U T I O N S  

4.1. Robust stability analysis 

3.2. Preliminaries and problem formulation 
To state our problem, we need to review some 

preliminary results. 

Lemma 1. The system Ex(k + 1) = Ax(k) is said 
to be asymptotically stable if and only if (Lewis, 
1986): 

all roots of IzE - AI = 0 lie inside 

the disk D(0, 1). (3) 

AAA 

The statement of equation (3) can be replaced 
by 

[ z E - A l # O f o r a l l z  with Iz l -  1. (4) 

Lemma 2. The following conditions are equiv- 
alent (Bender and Laub, 1987): 
(a) the system Ex(k + 1)=Ax(k)  has no dyna- 
mical infinite modes; 
(b) (zE - A) -1 is proper; (5a) 
(c) deg IzE - AI = rank E. (5b) 

AAA 

Note that it is not necessary to consider the 
dynamical infinite modes in standard state-space 
systems (E = I) since condition (5b) i s  always 
true for such system. 

Definition 1. For any two n × n real constant 
matrices E and A, the pair (E, A) is said to be 
regular, impulse-free (i.e. without dynamical 
infinite modes), and asymptotically stable if 
I z E -  AI ~ O, ( z E -  A) -1 is proper, and all roots 
of IzE - AI = 0 lie within the disk D(0, 1). 

Three robust control problems are investig- 
ated in this paper. (1) Assume the pair (E, A) is 
regular, impulse-free, and asymptotically stable. 
What is the upper bound of perturbation AA 
such that the perturbed system (1) is still regular, 
impulse-free and asymptotically stable? (2) If the 
roots of I sE-AI  = 0 lie inside a specified disk, 
what is the upper bound of AA such that the 
roots of I s E - A - A A I  = 0  still lie inside the 
disk? This is called the robust root-clustering 
problem (Yedavalli, 1993). (3) How to design a 
robust controller for the perturbed system 
Ex(k + 1) = (A + AA)x(k) + (B + AB)u(k) by 
using the results developed in problems (1) and 
(2) is the third problem. In the above, u(k) is the 
input signal and AA and AB represent the 
uncertainties on matrices A and B, respectively. 

Lemma 3. For any n × n  constant matrices 
X, Y, Z with [Xlm <--Z, it is easy to obtain the 
following inequalities (Lancaster and Tism- 
enetsky, 1985): 

(a) IXYIm <- IXlm IYJm <- Z Irlm (6) 

(b) IX + Vim <-IXlm + [Y[m <- Z + ]Yl,~ (7) 

(c) p(X) <- p(IXlm) <- p(Z) (8a) 

(d) p(Xg)<p([Xlm JgJm)<--p(Z IgJm) (8b) 

(e) p(X + Y) <- pOX + Vim) <- p(IXlm + IYIm) 

-< p(Z + IYim). (8c) 

AAA 

The pair (E,A) in perturbed system (1) is 
assumed regular, impulse-free, and asymptoti- 
cally stable. We define Gp(z) -  ( z E -  A) -1 and 
denote by G(k) the pulse response sequence 
matrix of the multivariable system G,(z). One 
can rewrite Gp(z) as 

Gp(z) -- (zE - A) -1 = ~ G(k)z-k. (9) 
k=0 

Then we have the following key lemma. 

Lemma 4. If the pair (E,A) is regular, 
asymptotically stable and impulse-free, and 
IAAlm <- qH, then 

p((zE - A) -1 AA) -< p(qTH), 

for all z with Izl--- 1 (10) 

where T is defined by 

T =- ~ IG(k)lm. (11) 
k=O 

Proof. From Lemma 3 and equation (9), it is 
easy to check 

p((zE - A) -t AA 

-< p(I(zE - A) -1AAIm) for all z with Izl -> 1 
~o 

for all z with Izl > - 1 

<- p IG(k)z-klm • qH for all z with IzL- > 1 
\ k = 0  

<--p q ~ [G(k)JmH for all 
k ~ O  / 

= p(qTH). 

z with Izl ~ 1 

(12) 

Q.E.D. 
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The matrix T in equation (11) would be finite if 
the pair (E,A) is asymptotically stable and 
impulse-free. This fact can be verified in Remark 
1 below. 

Remark 1. By the Weierstrass decomposition 
(Dai, 1989; Lewis, 1986), we propose a simple 
method to evaluate the matrix T without 
performing the expansion of ( z E - A )  -~ re- 
quired in equation (9). Since the pair (E, A) is 
asymptotically stable and impulse-free, it can be 
transformed to the well-known Weierstrass form, 
i.e. there exist two constant nonsingular matrices 
U and V such that 

U(zE - A)V = [zL - Ar 0 , 

0 I~_,] (13) 

where A, E R ~×~ and all eigenvalues of A, are 
within D(O, 1). Suppose U and V are decom- 
posed as 

- -[U~] and V=[V~ Vb], U= Us 

where Ua E R "×", Ub E R ("-')×~, V~ E R "×~ and 
Vb E R "x("-°. Then it is easy to show that 

G(k)z-* = Va(ZIr -- A,)-Iu~ + VbUb 
k~O 

oo 
Va E - - k - 1  - k . ,  

= fl'lr Z Ua + VbUb.(14a) 
k = l  

Therefore, we have 

Vb" Ub for k = 0 (14b) 
G ( k )  = [V~A~_Iu ° for k = 1, 2 . . . .  , oo. 

The matrix T can be readily obtained from 
equation (14b). Since all eigenvalues of Ar are 
within unit disk D(0, 1), we can find a similarity 
transformation matrix S such that A, = SDrS -1, 
where D, is a block diagonal Jordan matrix. For 
simplicity, assume here A~ e R s×5 and D, has the 
following form: 

A1 

0 

D , =  0 

0 

0 

0 0 0 

1~2 1 0 

0 A2 1 

0 0 A2 

0 0 0 

_ 

0 

0 , 

1 

A2 

(15) 

where A1 and A2 are eigenvalues of A, with 
IA~I < 1 and IA2I < 1. The following inequality is 
obvious: 

T = ~ IG(k)lm 
k = 0  

<-IVbUt, l,,, + IValm ~ IA~-llm tU.l,,, 
k = l  

<-IVbU~lm + IValm ISlm ~ IDklm 
k = 0  

× IS-11m Igalm. (16) 

Since I)til < 1 for i = 1, 2, it is not difficult to 
verify 

IDfl,,, -< ID~l~m 

0 0 0 0 ] 

J 
P2 [A2[ p2 p3 p~ 

0 P2 IA2I p2 p3 , 

0 0 P2 I'X21 p~ 
0 0 0 P2 [A2[ 

(17) 

k = l  k = l  

Pl IAI[ 
0 

= 0 

0 

0 

1 1 
where Pl - - -  and P 2 - - -  • Therefore, 

1 - ]Al l  1 -1'~21 
all entries of matrix T must be finite if the pair 
(E, A) is asymptotically stable and impulse-free. 

The following two lemmas will be used to 
prove Theorem 1. 

Lemma 5. (Lancaster and Tismenetsky, 
1985). For any n × n matrix Q, if p(Q) < 1 then 
11 - QI ~ 0. AAA 

Lemma 6. (Chen, 1984, Theorem 3-4). Let M(z) 
be a square rational matrix and be decomposed 
uniquely as M(z) = Mp(z) + Msp(z), where 
Mp(z) is a polynomial matrix and Msp(Z) is a 
strictly proper rational matrix. Then M-~(z) is 
proper if and only if M r ( z )  exists and is proper. 

AAA 

Theorem 1. Let the pair (E,A) be regular, 
asymptotically stable and impulse-free. Assume 
the perturbation &A is bounded by Izkal,,, <-qH 
for some q > 0. The perturbed system (1) is still 
regular, asymptotically stable and impulse-free if 
the following inequality: 

1 
q < (18) 

p ( T ~ )  

holds, where T is defined in equation (11). 

Proof Since IzE - A (  is not identically zero (i.e. 
regular), by the determinant formula, we have 

IzE - A - &AI 
= pzE - A I .  I I -  (zE -A)-IAAI.  (19) 

If inequality (18) holds, from Lemma 4, we have 
p ( ( z E - A ) - l z S u 4 ) < l  for all z with Iz l -1 .  
According to Lemma 5, the following inequality: 

II - (zE -A)- IAAI # 0  for all z with [z[-> 1 

(20) 

holds. In view of equation (19), we have 
I z E - A - & A I ~ O  for all z with tz[->l. Next we 
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show the impulse-free and regular properties. If 
inequality (18) is satisfied, by Lemma 3, one can 
get 

p(G(0)AA) <- p(q Ia(0)lm H) 

<-p(qTH)< 1. (21) 

The nonsingularity of I - G ( 0 ) ~ A  is ensured 
obviously from Lemma 5. The matrix ( z E -  
A) -1 can be expressed as ( z E - A )  -1= G(0)+ 
Gsp(z), where Gsp(z) is the strictly proper part. 
We rewrite 

(zE - A - AA ) -1 

= [I - G(O)AA - Gsp(z)AA]-~(zE - A) -1. (22) 

By Lemma 6, the nonsingularity of I -  G(0)AA 
implies that [ I -  G(0 )AA-  Gsp(z)AA] -~ is pro- 
per and so is ( z E - A -  AA) -~. Therefore, by 
Lemma 2, the perturbed system is impulse-free. 
If ( z E - A - A A )  -1 is proper, the system's 
regularity is also guaranteed (i.e. I z E -  A -  AA I 
is not identically zero). Q.E.D. 

Remark 2. From the above statements, we know 
that if the perturbed system is asymptotically 
stable and impulse-free, then the system 
regularity can be ensured as well. If E = / ,  from 

equations (11) and (14), then T = ~ IAg-llm. 
k=l 

The condition in equation (19) then coincides 
with Chou's results. Thus his results might be 
viewed as a special case of ours. In Chou's 
paper, he has showed many advantages of his 
approach. All his advantages are preserved in 
our approach to dealing with singular systems 
with highly structured uncertainties. 

Remark 3. Many features of continuous-time 
singular systems and discrete-time singular 
systems are essentially different. For instance, 
stability of discrete-time systems can exclude the 
possibility of introducing the dynamical infinite 
modes, but this is not always true for the 
continuous-time case. The detailed derivation for 
continuous-time systems can be found in Fang 
and Lee (1"993). 

Example 1. Consider the following system: 

0 0 x(k + 1) 
0 1 

0.5 0 _121 + AAx(k). 

The pair (E, A) is regular, asymptotically stable 

and impulse-flee. By Weierstrass decomposition, 
it is easy to obtain 

U =  0 0 , V =  0 1 , 
0 0 . 5  2 0  

then we have 

and 

ar:[7 00 ] 

G(o) = o , 

0.5 

[0"5k-1 0 0 J 
G ( k ) =  0 0 0.2 k-1 , 

2"05 k-1 0 0 
for k = l ,  2 . . . . .  00 

T = 0 1.25 . 

0.5 0 

The following shows the allowable upper bounds 
on q for various cases of structured 
perturbations: [10 ] 

(a) H =  0 0 1 
0 0 ' p(TH)=0"5; 

(i.e. the perturbed singular system in this 
example remains regular, asymptotically stable 
and impulse-free if the perturbation is bounded 
by IAmlm < 0.5H 

-0 
(b) H =  0 

0 

-0 
(c) H = 0 

0 
I-_ 

(d) H = / i  
L v 

(f) H =  I !  

0 0- 
0 0 
0 1 

0 0 
0 0 , 

1 0 

1 , - -  =0.5; 
0 p(TH) 

0 01 1 0 1 , =0.5; 
1 o p ( T n )  

1 1 1 1 

1 1 , =0.129. 
1 1 p(TH) 

1 
m - - O 0 ~  

' p ( T H )  

1 
- -  - 0 . 2 ;  
p(TH) 

Note the upper bounds of perturbations found in 
cases (a)-(c) are exact with respect to their 
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perturbation structures. An interesting case 
should be indicated as follows. In some cases, 
the perturbations do not affect the positions of 
eigenvalues (i.e. eigenvalue sensitivity to pertur- 
bations is zero) but can destroy the regularity. 
Assume the perturbation is AA = e •/-/1, where 

/-/1 = 0 . 
0 

It is easy to check 

JzE - A - AAI = (2 + E)(z - 0.5)(z - 0.2). 

The finite eigenvalues of nominal system, 
A1.2 = 0.5, 0.2, are not disturbed by the uncer- 
tainty E ~ ( -2 ,  2) for the perturbation structure 
//1. However, the regularity will vanish suddenly 
when E = - 2 .  Using Theorem 1, we have 
1/p(TH1) = 2. This is the exact upper bound of 
perturbations for the remaining system to be 
regular. 

Remark 4. Consider a continuous-time singular 
system EYe(t) = Ax(t). If one is only interested in 
whether the finite eigenvalues of the continuous- 
time system lie inside the unit disk D(0, 1). 
Theorem 1 can be directly applied to check this 
matter without any modification. Although this 
theorem is developed for discrete-time systems, 
the derivation still holds if the variable z is 
replaced by s. 

4.2. Robust root-clustering in a specified disk 
The dynamic response of a linear time- 

invariant system can be modified by means of 
placing the poles in predetermined locations. 
However, for systems with uncertain parameters, 
the exact placement of pole locations might be 
difficult to attain. Hence, the concept of pole 
placement within a specified region is a suitable 
and useful approach. Lately, many researchers 
have considered how to locate the closed-loop 
poles of a standard state-space system in a 
prescribed region to shape the dynamic res- 
ponse. However, the variation of pole locations 
due to parameter perturbations of the plant has 
not been discussed by them. Rachid (1989) and 
Fang (1993) have given some new methods to 
study the problem of root-clustering in a 
specified disk for standard state-space systems 
with linear time-invariant perturbations. The 
same problem for uncertain singular systems is 
still unsolved now. 

In this section, we will apply the results 
derived in the previous section to solve the 
problem of robust root-clustering in a specified 
disk for uncertain singular systems. A sufficient 
condition is proposed to guarantee pole position 
robustness within a specified disk for singular 

systems with structured uncertainties. Under the 
allowable highly structured perturbation, both 
stability robustness and certain performance 
robustness can thus be ensured. Consider two 
singular systems. 

and 

X~ :Ex(k + 1) = Ax(k)  + AAx(k) (1) 

Z2 :Ex(k + 1) = Ax(k)  + &,gtx(k), (23) 

where ,~ ~ R n×n and A,~ denotes the associated 
structured perturbation. 

Definition 2. For any two n × n real constant 
matrices X and Y, we say that all finite 
eigenvalues of the pair (X, Y) lie inside disk 
D ( - h , f )  if ( zX  - y ) - i  is proper and all roots of 
I z X -  YI = 0 are within the disk D ( - h ,  f). 

Lemma 7. Assume A and ,~ are related by 

fi;t = A + hE. (24) 

Then, all finite eigenvalues of the pair (E, A) lie 
inside disk D ( - h , f )  if and only if all finite 
eigenvalues of the pair (E, / ] )  lie inside the unit 
disk D (0, 1). 

Proof. This fact can be easily verified from the 
following identity: 

f (AE  - ,4 ) = zE - A, (25) 

where A = (1/f)(z + h). Q.E.D. 

Remark 5. In comparison with the nominal parts 
of systems Y~ and Z2, all finite eigenvalues of the 
pair (E, A) lie inside disk D ( - h ,  f )  if and only if 
the pair (E, ,~) is asymptotically stable and 
impulse-free. 

Assume all finite eigenvalues of the pair 
(E, ,~) are located within disk D(0, 1) and the 
perturbation A/~ can be bounded by 

l&,4 Im -< q/?/, (26) 

where q is a positive real number and /z/ a 
nonnegative matrix. By the results of Theorem 1, 
we can readily obtain that all finite eigenvalues 
of the perturbed system Z2 lie inside disk D(0, 1) 
(i.e. asymptotically stable and impulse-free) if 
the following inequality: 

1 
q < p..~.r..~lrt) (27) 
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is satisfied, where 
oo 

= ~ It~(k)lm, (28) 
k = 0  

oo 

(zE-,~1-~ = ~ ~(klz  -k (29 / 
k = 0  

and 
1 

.~ = ~ (A + hE). (30) 

The robust root-clustering theorem is stated as 
follows. 

Theorem 2. Assume all finite eigenvalues of the 
pair (E, A) lie inside the disk D(-h,  f )  and the 
perturbation AA is bounded by 

IAA[m <- qH for some q > 0. (31) 

Then all finite eigenvalues of the perturbed 
system ~1 still lie inside disk D ( - h , f )  if the 
following inequality: 

f 
q < p(~'H) (32) 

holds, where 1" is defined in equation (28). 

Proof. Let 
ZkA = fA,~. (33) 

Comparing equations (31) and (26), we have 
H =f/~. Then the inequalities in (32) and the 
inequalities in (27) are equivalent. If all finite 
eigenvalues of the pair (E,A) lie in disk 
D(-h , f ) ,  then from Lemma 7 all finite 
eigenvalues of the pair (E, A) are located within 
the unit circle D(0, 1). Define ~ and ~ as 

- A + AA = A + fA,~ (34) 
and 

-- ,~ + A,4. (35) 

From Theorem 1, if inequality (32) [or inequality 
(27)] is satisfied, we can say that all finite 
eigenvalues of the pair (E, ~)  are located inside 
disk D(0, 1). Since • and ~ are related by 

f~  = ~ + hE (36) 

it is easy to check by Lemma 7 that all finite 
eigenvalues of the pair (E ,~ )  lie in disk 
D(-h , f ) .  Thus all finite eigenvalues of the 
perturbed system Z1 are still located in disk 
D(-h,  f), under the perturbation AA. Q.E.D. 

Remark 6. The techniques of Theorem 2 with 
equations (27)-(30) can also be applied to solve 
the problems of root-clustering robustness inside 
a disk centred on the negative real axis for 
continuous-time systems without any 
modification. 

Example 2. 

[i °°- 0 0 

1 0 
x(k + 1) 

0 0.25 0 "1 
1 0 -0.5 Jx(k) 

-0.75 -1  0 

+ aAx(k). 

The pair (E, A) is impulse-free and its finite 
eigenvalues a r e  /~ 1  = -0.25 and A2 = -0.75 E 
D(-0.5,  0.5). If ,4 = (1/0.5)(A + 0.5E), it is easy 
to check that the finite eigenvalues of the pair 
(E ,A)  are hi = 1 and A2 = _1 e D(0, 1). Using 
equation (28), we obtain 

2.6667 0 0.6667 ] 

~ -  2 0 2.6667 1. 
/ 

5.3333 1 1.33331 

If the structured perturbation information is 

then 

[10 ] 
H--  0 1 

0 0 

0.5/p(~'H) = 0.1161. Hence if I~AIm < 
0.1161H, not only is the perturbed system 
regular and impulse-free but all finite 
eigenvalues of the perturbed system are still 
located within D(-0.5,  0.5). If the perturbation 
structure is changed to 

E 1 H =  1 

1 

then 0.5/0(TH) = 0.0319. 

11] 
1 1 , 

1 1 

4.3. Robust control design 
Based on the results derived in Section 4.1 and 

4.2, we now propose a simple m e t h o d ' t o  
synthesize a controller for robust pole assign- 
ment of perturbed singular systems in a 
specified region. Let us consider a perturbed 
singular system 

Ex(k + 1) = (A + AA)x(k) + (B + AB)u(k) 

(37) 

where B ~ R "xm. We only assume the triple 
(E, A, B) is strongly controllable (Verghese et 
al., 1981). In equation (37), AA and AB are 
linear time-invariant perturbations which can be 
bounded by 

IAAIm-<qlH1 and IABIm-<q2H2, (38) 

where qi, i = 1, 2 are both positive real numbers, 
and H;, i = 1, 2 are two nonnegative constant 
matrices. Here we assume the perturbation 
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bounds ql and q2 and the structured perturba- 
tion information /-/1 and //2 are known in 
advance. 

Let the static state feedback control be 

u(k) = Fx(k). (39) 

Then the nominal closed-loop system is 

Ex(k + I) = (A + BF)x(k) (40) 

and the perturbed closed-loop system 

Ex(k + 1) = (A + BF)x(k) + (AA + ABF)x(k), 

(41) 
Therefore, the design problem to be considered 
is to determine the feedback gain F in (39), such 
that all finite poles of the nominal closed-loop 
system (40) lie inside a specified disk, and at the 
same time all finite poles of the perturbed 
closed-loop system (41) are also located within 
the same disk. Suppose the specified region for 
robust root-clustering is the interior of disk 
D ( - h , f ) ,  then employing Theorem 2, we have 
the following result. 

Theorem 3. All finite closed-loop poles of the 
perturbed system (41) will be located within the 
disk D ( - h ,  f),  if AA and AB are bounded by 
(38), all finite eigenvalues of the pair (E, A + 
BF) lie inside a disk D ( - h ,  f) ,  and the following 
inequality: 

f (42) ql < p (~/.~) 

is satisfied, where 
o¢ 

= ~ It~(k)l., (43) 
k = 0  

and 

=/-/1 + q2/-/2 IFI,,,. (44) 
ql 

In equation (43), G(k) is obtained by 

(zE _~) -1  = ~ ~(k)z-k ,  (45) 
k ~ 0  

where 

ft = ~ (A + BF + hE). (46) 

Proof. From equation (38) and Lemma 2, we 
have 

IAA + ABEl., <--IAAI., + }ABI., IFl,,, 

<-- qlH1 + q2H2 IFI., 

= ql/t. (47) 

Therefore, according to Theorem 2, we have the 
stated results. Q.E.D. 

Now the following design algorithm, for a 
given set of perturbations, can be used to select 
the control gain F for which the system is 
pole-assignment robust. 

Step 1. Specify the finite closed-loop eigenvalues 
/~i ( i  = 1 ,  2 . . . .  , r) in the specified disk D ( - h ,  f). 

Step 2. Use any pole-assignment technique of 
singular systems to design F (Wang et al., 1987; 
Fahmy and O'Reilley, 1989; Fang and Chang, 
1990; Kucera and Zagalak, 1991; Paras- 
kevopoulos and Koumboulis, 1991), such that 
the nominal closed-loop system (40) has the 
specified A,-. 

Step 3. Based on highly structured information 
(38) and on the designed F, check if the robust 
pole-assignment condition given in (42) is 
satisfied. If so, the design of robust controller for 
robust pole-assignment is finished. If not, since 
the different eigenstructure can help in satisfying 
the condition in (42), we shrink the nominal 
closed-loop eigenvalues closer to the centre of 
the specified disk and then go back to Step 2. 

Remark 7. The inequality (42) indicates that the 
smaller the value p(TH), the more robust the 
controller becomes. It has been shown that 
(Lancaster and Tismenetsky, 1985) 

p(T/4)---II T/411-< IITII rl/411, (48) 

where I1"11 denotes any matrix norm. In some 
cases, one may want to choose the gain F to 
assign the nominal closed-loop poles to some 
predetermined positions in the specified disk. In 
MIMO systems, the gains F are not unique. 
Since the matrices T and /4 are functions of F, 
the gain F ma_y be selected so that the product of 
IITII and IIHIf is as small as possible for 
obtaining robust stability. In general, if a gain F 
is chosen to make IITII decrease (increase), it 
will increase (decrease) II/-tll. The next example 
will display this interesting observation. The 
exact relation between the choice of F and these 
two matrix norms is still not clear. 

Example 3. Consider a perturbed discrete-time 
singular system 

1 0 

0 0 

0 1 

i] 1-32-16 0] x(k + 1) = 0 0 -1  x(k) 
0.8 2.4 0 

+ u(k) + AAx(k) + ABu(k) 
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which has finite eigenvalues at A1,2=2.1612, 
-2.1612. Assume AA and &B are bounded by 

IAAI,,, <-- qiH~ = 0.2. 0 

1 

and 

IABim <--q2H2 = 0.01 • 

Select a feedback gain 

1 0 

F = -1.2 - 2  ' 

then the nominal closed-loop system has finite 
eigenvalues at hi =0.2 +j0.5292 and A2 = 0 . 2 -  
j0.5292 E D(0, 0.8). From equation (43), we have 

[ 2 . 3 1 9 1 0 2 . 6 3 8 3 ]  

1"~ 1.3191 0 2.6383 . 

9.6662 0.8 12.9324 
Since 

i0 6 il /-) = Ha + q2 H2 Iflm = 0 

ql 10.06 1.1 
and 

0.8 
ql = 0.2 < p(~/~) = 0.2311 

the feedback closed-loop system is impulse-free 
and all its finite eigenvalues would stay inside 
D(0,0.8) under the perturbations for such 
feedback gain. 

If the feedback gain is selected as 

and obtain 

[:;I o o] 
F =  8 -2.4 0 

the finite eigenvalues of the nominal closed-loop 
system a r e  /~1 = 0.1 and A2 = 0 which are closer 
to the centre of D(0, 0.8). Then we compute the 
corresponding T and/~ 

I 
1.1429 0 2.2857] 

T-~ 0 0 1 , 

3.5429 0.8 7.0857 

0 0 

0.04 1.12 

0.8 
q1=0 .2<  - -  =0.6520. p(rn) 

It tells us that the feedback closed-loop system 
can now tolerate perturbations larger than the 
former feedback system can. It is true for most 
systems. 

In MIMO systems, many different feedback 
gains could be selected for the same pole- 
assignment locations. The following shows that 
the selection of feedback gains will affect the 
permissible perturbations. For assigning both 
eigenvalues to the origin, let 

16 06 Ool 
FI= -0.8 -2.4 0.2 -1.4 

be applied, respectively. Then using_Theorem 3, 
we find their corresponding T and H 

~ 0 0 1 , T2 ~ 1.25 0 2.251, 
3.2 0.8 1.6 4.2 0.8 2.6 J 

i0 6 il I °: il 0 , 0 

L0-04 1.12 L0-01 1.07 

and upper bounds of associated ql 

0.8 0.8 
- - -  - =0.7122 and - - =0.3314. 
p( T~H1) p(T2H2) 

Hence the resultant permissible ranges of ql are 
quite different. Note that ll~ll~=5.6, IT2II~ = 
7.6, II/~111o~ = 1.16, and 11/~211~ = 1.08. 

Remark 8. It is noted that we may have to try 
many initial estimates of the nominal closed-loop 
eigenvalues before we find the desired feedback 
gain matrix for robust pole-assignment. 

5 .  C O N C L U S I O N S  

The robust control analysis and design for 
discrete:time singular systems are studied in this 
paper. A sufficient condition for simultaneously 
checking stability robustness, regularity robust- 
ness, and impulse-free robustness of singular 
systems, under highly structured perturbation, is 
provided. Only simple computations are needed 
in this approach. Based on the criteria 
developed, we also provide a qualitative 
algorithm to design a robust controller for 
assigning poles inside a specified region. In the 
literature, little effort has been devoted to 
dealing with the problem of robust control 
analysis and design for singular systems. This 
paper may be viewed as complementary in this 
field. We also believe that the same problem can 
be solved by using the Lyapunov equation, as 
studied for standard state-space systems. By the 
proposed criterion, the computed upper bounds 
of perturbations may be exact for certain 
structures, but in some cases it may be too 
conservative. Therefore, to improve the 
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criterion for obtaining a less conservative bound 
is also under investigation. 
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