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Abstract 

Being an elegant algorithm for state feedback pole placement, Ackermann's (1972) formula had been widely quoted in 
control texts. In this paper, the formula is extended to solve the root assignment problem for singular systems. Without 
loss of generality, it is both well known and convenient that any regular generalized system can be transformed into the 
standard form E2 = Ax(t) + bu(t), where #E - A = I and /~ is a real constant. In the derivation of the generalized 
Ackermann's formula, the closed-loop characteristic polynomial, det [sE - A + bk'], is simplified due to the relationship 
of E and A. If E is nonsingular, the feedback gain k' can be computed from the generalized Ackermann's formula directly. 
In this case, only the desired closed-loop characteristic polynomial is required. If E is singular, the feedback algorithm 
needs both closed-loop and open-loop characteristic polynomials. Two numerical examples are presented to demon- 
strate our algorithms. 
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1. Introduction 

In this paper, we: consider the single input singu- 
lar (or generalized, descriptor, semi-state) linear 
system 

E2(t) = Zlx(t) + bu(t) (1) 

where E and ~ e •" ×", b e ~" × 1, E is possibly a sin- 
gular matrix, and u(t) ~ ~ and x(t) ~ ~" are input 
and state vectors respectively. The problem of pole 
placement in singular systems is to find the state 
feedback control law u ( t ) = - k ' x ( t )  + r(t), where 
k ' e  [~1×, and r(t)¢ 1~ such that the closed-loop 
system has the pre.scribed finite and infinite poles. 

The problems of pole placement in generalized 
state-space systems have been treated in many pa- 

* Corresponding author. 

pers. In [6], the decomposed fast and slow subsys- 
tems were used to assign finite poles and eliminate 
impulsive motions. The same form was employed in 
[-3] to show that the controllability of infinite poles 
is equivalent to the existence of a state feedback 
map which shifts those poles to specified complex 
numbers. By applying a special coordinate trans- 
formation, pole placement and compensator design 
were considered in [15]. For  more details about 
this problem, please see [2] and the reference cited 
therein. 

In this paper, we solve the pole placement prob- 
lem by extending the famous Ackermann's formula 
[5, 8, 10, 12] from state-space systems ~( t )=  
Ax(t)  + bu(t) to standard singular systems. In 
Section 2, we quickly review the restricted system 
equivalent. Under a very simple restricted equi- 
valent transformation, (1) can be converted to 
standard forms E 2 ( t ) =  A x ( t ) +  bu(t). With the 
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preliminary results of Section 2, we can develop 
the main theorems in Section 3. The generalized 
Ackermann's formula for standard singular systems 
is established in Theorem 1. The pole placement 
feedback gain k' can be obtained from Theorem 1 if 
E is nonsingular. To compute k' for the case of 
singular E, Theorem 2 is proposed. Theorem 1 only 
needs closed-loop characteristic polynomials. 
Theorem 2, however, needs both open-loop and 
closed-loop characteristic polynomials. To demon- 
strate our results, two numerical examples are pre- 
sented in Section 4. Brief conclusions are given in 
Section 5. 

2. Preliminaries 

Definition 1 (Gantmacher [9]). Let E and .,~ be two 
square constant matrices. If d e t ( s E -  A)><0 then 
sE - A is a regular pencil 

If E and /1  form a regular pencil, then E~(t)  = 
A x ( t )  + -bu(t) is a regular generalized system. 

Definition 2 (Nikoukhan et al. [11]). Let sE - A be 
a regular pencil. If there exist scalars a and fl such 
that c~E + fiA = I, where I is the identity matrix, 
then sE - A is a standard pencil. 

If E and A form a standard pencil, then Eic(t) = 
A x ( t )  + bu(t) is a standard generalized system. 

Definition 3 (Rosenbrock [13]). For  the system (1), 
and the system (2) given by 

EMt)  = A x ( t )  + bu(t) (2) 

if there exist two nonsingular matrices M, N ~ ~" ~" 
such that 

E -- M E N ,  A = M A N ,  b = M b  

then (1) and (2) are restricted system equivalent. 

Any regular generalized system (1) can be 
converted to a standard generalized system by 
a restricted system equivalent transformation. By 
letting a scalar p satisfying d e t ( # E -  A):~ 0, we 
select M = ( / ~ E - A )  1 and N = l .  Theresul ts  of 
the transformation are 

E = (/~E - A)- IE,  (3a) 

A = (#E - A)- 1~, (3b) 

b = ( ~ E  - ~/) ~ .  (3c) 

From (3a) and (3b), it is easy to verify that 

IJE - A = I (4) 

For  matrices E and A in (4), sE - A is a standard 
pencil, since ~ = p  and fl = - 1 .  Hence, the re- 
stricted equivalent system (2) is a standard general- 
ized system. Henceforth, we shall assume the 
matrices E and A always satisfy (4). 

Two restricted equivalent systems possess the 
same finite and infinite modes [14]. The character- 
istic polynomials of (1) and (2) are different in 
a constant multiplier. 

det(sE - A) = det[(/ iE - / 1 )  1]det(sE - / ] )  

= c. det(sE - A) (5) 

where c = de t [ (pE - / 1 )  1], a nonzero constant. 
In the following, we summarize the controllabili- 

ties of generalized systems. 

Lemma I (Cobb [7]). The  general ized sys tem (1) is 

control lable i f  and only i f  

rank[sE - Z b] = n f o r  all f in i te  s (6) 

and 

r a n k l e  b] = n. (7) 

Lemma 2 (Cobb [6]). T h e  s tandard general ized 
sys tem (2) is control lable i f  and only i f  

rank[b Eb E2b ... E " - a b ]  = n .  (8) 

Note that the restricted equivalence preserves the 
controllabilities also. 

Definition 4. The finite eigenvalues of a regular 
pencil sE - A are the roots of the characteristic 
polynomials det(sE - A). 

Lemma 3. I f  Pl are nonzero eigenvalues o f  E, then 

si =- # - 1/pi are f in i te  e igenvalues o f  the s tandard 
pencil  sE --  A.  

Proof. Pl are eigenvalues of E, d e t ( p i I -  E ) =  O. 
Also, det(pd - E) = det [pi(#E -- A) -- E]  = 
(pl)"det[(/~i- 1 / p 3 E -  A] .  Since Pl are nonzero, 
we have d e t [ ( / 2 - 1 / p i ) E - A ]  =0 .  Hence si =- 
(#  - 1/pg) are finite eigenvalues of sE - A.  [] 

Lemma 4. I f  Pi are zero eigenvalues o f  E, then the 
standard pencil  (sE - A)  has infinite eigenvalues.  
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Proof. If E contains zero eigenvalues, then det E = 0. 
Also, (sE - A)  has infinite eigenvalues if and only if 
the pencil (2A - E) has zero eigenvalues. 

det(2A - E)la= o = d e t ( - E )  = 0. [] 

From Lemmas 3 and 4, the finite and infinite 
eigenvalues of the s::andard pencil sE --  A can be 
expressed in terms of eigenvalues of E, Pi. 

Lemma 5. For  the case o f  p E  - A = I and s # t~, 

det(sE - A) = det(pI  - E), (9) 

det(sE--(A - bk')]  := det [p(I  + b k ' ) -  E] ,  

where  p = 1 / ( # -  s) or s = # -  l ip .  

(lO) 

Proof. Substitute A = / ~ E -  I. The result follows. 
[]  

From [4], it is easy to show Lemma 6. 

Lemma 6. For  the s tandard pencil  s E -  A wi th  

# E -  A = I, i f  

Ao(p) = (p)"det (sE --  A ) l s - u -  1/p,p, o = det(pI  - E) 

=- ~, an-  ip i, i=o 
with ao = 1, then Ao(E) = Y,~=o a , - i  Ei = O. 

There are two matrices (E and A) involved in the 
open-loop characteristic polynomial in the left- 
hand side of (9). However, there is only one matrix 
(E) involved for the equivalent information in the 
right-hand side of the same equation. Also, the 
closed-loop characteristic polynomial in the right- 
hand side of (10) is simpler than in the left-hand 
side. 

3. Main results 

With the help of previous lemmas, two theorems 
will be developed in this section. Theorem 1 can be 
viewed as the Ackermann's formula in generalized 
state-space systems Theorem 2 provides a com- 
putational algorithm for state feedback when E is 
singular. 

Theorem 1 (Generalized Ackermann's formula). 
L e t  E2( t )  = A x ( t )  + bu(t)  be a s tandard control lable 
9eneral ized system,  sat is fying I~E - A = I. A s s u m e  
the s tate  f e e d b a c k  control  law is u ( t ) = - k ' x ( t )  + 
r(t) and the desired closed-loop character is t ic  poly-  
nomial  is 

Ad(p) = (p ) "de t [ sE  -- (A --  bk')] Is=u- 1/p 

= ~ dn-lP i, i=o 
where d, = d e t ( -  E). Then  

k 'E  = e ' , C - 1 A d ( E )  (11) 

where 

e ' , = [ 0  0 ... 0 1], (12a) 

C = [b Eb ... E " - l b ] ,  (12b) 

Aa(E) = ~ d , _ , E  i. (12c) 
i=O 

Proof. By Lemma 2 rank C = n. {E, b} thus can be 
transformed to its controllable canonical form 
{E~, b~} [-10]. 

E~ = T E T  - 1 

0 0 0 ... 0 ] 

] 0 0 1 ... 0 

= ".. , (13a) 

0 0 0 ... 1 

--an --an 1 - -an -2  . . . .  a l  

[i] bo = r b  = , ( 1 3 b )  

where 

I q,q'E1 T=[ I'.E2 / , (13c) 

LqE"-~J 
q' = the last row of the C -1 -- e' ,C -1 (13d) 

From (13a), det(pI - E~) = a,  + a , - l p  + an- zp 2 
+ "" + a l p " - 1  + p,,  where a,  = det(--Ec). By (9) 
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in L e m m a  5, the open- loop  characterist ic poly- 
nomials expressed in s(=/~ - I/p) and p ( =  1/(~ - s)) 
are related by 

p"det(sE -- A)  = p"det(sEc - Ac) = de t (p l  - E) 

= de t (pI  - Ec) = Ao(p) 

= a, + a , - l p  + a . - 2 p  2 

+ ... + a l p  "-1 + p "  (14) 

where Ac = T A T  -1. By (10) in L e m m a  5, the 
closed-loop characterist ic polynomials  expressed in 
s(=/~ - 1/p) and p ( =  1/(/~ - s)) are related by 

p"det(sE - A + bk') = p"det(sEc - A~ + b~k'~) 

= d e t [ p ( I  + b k ' ) -  E] 

= d e t [ p ( I  + b¢k'c) - E~] 

where k'c = k ' T  1. Assume 

k'c = [k.  k . -1  k . -2  ..- kl] .  (15) 

Then by direct multiplication,  

d e t [ p ( I  + b~k'¢) - E~] = a. + (a._ 1 + k.)p 

+ (a , -2  + k , - 1 ) p  2 

+ ...  + ( a  1 + k z ) p .  1 

+ (1 + kl)p". (16) 

The desired closed-loop characterist ic po lynomia l  
is 

Aa(p) = d, + d , -  lp + d , -  2p 2 

+ "'" + d ip  "-1 + dop" (17) 

where d, = d e t ( - E ) =  a, .  C o m p a r i n g  (16) and 
(17), we have 

k ' e = [ d n _ l - a n _  1 d n _ z - a n _  2 . . .  d l - a  1 

d o -  1]. (18) 

In order  to obta in  Ackermann ' s  formula,  let us 
examine the left side of ( 1 1 )  

k 'E = k'~TE 

=[d~ 1 - a .  l d. 2 - - a n - 2  "'" d l - a l  d o - I ]  

[q' q 

[.qE"J 

= q ' ( d , - 1 E + d , - 2 E 2 +  "" + d i E  "-1 + doE") 

- q ' ( a ,  1 E + a , _ z E 2 +  ... + a l E "  I + E " )  

= q ' ( d , I  + d ,  1E + ... + d i E "  1 + d o E , )  

- q ' ( a , I + a , _ l E + a ,  2 E2 

+ ... + a l E  " - I + E " )  

( ' . ' d .  = a ,  = d e t ( - E ) )  

= q'Aa(E) -- q'Ao(E) 

= e'.C tAa(E ) 

since q' ' 1 = e . C  and Ao(E) = 0 by L e m m a  6. [ ]  

R e m a r k  1. If E2(t)  = Ax( t )  + bu(t) is control lable  
but  not necessarily s tandard,  then we just left multi-  
ply both  sides of the equat ion by (/~E - A)-1.  In 
doing so, we change neither state vector  x(t) nor  
input u(t). However ,  the obta ined  E 2 ( t ) =  
Ax( t )  + bu(t), where E, A and b are shown in (3), 
becomes a s tandard  control lable  singular system. 
Then the generalized Ackermann ' s  formula  can be 
applied. Fur thermore ,  if the gain k' in (11) is used in 
the original system for state feedback, then the 
closed-loop characterist ic po lynomia l  will be 
det(sE - / 1  + bk') = c.  det(sE - A + bk') with c = 
det(/~E - A), a nonzero  constant.  In other  words, 
the closed-loop finite poles are the same desired set. 

R e m a r k  2. In the desired closed-loop characterist ic 
po lynomia l  Aa(p) = ZT=o d , - i P  i, there are n coeffi- 
cients d,_ > d , - 2  . . . . .  do which can be arbi t rar i ly  
assigned. The constant  term d, is fixed and is equal 
to d e t ( - E ) .  

R e m a r k  3. If  the matr ix  E is nonsingular ,  then 
there are n arbi t rary  roots,  Pi, which can be se- 
lected by the appropriate  choice of dl, d2 . . . . .  d,. The 
associated closed-loop eigenvalues of(sE - A + bk') 
are si = /~  - 1/pi, for pz ~ 0. Ifp~ = 0, then they will 
be infinite poles for closed-loop polynomials .  Also, 
the feedback gain k' will be 

k' = e ' . C  1Aa(E)E 1 (19) 

where E is nonsingular.  

R e m a r k  4. Let da(p )=Y~7=ld ,_ ip  i be the de- 
sired closed-loop characterist ic polynomial .  F r o m  
Remark  2, d, = d e t ( - E ) .  If E is singular, then 
d, = 0. In this case, we see that  at least one root  of 
Ad(p) is 0. This means  that  at least one infinite pole 
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remains in the c losed-loop system. This result is 
coincident with wel l -known state feedback proper-  
ties of control lable  generalized systems. 

R e m a r k  5. If E is singular, then (19) cannot  be 
applied. Hence  we will develop Theorem 2 to com-  
pute feedback gain k'. 

Example 1 (E is nonsingular). Consider  a general-  
ized state-space system as (1), given as follows: 

E =  0 0 , / ~ =  1 

0 1 0 

and 

Theorem 2. Let  E2(t) = Ax( t )  + bu(t), with E 
sinyular, be a standard controllable 9eneralized 
system, satisfyin9 # E -  A = I. Assume the desired 
closed-loop characteristic polynomial is An(p)= 

(p)"det [sE - (A - bk')] Is =u- lip = Y~= 1 d,_ ip i. Then 

k' = e ' , c - a [ ( d , _ a  -- a , - 1 ) I  + (d , -2  - a , - z ) E  

+ "" + (da - a l )E  "-2 + (do - -  1)E n-l] (20) 

where 

e ; , = [ 0  0 ... 0 1], (21a) 

C = [b Eb ... E"- ab], (21b) 

n - 1  

de t (pI  - E) = ~ a ,_ ip  ~ + p". (21c) 
i = l  

Proof 

k ' =  k'~T 

= [ d ,  1 - a , - 1  d ~ , - 2 - a , - 2 " " d l - a a  d o - l ]  

I q ] × '.E 

[_qE "-1 

= q'[(d, 1 - a , - 1 ) I  + (d , -2  - a , - 2 ) E  

+ "" + ( d a - a l ) E "  2 + ( d o _ l ) E , - 1 ]  

also q' = e ' ,C-1.  [-1 

R e m a r k  6. (21c) is lhe characterist ic po lynomia l  of  
E. It  is equivalent  to an open- loop  characterist ic 
polynomial .  

4. Illustrative examples 

Two illustrative examples  are presented step by 
step in this section. 

Let the desired eigenvalues of the closed-loop be 
san = -  1, Sza = -  1, s3e = - 2 .  Find the state feed- 
back  gain k'. 

Solution 
Step 1: Conver t  the regular  pencil to the stan- 

dard  pencil. Set # = 0 [_1_1 
E = ( # E - 4 ) - I E =  0 0 -- , 

0 --1 

A = ( / t / ~ - A )  a /~=  0 - 1  , 

0 0 - 

I i] b ~- ( ~ E  - -  z l ) -  1~ ~_ 

Step 2: The closed-loop poles, in terms of p, are 
conver ted by Pia = 1 / ( p -  sin). Closed- loop poles: 
S l a = S 2 a = - I  and s 3 a = - 2 ~ p l a = p z a =  1 

1 and p 3 a = ~ .  Hence  the desired closed-loop 
characterist ic polynomial ,  in terms of p, is An(p) = 

r (p  -- Pla)(P -- Pza)(P -- P3a) = r(P 3 -- 2.5p 2 + 
2p -- 0.5) = dop 3 + d ip  2 + d2p + d3 in which r is 
the scaling factor such that  d3 = d e t ( - E ) = - 1 .  
F r o m  r ( - 0 . 5 ) =  d3 = - 1 ,  we see that  r = 2 and 
An(p) = 2p 3 - 5p 2 + 4 p -  1. 

Step 3: Find the feedback gain k' by (19). 

k ' = e ' 3 C  1 A a ( E ) E - I = [ - 1 2  5 11] 

where 

i11 C l = [ b  Eb E 2 b ] - l =  0 1 . 

- 1  1 
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Example 2 (E is singular). Consider a generalized 
state-space system as (1), given as follows: 

E =  1 , / 1 =  2 

0 0 

and 

b =  

Let the desired eigenvalues of the closed-loop be 
s la=oc,  s 2 a = - I  and s 3 a = - 2 .  Find the state 
feedback gain k'. 

Solution 
Step 1: Convert the regular pencil to the stan- 

dard pencil. Set/~ = 0 

E = (~E-,~)  1£= I 
oo  O]o 
0 -0 .5  -0 .5  , 

- 1  0 

A = (~£-/ i ) -1/T = 0 -1  , 
0 0 - 

[i] b = ( ~ E - A )  lg= 

Step 2: The open-loop poles, in terms of p, are 
eigenvalues of E. The closed-loop poles, in terms of 
p, are converted by Pie = 1/(# - sla) 

Open-loop poles: eigenvalues of E are 
1 P l = P 2 = 0 a n d p 3 - - 2 .  

Closed-loop poles: Sld ~ 0(2, S2d = --1 and 
s3a = - 2  ~ Pie = O, P2a ~- 1 

l and P3a - 2. 

Hence we have that the characteristic polynomials, 
in terms of p, are 
Open-loop characterist ic polynomial: 

Ao(p) = (p - Pl)(P -- P2)(P -- P3) 

= p3 + a lp2  + a2p + a3 = p3 + 0.5p2. 

Closed-loop characterist ic  polynomial: 

Aa(P) = (P - Pla)(P - Pza)(P - P3a) 

= dop 3 + dip  2 + dzp + d3 = p3 _ 1.5p2 + 0.5p. 

Step 3: Find the feedback gain k' by Theorem 2 

k' -- e '3C- i [ (d2  - a2)I + (dl - a l ) E  + ( d o -  1)E 2] 

-- [0 - 3  -23  

where 

[ - 1  0 0 1 
C - l = [ b  Eb EZb] 1=  0 0 1 . 

0 - 2  0 

Therefore, the desired state feedback gain k' is 
[0 - 3  - 2 ] .  

5. Conclusion 

The generalized Ackermann's formula for the 
single input singular systems is proposed. In order 
to apply our formula, the controllable regular gen- 
eralized system should be restricted equivalent 
transformed to its standard form by a matrix multi- 
plication. Just like in the generalized Ackermann's 
formula, only the closed-loop characteristic poly- 
nomial is concerned. If E is nonsingular then the 
gain matrix, k', can be computed from (11) of 
Theorem 1. If E is singular then Theorem 2 will be 
used to compute k'. In Theorem 2, both closed-loop 
and open-loop characteristic polynomials are 
needed. Although k' is computed based on the 
standard generalized system, if we use the same 
feedback law, u(t) = - k ' x ( t )  + r(t), in the original 
regular system, the closed-loop poles are still the 
desired ones. 
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