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Abstract: An empirical data-based design methodology is proposed for Internet-access manage-
ment to improve congestion, uneven usage and fairness, especially during peak hours, over a
free-of-charge or flat-rate network. The design methodology combines time-of-day pricing
(TDP) with quota-based priority control (QPC). Core to the design methodology are the inno-
vations in characterising user demand and quota-allocation behaviour with respect to time and
pricing. In-depth analyses of empirical data reveal distinctive behaviour patterns of myopic and
prudent quota allocations over time and both patterns indicate high preference for peak-hour
access. The user models adopt general utility functions and capture how pricing affects user beha-
viour as prudent or myopic. Preference parameters of users’ utility over time are then estimated by
collecting easily measurable user volumes. The TDP design problem is formulated and solved as a
Stackelberg game. Tested on the empirical data of a 5000-user network, the TDP design leads to
significant improvements in peak-hour usage and fairness, peak shaving and load balancing over
pure QPC. The methodology requires only two simple and short-period data collections from an
operational network and takes about 1 min of CPU time for TDP calculation. Results demonstrate
the effectiveness of our design methodology when applied to Internet-access environments with
frequent changes.
1 Introduction

There often exists uneven and unfair usage of Internet
access, especially during peak hours, over a network
environment where the service charge is free or flat rate.
For example, consider the dormitory network of National
Taiwan University (NTU), where the network management
adopts a quota-based priority control (QPC) scheme [1] to
control its Internet access traffic. When a user’s
Internet-access volume exceeds the daily regular service
quota, the user’s traffic is directed to a lower priority
service. Statistics show that during peak hours, the drop
rate of regular service is higher than 2.5 Mbps. The
average usage of heavy users (8% of the user population)
is 12.08 times more than that of all other users. Such obser-
vations imply that even under QPC, congestion and unfair
usage are still significant. There is a need for a finer manage-
ment scheme to regulate users’ Internet access over time.
Many researchers have studied time-of-day load manage-

ment for public utilities. Time-of-day pricing (TDP) [2, 3]
and peak-load pricing [4] offer an indirect load management
mechanism that meets the dual objectives of (i) reducing
peak load, and (ii) shifting a portion of the peak load to
the base load. Although the idea is simple, the actual
price has to be carefully designed to induce user behaviour
and to avoid side effects such as peak shifting [5].
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Dynamic pricing [6, 7] was proposed for dynamic traffic
management over communication networks. MacKie-
Mason and Varian [8] introduced an auction-based pricing
scheme, called smart market, where the price varies
minute-by-minute to reflect the current state of network
congestion. This scheme works without knowledge of the
explicit user behaviour model but is difficult to implement
over the existing network environments. Jin et al. [9] pro-
posed simple gradient algorithms to dynamically adjust
prices based on congestion. But this approach requires a
small amount of steady communications about demand
and supply along each route. Paschalidis and Tsitsiklis
[10] studied a model for optimal congestion-dependent
(dynamic) pricing of network services, and also provided a
comparison with static pricing. One of the important
conclusions is that TDP was almost as good as congestion-
dependent pricing if the static price profile was suitably
chosen.
In [11], Shih et al. compared static TDP, call-duration

pricing and simple congestion pricing over a
computer-telephony-service with about 40 students in the
dormitories. Users were not charged by real money but
limited by a token budget. Experimental results revealed
that TDP and call-duration pricing enticed users to talk at a
different time or talk shorter. But the users had no change
in their behaviour under congestion pricing because they
did not perceive when the price would change. Shih et al.
showed that the TDP is not only simpler to design and
implement than dynamic pricing over an existing environ-
ment but also more predictable and acceptable to users.
However, the setting of price difference between peak and
off-peak hours was not clearly mentioned. How to adapt
the TDP profile to a frequently changing environment was
not put forth either.
587
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Be it dynamic or static pricing, characterisation of user
behaviour is critical to the design. To understand the
relationship between user demands and prices, Edell and
Varaiya conducted a market and technology trial over
ISDN with 70þ participants under Internet Demand
Experiment (INDEX) project [12]. Experimental results
showed that user demands were very sensitive to price
and quality. The user demand model was also constructed
as a logarithmic function of prices for various service
classes by regression of experimental data. There was no
modelling of user budget. In [1], Lin et al. studied user
demands and responses to the QPC scheme over NTU dor-
mitory networks with 5000þ users. The network adminis-
tration intended to induce users to shift part of their
peak-hour demands to off-peak hours through the quota
limitation. However, Lin et al. did not explicitly model
the behaviours of how users allocate their quota.
This paper proposes an empirical data-based design

methodology for TDP to be combined with QPC, called
QPC/TDP, for managing the Internet access over time.
This pricing approach may induce user behaviour while
allowing user’s flexibility in allocating quota based on indi-
vidual demands over time. The novel design methodology
includes four steps: (i) pilot experiment and analyses, (ii)
empirical user demand model construction, (iii) TDP
design using a game theoretic problem formulation and
(iv) network performance and user usage prediction by
simulation.
Core to the design methodology are empirical data-based

user demand modelling and a game theoretic pricing
problem formulation. Analyses of the empirical data of
QPC indicate two prominent behavioural patterns of user
quota allocation: myopic and prudent behaviours. Myopic
users use the quota as demanded at the time, regardless of
quota limitation, while prudent users allocate the available
quota to maximise their daily benefits. Both users signifi-
cantly contribute to the traffic of peak hours. Whether a
user is prudent or myopic is not fixed but depends on the
price, the user’s demand and the given quota. Analyses
show that without differentiating myopic and prudent user
behaviours, a pricing policy may lead to either serious con-
gestion in peak-hours or bandwidth under-utilisation in
off-peak hours. In modelling user’s utility of Internet
access, users have different preferences over time. These
preference parameters are estimated by novel exploitation
of individual user volumes collected from a network with
QPC. As the utility function assumes only diminishing
returns to scale and continuous differentiability, the empiri-
cal data-based user demand models can be quite general.
The pricing problem is formulated as a Stackelberg

(leader–follower) game [13], where the network manager
is the leader and the users are the followers. The leader
maximises the bandwidth utilisation while keeping the
average total demand below the available capacity. A fol-
lower maximises one’s own benefit, either myopic or
daily. Solution analyses of the game formulation show
that in the case of purely prudent users, the optimal price
profile follows the preference trends, while in the case of
purely myopic users, this property may not hold because
of their short-sightedness.
To assess the effectiveness of QPC/TDP, the design steps

above are tested on the empirical data of a 5000-user
network. Results show that the peak-hour usage of heavy
users and fairness are improved as compared to QPC
only. Peak shaving and load balancing are thus achieved.
When a new policy is needed, the network manager has to
conduct two simple short-period collections. The policy
design and evaluation are efficient in computation. These
588
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demonstrate the effectiveness of our design methodology
for application to a frequently changing network.
The remainder of this paper is organised as follows.

Section 2 describes the deficiencies of QPC and the chal-
lenges of pricing. In Section 3, the design methodology of
QPC/TDP is proposed. Properties of pricing policies are
studied in Section 4. Section 5 exploits the empirical data
for effectiveness assessment of QPC/TDP. Finally, we con-
clude this paper in Section 6.

2 Needs for control over time

2.1 Internet access with QPC

To effectively improve unfairness and uneven usage, the
NTU network management adopted a control scheme [1]
that combines the ideas of quota limitation and priority
differentiation. There are two service classes offered:
regular and custody. The regular service has a higher pri-
ority than the custody service for data transmission. There
is a volume quota for each user’s regular service to meet
majority users’ essential demands. The custody service
has no quota limit, which allows heavy users to access the
Internet at a lower quality. The default class is regular.
Lin et al. [1] implemented QPC over the NTU dormitory

networks shown in Fig. 1, where there were 5535 users.
Only 54 Mbps was allocated to the outbound traffic from
the dormitory networks. Interested readers may refer to
[1] for more details.

2.2 Needs and challenges for control over time

The deficiencies of QPC lie in its ineffectiveness in
peak-hour traffic management. Statistics show that the
Internet-access bandwidth is highly utilised and the drop
rate is higher than 2.5 Mbps during peak hours of 9 a.m.
to 3 a.m. when the daily quota is 1 GB. Analysis of the
peak-hour usage shows that the ratio of heavy users’
usage to normal and light users’ usage is 1308%. Heavy
users still occupy most bandwidth for Internet access.
Moreover, empirical data of QPC reveal the behavioural

patterns of myopic and prudent users in quota allocation
over time. Fig. 2 shows that a myopic user submitted the
volume as desired without considering quota limitation.
Such myopicity can be observed from the fact that the
user used up the quota by 4 p.m. after quota replenishment
at 6 a.m. Most of the quota was used in peak hours. Fig. 3
demonstrates a prudent behaviour. The user allocated the
available quota to different time slots based on his/her
own preference, which mostly concentrated in peak hours.
Both myopic and prudent users contributed significantly
to the traffic of peak hours. There is an obvious need for a

Fig. 1 Network architecture of QPC
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finer time-of-day management scheme to induce users to
shift part of their peak-hour demands to off-peak hours.
To improve uneven usage, and peak-hour congestion and

fairness, this paper utilises empirical data to model user
characteristics and a pricing policy in conjunction with
QPC to regulate Internet access over time. This scheme
intends to give a user the flexibility in allocating one’s
quota to demand. From the viewpoint of network managers,
they need a methodology to follow up for easy management
and require the minimal additions to QPC.
Specific challenges are as follows:

(C1) How to exploit empirical data to model the quota allo-
cation response of myopic and prudent users to pricing over
time?
(C2) How to design a pricing policy to be used with QPC to
maximise bandwidth utilisation while peak shaving and
load balancing effects are achieved?
(C3) How to design a simple and predictable pricing scheme
for easy acceptance by users?
(C4) How to exploit the hardware and software of the
legacy production network for economic and easy
implementation? and
(C5) How to construct a design methodology for application
to a frequently changing network environment?

Fig. 3 Internet access by a prudent user under QPC

Fig. 2 Internet access by a myopic user under QPC
IET Commun., Vol. 1, No. 4, August 2007
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All of the above challenges are addressed in this paper.
The beginning of Section 3 addresses (C3) and (C4).
Subsequently, the design methodology is proposed for
(C5). Section 3.1 constructs quota behaviour models of
both prudent and myopic users (C1), and pricing design
(C2) is presented in Section 3.2.

3 TDP under QPC

In view of the challenges ((C3) and (C4)) and research con-
clusions of [10, 11], we adopt a static TDP scheme for
Internet access control. Such a simple pricing scheme will
allow users to know the price profile in advance so that
they can adjust their usage behaviour and will require
only an easy addition of a price calculation module to the
QPC network management servers. To efficiently design a
TDP profile based on empirical network data, a design
methodology of QPC/TDP is proposed in Fig. 4. First of
all, the network manager has to assess the current network
performance (peak-hour drop rate) through monitoring. If
the traffic pattern over time changes and the original
control policy is no longer effective, the four innovative
steps are initiated. (i) The pilot experiment and analysis
step includes a baseline experiment and a QPC experiment.
First, the baseline experiment has no quota limitation for
users and is conducted to characterise the problem of
Internet access and user demands over time. The QPC
experiment, where all users are allocated one same daily
quota, is then conducted to provide data for constructing
user demand models. In both experiments, the network
manager measures and collects the submitted volumes of
individual users at each time slot. (ii) The empirical user
demand model construction step models the quota allo-
cation behaviours of myopic and prudent users based on
empirical data from the pilot experiments. The model cap-
tures the feature that given a quota, whether a user’s
quota allocation behaviour is myopic or prudent varies
with the price profile (i.e., user classification is price
profile dependent). In this model, a user’s utility consists
of a time-invariant function and a time-varying preference
coefficient. This utility function assumes only diminishing
returns of scale and continuous differentiability and can
be quite general. Individual preferences over time are esti-
mated by innovatively exploiting individual user volumes
from the QPC experiment. (iii) The TDP design step formu-
lates the pricing problem as a leader–follower game. The
network manager maximises the bandwidth utilisation
while keeping the total demand below the link capacity.
Users maximise their own benefits under the given price
profile and quota. The optimal price profile is then solved
numerically. (iv) The network performance and user
usage prediction step performs numerical extrapolation
based on empirical data for effectiveness assessment. This
step exploits the experimental data of step 1 and user
demand model constructed by step 2 to simulate user beha-
viour. The network manager could then evaluate the
network performance and user usage under the pricing
policy designed by step 3. If the assessment is satisfactory,
the network manager puts the pricing policy into practice.
Otherwise, the network manager may tune the price differ-
ence between peak and off-peak hours by using heuristics
such as incremental increase of peak-hour price or consider-
ing more pricing periods than just peak and off-peak hours.

3.1 User demand model under pricing

Although the concept of TDP is simple, the effective pricing
design must be rooted in solid modelling of user demands
589
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Fig. 4 Flow-chart of design methodology of QPC/TDP
and quota allocation behaviours. To mathematically model
user behaviour under a given pricing policy, let us first
define some notations.

Notations

B bandwidth of Internet access;

T length of a time slot;

vi,k Internet-access volume submitted by user i for
regular service at time slot k, i ¼ 1, 2, . . . , I,
and k ¼ 1, 2, . . . , K;

vi,k,QPC Internet-access volume submitted by user i for
regular service at time slot k in the QPC exper-
iment, i ¼ 1, 2, . . . , I, and k ¼ 1, 2, . . . , K;

vi
B daily Internet-access demand of user i, obtained

from the baseline experiment, i ¼ 1, 2, . . . , I;

Q daily quota allotted to each user;

Qi,k remaining quota of user i at time slot k, i ¼ 1,
2, . . . , I, k ¼ 1, 2, . . . , K; note that Qi,1 ¼ Q;

pk price (number of quota per byte ) of regular
service at time slot k, k ¼ 1, 2, . . . , K;

vi,k preference value of user i at time slot k, i ¼ 1,
2, . . . , I, k ¼ 1, 2, . . . , K;

Sj set of type j users and j [ fm, pg, where m corre-
sponds to the myopic type, while p is the prudent
type.

3.1.1 User classification: Whether a user is myopic or
prudent depends on the daily price profile announced by
the network manager in advance and personal daily
demand. If the daily Internet-access demand of a user can
590
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be satisfied at the maximal price, there is no need to be
prudent in quota allocation. Such a user is therefore regarded
as a myopic user. If a user’s demand cannot be met at the
minimal price, the user should be prudent and will carefully
allocate the quota. For a user with the demand, which can be
met at the minimal price but cannot be satisfied at the
maximal price, the prudence of the user depends on a
linear probability with respect to personal daily demand.

User classification algorithm

Input: vi
B, which is measured from the baseline experiment,

and p ¼ [p1 p2 . pk]
Output: user type, Sj
For every user i, i ¼ 1, 2, . . . , I
If vi

B
� Q/maxkfpkg, then i [ Sm,

else
if Q/maxkfpkg , vi

B
� Q/minkfpkg, then i [ Sp with a

probability xi,

xi ;
v
B
i � Q=maxk {pk}

Q=mink {pk}� Q=maxk {pk}
(1)

else
i [ Sp

end
end

3.1.2 Myopic user model: At time slot k, a myopic user i
with Qi,k . 0 determines the Internet-access volume of
regular service, vi,k, to maximise user is own benefit at
that time slot only (short-term benefit), without considering
IET Commun., Vol. 1, No. 4, August 2007
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the value of Qi,k and the future demand. User i’s benefit
function (consumer surplus) [14] is

Jki (vi,k) ¼ Uk
i (vi,k)� pkvi,k , for all i [ Sm (2)

where the first term represents the utility gain from submit-
ting vi,k bytes and the second term represents the corre-
sponding cost.
By taking the very common assumption in economics

that users’ utility follows diminishing returns to scale
[14], we set

U
k
i (vi,k) ¼ vi,kF(vi,k) (3)

where F(vi,k) is strictly increasing, concave and continu-
ously differentiable.
A user’s quota accounting is based on the actually trans-

mitted volume, which equals the submitted volume minus
the dropped volume of a time slot. The drop ratio of
regular service at time slot k is defined by

dk ; max

PI
i¼1 vi,k � BTPI

i¼1 vi,k
, 0

" #
(4)

where BT is the capacity volume for Internet access over a
time slot. Since users of regular class have the same trans-
mission priority at the QoS router in Fig. 1, we assume
that all regular-class traffic experiences the same drop
ratio at this router. At the beginning of time slot kþ 1,
user i’s quota is therefore updated by

Qi,kþ1 ¼ Qi,k � pkvi,k(1� dk) (5)

Note that in our practical network architecture, the avail-
able quota will be updated every 10 min. Users can check
their available quota at the web-based management server
in Fig. 1.
Since what a myopic user i knows for decision at time k is

whether the quota at that time is available or not, the myopic
user decision problem (MUDP) is formulated as: (MUDPi).
For k ¼ 1, 2, . . . , K

Max
vi,k

Uk
i (vi,k)� pkvi,k

subject to (4) and (5) with Qi,k . 0.
Therefore when Qi,k . 0, the optimal value, v�i,k, has to

satisfy

vi,kF
0(v�i,k) ¼ pk (6)

3.1.3 Prudent user model: At time slot k, a prudent user
i considers the daily demand and allocates the available
quota to determine the Internet-access volume of regular
service for maximising user i’s total benefit from time slot
k to time slot K (long-term benefit), which is

XK
t¼k

J
t
i (vi,t) ¼

XK
t¼k

h
U

t
i (vi,t)� ptvi,t

i
(7)

When planning for quota allocation, a user presumes that
the planned submission would be transmitted, and the total
submission should satisfy

XK
t¼k

ptvi,t ¼ Qi,k (8)
IET Commun., Vol. 1, No. 4, August 2007
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The prudent user decision problem (PUDP) is then
(PUDPi). For k ¼ 1, 2, . . . , K

Max
{vi,t ,t¼k,...,K}

XK
t¼k

h
Ut

i (vi,t)� ptvi,t

i

subject to constraint (8) with Qi,1 ¼ Q and Qi,k . 0.
Note that (PUDPi) is a convex programming problem

[15]. Consider the problem at time slot k with Qi,k . 0.
To develop the optimality conditions, form a Lagrangian
function first

Li(vi,t, t ¼ k, . . . ,K; li) ¼
XK
t¼k

h
Ut

i (vi,t)� ptvi,t

i

� li

XK
t¼k

ptvi,t � Qi,k

 !

where li is a Lagrangian multiplier. The optimality con-
ditions are then

@Li
@vi,t

¼ vi,tF
0(vi,t)� (li þ 1)pt ¼ 0, t ¼ k, . . . ,K (9)

and

@Li
@li

¼
XK
t¼k

ptvi,t � Qi,k ¼ 0 (10)

Based on (9) and (10), it can be shown that the optimal
value, v�i,t, must satisfy

vi,tF0(v
�
i,t) ¼

pt
Qi,k

XK
j¼k

h
vi,jF0(v

�
i,j)v

�
i,j

i
, t ¼ k, . . . ,K (11)

3.1.4 Estimation of user preferences: To estimate
fvi,kg, we ingeniously exploit the measured data (the sub-
mitted volume) by conducting a QPC experiment, which
means QPC/TDP with pk ¼ 1, k ¼ 1, 2, . . . , K. Given a
function F(vi,k) in (3). Let vi,k,QPC be the submitted
volume of user i for regular service at time slot k in the
QPC experiment. For a myopic user, the preference value
is vi,k ¼ pk/F

0(vi,k) based on (6). Given (6) and vi,k,QPC
with pk ¼ 1, k ¼ 1, 2, . . . , K, user i’s preference at time
slot k is estimated as

vi,k ¼ 1=F 0(vi,k)jvi,k¼vi,k,QPC
(12)

For a prudent user, we further assume that the user allo-
cates one’s quota only at the time of quota replenishment,
that is, k ¼ 1. Let Xt ¼ vi,tF

0(v�i,t), t ¼ 1, . . . , K and substi-
tute them into (11) to solve Xt, t ¼ 1, . . . , K. Solving the
linear equations, we obtain Xt ¼ Cpt, t ¼ 1, . . . , K, where
C is an arbitrary constant. Without loss of generality, let
C ¼ 1 and the preference value of a prudent user i is then
estimated as vi,t ¼ pt/ F0(vi,t), t ¼ 1, . . . , K. Therefore
given the submitted volume in the QPC experiment, the pre-
ference of a prudent user can be estimated by (12) as well.

3.1.5 Utility function selection: Our demand models
require the utility function, which satisfies continuous dif-
ferentiability and diminishing returns to scale. To convey
further discussions, let us now select a specific form of
F(vi,t) without loss of generality of the methodology.
Researchers of [16, 17] modelled the utility as a logarithmic
function of the rate based on the property of diminishing
marginal utility. Since the submitted volume of a time slot
591
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can be approximated by a constant submission rate multi-
plied by the slot duration T, we also model a user’s utility
as a logarithmic function of the submitted volume that is

F(vi,k) ¼ log vi,k (13)

Given (13), the solutions to (MUDPi) and (PUDPi) are
then

v�i,k ¼
vi,k

pk
(14)

and

v
�
i,t ¼

vi,tPK
j¼k

vi,j

Qi,t

pt
, t ¼ k, . . . ,K (15)

respectively, with preference value

vi,k ¼ vi,k,QPC (16)

3.2 Pricing problem design

As the service charge is flat-rate or free, the goal of price
setting by a network service provider (NSP) is to maximise
the total bandwidth utilisation over a day while the average
total demand does not exceed the capacity. Mathematically,
the bandwidth utilisation of regular service at time slot k is
defined as

1

BT

X
i[Ak

vi,k(1� dk) (17)

where Ak ¼ fijQi,k . 0, 8ig is the set of users whose
available quota at time slot k is non-zero, andP

i[Ak
vi,k(1� dk) represents the total transmitted volume

of regular service at time slot k.
The constraint that the total expected volume of sub-

mission cannot exceed the link capacity at a time slot is
expressed as X

i[Ak

vi,k � BT, k ¼ 1, 2, . . . ,K (18)

As for network management in practice, the NSP may
allow a safe margin of bandwidth Brev to prevent the
network from instability. The constraint (18) can be modi-
fied as

P
i[Ak

vi,k � (B� Brev)T , k ¼ 1, 2, . . . , K.
Taking users’ behaviours characterised by (MUDPi) and

(PUDPi) into consideration, the NSP has a pricing problem
(PP), formulated as

(PP) Max
{pk[V, k¼1,2,...,K}

1

BT

XK
k¼1

X
i[Ak

vi,k(1� dk)

subject to constraints (4), (18), the user classification algor-
ithm and MUDPi (PUDPi) if user i is myopic (prudent).
The pricing problem is formulated as a Stackelberg game

[13], where the NSP acts as the leader and users are fol-
lowers. The optimisation of the TDP profile is nested with
individual users’ optimisation of submitted volumes.
Although the solutions to individual user’s optimisation
problems have closed forms, the closed-form analytic sol-
ution of (PP) may not be available because the objective
function and constraint (18) are nonlinear. The numerical
method is thus adopted to solve (PP). The optimal price
profile of (PP) is obtained by exhaustive search over the
feasible price profiles. Given each leader’s admissible
price profile, we solve individual followers’ optimisation
592
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problems [(6) and (9)–(11)], and substitute the user sub-
mitted volume into the leader’s objective and obtain the
corresponding bandwidth utilisation. Among the enumer-
ations of all the leader’s price profiles, we select the one
that induces a maximum of bandwidth utilisation while
meeting the link capacity constraint.

4 Pricing policy over simple examples

Simple examples are designed to study (i) how the price
induces behaviours of myopic and prudent users, respect-
ively, and thus affects the network performance, and (ii)
how the TDP policy varies with respect to user behaviours.
Consider the regular service of a network with a bandwidth
of ten units. There are three users and three time slots.
Individual user preferences in Table 1 monotonically
increase with time for easy analysis of the relationship
between price and preference. There are five feasible
price values, V ¼ f1, 2, 3, 4, 5g, whose range is large
enough that there exists a feasible price profile to keep the
total user demand within the capacity.

4.1 Pricing policy for prudent users

It is intuitively clear that because of the limited bandwidth,
the higher the user preference value, the higher the price for
a time slot that is p�1 � p�2 � p�3. Such an intuition can actu-
ally be justified when all users are prudent. According to
(15) and to satisfy the link capacity constraint that is

XI
i¼1

v
�
i,k ¼

XI
i¼1

vi,kPK
t¼k

vi,t

Qi,k

pk

0
BBB@

1
CCCA � BT

pk must satisfy

pk �
XI
i¼1

Wi,kQi,k

BT
(19)

where Wi,k ¼ vi,k=
PK

t¼k vi,t. For maximisation of band-
width utilisation, p�k must be as low as possible because
the submitted volume is proportional to the reciprocal of
the price by (15). So

p
�
k ¼

XI
i¼1

Wi,kQi,k

BT
(20)

Note that p�1 � p�2 � p�3 because fWi,kg in (20) is monoto-
nically increasing with k in this example. This property
among pk’s holds for any given quota value Q . 0.
When Q ¼ 10 and Q ¼ 25, (p�1, p

�
2, p

�
3) ¼ (1, 1, 2) and

(p�1, p
�
2, p

�
3) ¼ (2, 3, 4), respectively. They indeed have the

expected property. In Table 2, the total submitted volume
of time slot 3 is reduced by 50% (peak shaving) as com-
pared with QPC, alleviating the congestion.

Table 1: User preference profiles

Time slot 1 Time slot 2 Time slot 3

User 1 7 9 11

User 2 5 7 9

User 3 3 5 7
IET Commun., Vol. 1, No. 4, August 2007
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4.2 Pricing policy for myopic users

The property that p�1 � p�2 � p�3 no longer holds when users
are all myopic; it depends on the quota value. A myopic user
i’s submitted volume at time slot k is given in (14). When
there exists a sufficient quota, the total desired volume isP

i[Ak
vi,k=pk . Constrained by the link capacity,

pk �
X
i[Ak

vi,k

BT
(21)

From the NSP’s point of view, one byte transmitted at
one time slot is of the same contribution to bandwidth util-
isation as one byte in any other time slot. So, the NSP would
select p�k to be as low as possible, namely

p�k ¼
X
i[Ak

vi,k

BT
(22)

Based on such a basic understanding, let us examine the
pricing policies when Q ¼ 10 and Q ¼ 25. When Q ¼ 10,
(p�1, p

�
2, p

�
3) ¼ (2, 3, 1), the property that p�1 � p�2 � p�3 does

not hold. Table 3 indicates that the average submitted
volume is reduced by 66% as compared to QPC and the
total submitted volume across all time slots is around 7
(load balancing). When Q ¼ 25, (p�1, p�2, p�3) ¼ (2, 3, 3),
wheremonotonicity holds, as in the case of prudent users only.

4.2.1 Remarks: Our methodology is generic enough to
handle problems with different objectives as long as indi-
vidual users’ utility satisfies diminishing returns to scale.
For example, the methodology can be directly applied to
the case where the NSP’s objective function is the social
welfare function

PI
i¼1

PK
k¼1 [U

k
i (vi,k)� pkvi, k], which is

commonly used in economics. Solution properties are ana-
lysed as follows. At time slot k, user i’s benefit,
Ui
k(vi,k)2 pkvi,k, is proportional to 2log pk according to

(13)–(15). To maximise the social welfare (summation of
all users’ benefits), pk should be as low as possible under
the link capacity constraint. The resultant prices and
control effects are identical to Sections 4.1 and 4.2.

4.3 Importance of user differentiation on
time-of-day management

Table 4 shows the patterns of the total submitted volume
under the biased pricing policies. Case I (II) means that
the pricing policy is designed for the prudent (myopic)
behaviour, but all users are myopic (prudent). In Case I,
the submitted volumes across all time slots are not

Table 2: Total submitted volumes of QPC and QPC/TDP
in the case of prudent users when Q 5 10

Time slot 1 Time slot 2 Time slot 3

QPC scheme 6.97 10 13.03

QPC/TDP scheme 6.97 10 6.51

Table 3: Total submitted volumes of QPC and QPC/TDP
in the case of myopic users under Q 5 10

Time slot 1 Time slot 2 Time slot 3

QPC scheme 15 21 27

QPC/TDP scheme 7.5 7 7
IET Commun., Vol. 1, No. 4, August 2007

Authorized licensed use limited to: National Taiwan University. Downloaded on January 11, 
shaved, higher than 10. Case II shows that bandwidth utilis-
ation is less than 50% at time slots 1 and 2, but the conges-
tion happens at time slot 3. These results reveal that if the
pricing scheme is designed without differentiating the beha-
viours between myopic and prudent users, it easily leads to
either serious congestion in peak hours or bandwidth waste
in off-peak hours.

5 Effectiveness assessment

This section applies step 4 of the QPC/TDP design method-
ology and exploits the empirical data of NTU dormitory net-
works to set up a numerical experiment for investigating
control effects of QPC/TDP on congestion reduction, and
uneven usage and fairness improvement. In this step, the
daily quota for each user is set to 1 GB. We utilise the
QPC experimental data of step 1 to estimate user preferences
over time by (16) derived from step 2. The empirical data of
the baseline experiment in step 1 serve for user classification
by (1). The 54 Mbps bandwidth for outbound dormitory
traffic is the bottleneck. Quota replenishment takes place at
6 a.m. every day. As the NTU network management
system collects metering data once every 10 min, accord-
ingly, the length of a time slot is set to 10 min. There are
six levels of price per byte of transmission, V ¼ f0.9, 1,
1.1, 1.2, 1.3, 1.4g. Such a price range is large enough so
that there exists a feasible price profile to make the total
user demand within the link capacity.
In the experiment, we hypothesise that p�off-peak , p�peak

and the drop rate of regular service equals 0, as designed.
During peak hours, both the total submitted volume of
regular service and user transmitted volume of Internet
access significantly decrease over pure QPC because the
peak-hour price curbs usage.
Under the game-theoretic formulation, numerical results

show that the optimal price profile is p�off-peak , p�peak ¼ (1.1,
1.3), where peak hours are from 9 a.m. to 3 a.m. The
optimal solutions of two selected users are depicted in
Fig. 5, where one is myopic and the other is prudent. They
indicate that the submitted volumes (optimal solutions) of
two users under QPC/TDP are significantly reduced by
about 17% during peak hours as compared to those under
QPC only.

5.1 Peak shaving, load balancing and congestion
alleviation

Table 5 shows that the total submitted volume of regular
service under QPC/TDP is 11.53% less than that of the
QPC scheme during peak hours. This peak shaving effect
is a result predicted by (14) and (15), as the submitted
volume of regular service is proportional to 1/p�peak,
where p�peak . 1. In Fig. 6, the difference of the average sub-
mission between peak and off-peak hours is reduced by
31.21%, namely a load’balancing effect is achieved. In
addition, the drop rate is reduced from a maximum of
5 Mbps under QPC to zero at all times by the price control.

Table 4: Total submitted volumes in cases I and II under
Q 5 10

Time slot 1 Time slot 2 Time slot 3

Case I 15 21 13.5

Case II 3.49 3.33 13.03
593
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Fig. 5 Optimal solutions of users under QPC/TDP
5.2 Usage reduction of heavy users in peak hours

Table 6 shows the reduction percentage of Internet access
over time by the top five users under QPC/TDP. During
peak hours, there is an average of 17.62% reduction from
that of QPC, and 4.4% from that of the 500 MB * 2 QPC
scheme, where the 500 MB * 2 QPC scheme means that
500 MB quotas are allotted at 6 a.m. and 6 p.m., respect-
ively, with no quota carrying over to the next time period.
At individual slots, there is an average of 15.46% reduction
as compared with QPC. Fig. 7 reveals that Internet-access
usage by the top five users under QPC/TDP is less than
that of QPC all the time.

5.3 Fairness improvement in peak hours

The standard deviation of total users’ usage for Internet
access is chosen as a metric of fairness. Again, the perform-
ance of QPC serves as the basis of comparison unless speci-
fied. In Table 7, there is an average of 17.64% reduction
during peak hours. There is an average of 8% reduction as
compared with the 500 MB�2 QPC scheme. Since vi,k in
peak hours is proportional to 1/p�peak, the standard deviation
of the submitted volume for regular service is proportional
to 1/p�peak, which will be reduced with the increase of p�peak.
For individual time slots, there is an average of 15.44%
reduction. The standard deviation of total users’ usage
over time is depicted in Fig. 8, where the standard deviation
under QPC/TDP is reduced across all the time slots,
especially in peak hours.

Table 5: Average total submission rate and drop rate
under QPC and QPC/TDP schemes during peak hours

QPC scheme QPC/TDP scheme

Average total submission

rate (Mbps)

58.03 51.35

Average drop rate (Mbps) 4.03 0
594

Authorized licensed use limited to: National Taiwan University. Downloaded on January 11,
5.4 Policy adaptation to changes

For price adaptation to network changes, the baseline and
QPC experiments have to be conducted for a short period,
say one week [1], respectively, to determine the new user
characteristics. For example to manage the NTU dormitory
network, the administration usually needs to conduct the
baseline and QPC experiments only at the beginning of a
new academic year, when new residents move in. Note that
the baseline experiment is a special case of QPC/TDP,
where all prices are set to 1 and the daily quota is infinite,
and that the QPC experiment is also a special case of
QPC/TDP, where all prices are set to 1 but with a finite
quota. In the case of the NTU dormitory network with
5355 users, the policy design and assessment take only
1 min (CPU time) in a MatlabTM environment, where it
runs on a PC with an Intel Pentium M processor and
512 MB memory. If the network manager sets three level
prices, pH, pM and pL, (p

�
H, p

�
M, p

�
L) ¼ (1.3, 1.1, 0.9), where

pH corresponds to the price between 9 a.m. and 3 a.m.,
pM corresponds to the prices between 3 a.m. to 5 a.m. and
7 a.m. to 9 a.m. and pL is the price between 5 a.m. and 7

Fig. 6 Total submitted volumes and drop rates of regular service
under QPC and QPC/TDP schemes
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a.m. Since p�L , p�off-peak, user usage during 5 a.m. to 7 a.m. is
more encouraged as compared to two-level prices. The com-
putation time in this case takes less than 7 min. With a short
time period for data collection and fast policy design and
evaluation, the design methodology could respond to a chan-
ging network environment.

5.4.1 Remarks: There is a difference between the average
user usage predicted by our models and the real-time (or
instantaneous) user usage because our models average
across users and over time periods (10 min). The models
are adopted to help the network manager with pricing
design for managing network traffic in average. When the
observed average user submission volumes significantly
deviate from those the mathematical models are based on,
a network manager may consider conducting the pilot
experiments to update user behaviour model. Then, the
manager follows the methodology described in Section 3
to adjust QPC/TDP policy parameters accordingly.

5.5 Comparison with existing management
schemes

Many network administrations [18, 19] adopt quota-based
control schemes to regulate users’ network service access.
Some even curb users’ usage by applications when a

Fig. 7 Top five user internet-access volumes under QPC and
QPC/TDP schemes

Table 7: Reduction percentage of the standard
deviation for internet-access usage under QPC/TDP

QPC scheme 500 MB * 2 QPC scheme

Individual time slot 215.44% 20.32%

Peak-hour time slot 217.64% 28%

Table 6: Reduction percentage of internet-access usage
by top five users under QPC/TDP

QPC scheme 500 MB * 2 QPC scheme

Individual time slot 215.46% 20.3%

Peak-hour time slot 217.62% 24.4%
IET Commun., Vol. 1, No. 4, August 2007
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user’s usage exceeds the given quota. The user will be pro-
hibited from accessing the Internet for a time period based
on the excess volume. Such a scheme is compulsive and
does not take users’ temporal usage pattern into account.
Our proposed QPC/TDP scheme not only allows the
users who run out of the quota to access the Internet with
a lower priority but also provides managers with a
time-of-day traffic management function.

6 Conclusions

This paper considers the problems of congestion, uneven
usage and unfairness during peak hours over a
free-of-charge or flat-rate network. The five specific chal-
lenges presented in Section 2 are all addressed. We grasp
user behaviours of quota allocation observed from empirical
data and construct myopic and prudent user models,
answering (C1). The price design to maximise bandwidth
utilisation is obtained by solving a leader–follower game,
addressing (C2). For (C3) and (C4), we adopt static TDP
because it is not only simple and acceptable for users but
also easy to implement over a QPC environment. The
design methodology of QPC/TDP is proposed to address
(C5). Evaluation of our methodology shows that the
peak-hour usage by heavy users and fairness are improved
by 17% as compared to QPC only. The average total sub-
mission during peak hours is reduced by 12%, and the
difference between peak and off-peak hours is reduced by
31%. The design methodology itself requires only baseline
and QPC experiments for one week each and is efficient for
pricing calculation. It can apply to frequently changing
Internet-access environments such as campus, government,
community and corporate LANs.
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