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Abstract: The H ,  control problem for uncertain descriptor systems with time-invariant norm- 
bound uncertainty in the state matrix is considered. Necessary and sufficient conditions for robust 
H, control of descriptor systems by state feedback and dynamic output feedback are derived. The 
design results are expressed in terms of generalised algebraic Riccati inequalities, which may be 
considered an extension of results given in recent literature. Explicit formulae for controllers 
which solve the corresponding problems are provided. The generalised algebraic Riccati inequal- 
ities approach used is based on a version of the bounded real lemma for descriptor systems, thus 
making the given proofs simpler. 

1 Introduction 

The H, control of descriptor systems has received increas- 
ing interest in recent years [ l ,  21. Although H ,  control 
theory for linear systems is well established, its counterpart 
in descriptor systems has only recently been investigated. 
The descriptor system models, as mentioned in [3, 41, can 
more aptly describe a physical system than the linear 
system models. However, descriptor systems contain 
three different modes, namely finite dynamic modes, 
impulsive modes and nondynamic modes (see [ 5 ]  for a 
detailed definition). This accounts for why the H ,  control 
problem for linear descriptor systems is more intricate than 
the corresponding one for linear state-space systems. 

While most control designs are based on nominal 
models, modeling errors and system uncertainties are 
inevitable. For preciseness, a design technique must 
accommodate these errors and uncertainties to be practi- 
cally feasible. Recent, interest has focused on the robust 
H ,  control of linear systems with parameter uncertainties 
[6-111. This investigation continues this line of research to 
consider the robust H ,  control problem for descriptor 
systems. 

This investigation first proposes a descriptor state feed- 
back H ,  control design, which robustly stabilises a given 
descriptor system with norm-bounded parameter uncer- 
tainty in the state matrix. The robust H, control problem 
is then solved via a dynamic output feedback controller. It 
is shown that the robust H, control problem can be 
transformed to a standard H, control problem for an 
auxiliary descriptor system. This investigation largely 
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focuses on deriving necessary and sufficient conditions 
for the robust stabilisation of uncertain descriptor systems 
via two types of feedback configuration: state feedback and 
dynamic output feedback. The desired feedback control 
law is then constructed by solving certain constant-coeffi- 
cient generalised algebraic Riccati inequalities (GARI). 
The feedback design technique developed herein can be 
viewed as an extension of the existing H, control results 
for linear descriptor systems to the case of uncertain 
descriptor systems. 

2 Problem statement and definitions 

Consider a class of uncertain descriptor systems described 
by the following set of differential algebraic equations. 

EX = (A + AA(o))x + Bl w + B ~ u ,  

z = C,X + D,,u, y = C ~ X  + D ~ I w  (1) 

where x E !Itn is the descriptor state variable, U E %'" is the 
control input, w E 914 is the exogenous input, y E 9tP is the 
measured output, and z E W is the controlled output. The 
matrix E E 91" has rank r(  5 n) and the other matrices 
have appropriate sizes. The parameter uncertainty of the 
system is denoted by AA(@), where g is an uncertain 
parameter vector. With regard to the work of [9 ,  IO], the 
uncertainty considered herein is time-invariant and has the 
following form: 

AA(g) = GL(0)H (2) 
where L(g) E 91' is a norm-bounded uncertain matrix, 
and G, H are known matrices of appropriate dimensions. 
Assume that the uncertain rnatrix L(o) is such that 
L(o)TL(a)ip21 with p > O  and ~ E C ,  where C is a 
compact set. Moreover, we assume that given any matrix 
L:LTL 5 p21, there exists 0 E C such that L = L(a). We 
will recall some notions and some preliminary results 
concerning descriptor systems to motivate the technique 
discussed in this investigation. 

DeJinition 2.1: 

(1) A pencil SE-A (or a pair {E, A}) is regular if det(sE-A) 
is not identically zero. 
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(ii) For a regular pencil SE-A, the finite eigenvalues of sE- 
A are calledjnite modes of {E, A}. Assume that Ev, =O. 
Then, the infinite eigenvalues associated with the general- 
ised principal vectors vk satisfying Evk = AV,- ],  

k= 2,3,. . . are impulsive modes of {E, A}. 
(iii) A pair {E, A) is admissible if it is regular and has 
neither impulsive modes nor unstable finite modes. 

Dejinition 2.2: Consider the following unforced and unper- 
turbed system 

EX = AX + B ~ w ,  z.= C ~ X  (3 1 
Given a scalar y > 0 ,  the system in eqn. 3 is stated to be 
admissible. with disturbance atten.uation y if it satisfies the 
following conditions: 

(i) the pair {E, A} is admissible; and 
(ii) the transfer function from exogenous input w to 
controlled output z, represented by T,v, satisfies 

< Y .  \\,T,v(s)l\m = \\C,(sE -A)-IB, 

The following lemma gives a necessary and sufficient 
condition for the system to be admissible with disturbance 
attenuation y .  The condition is characterised by GARI. 
Lemma 2.3(1): The unforced and unperturbed system in 
eqn. 3 is admissible with disturbance attenuation y if and 
only if 
(i) there exists a solution X E 91" such that 

E ~ X  = X ~ E  2 0 

Y 2  

(4a) 

I 
ATX + XTA + -XTB,BrX + CyCl < 0 (4b) 

or, equivalently 
(ii) there exists a solution Y E !Itn x n  such that 

 YE^ = E Y ~  > 0 (5a) 

1 

Y 
AYT + YAT + BIB: +lYCTCIYT i 0 (5b) 

Herein, we are concerned with the following notions of 
admissibility for the unforced uncertain descriptor system: 

EX = (A + AA(0))x + B,w, z = C ~ X  (6) 

Definition 2.4: The unforced system in eqn. 6 is stated to 
be quadratically admissible for all parameter uncertainties 
AA(o) if 
(i) there exists a matrix X E D?" such that 

ETX = XTE 3 0 ( 7 4  

(AA+ AA(o))'X + XT(A + AA(o)) < 0 (76) 

or, equivalently 
(ii) there exists: a matrix Y E 9 V X  such that 

 YE^ = E Y ~  2 0 (8a)  

Y(A + AA(o))~ + (A + AA(o))YT < 0 (86) 

DeJinition 2.5: Given. a scalar. y 0, the unforced system 
described by.eqn. 6 i s  stated to be quadratically admissible 
with disturbance attenuation y .  for all parameter uncertain- 
ties, AA(o) if 

I E E : P r [ ~ ~ . - ~ [ ) : o , z t r l ~  Theory Apgl.;, Vol! 1.47; No ... 6; Noveinbe~,-2000. 

(i) there exists a constant matrix X E Di" ' I  such that 

ETX = XTE > 0 

(A + AA(O))~X + X ~ ( A  + A A ( ~ ) )  

+ - x ~ B , B T x + c ; c ,  < 0 

(9a) 

(9b) 
1 
Y2 

or, equivalently 
(ii) there exists a constant matrix Y E 91' 'I  such that 

 YE^ = E Y ~  >_ o ( loa )  

(A + AA(o))YT + Y(A + AA(o))~ 
1 

( 1 Ob) + B , B T + - - Y C T C , Y ~  < 0 
Y 2  

The following lemma is useful for the subsequent proofs. 
Lemma 2.6: Consider the system in eqn. 6 and a prescribed 
scalar y > 0. For all AA(g) satisfying eqn. 2: 
(i) eqn. 9 holds if and only if there exists a solution 
X E 91'' ' I  independent of AA(o) such that 

ETX = XTE 2 0 

Y2 

( ] l a >  

1 
AfX+XTA+-X1[BlyG][B~yG]TX 

+ [;HIT[ ;;I < 
(1 1b) 

and 
(ii) eqn. 10 holds if and only if there exists a solution 
Y E g in  independent of AA(o) such that 

YET = EYT 3 0 (12a) 

AYT + YAT + [BlyGl[BlyGIT 

++y[ :"IT[ < 0 (12b) 

Prooj! We prove only (i). The proof of (ii) is technically 
similar. 

(Suficiency) Rewrite eqn. 11 as 

E ~ X  = X ~ E  p 0 ( 1 3 4  

(A + A A ( ~ ) ) ~ x  + X ~ ( A  + A A ( ~ ) )  + - X ~ B , B ~ X  + CTC,  

+ X ~ G G ~ X  + $ H ~ H  - A A ( ~ ) ~ x  - x ~ A A ( ~ )  < o (i3b) 

1 
Y 2  

For any matrices M and N with appropriate dimensions 

M ~ N  + N ~ M  I M ~ M  + N ~ N  (14) 

Thus, for any AA(o) satisfying eqn. 2, we have 

AA(~)'x + x ~ A A ( ~ )  = H ~ L ( ~ ) ~ G ~ x  + X ~ G L ( ~ ) E I  

- < X ~ G G ~ X  + H"LCO)~L(O)H 

5 XTGGTX + p2HTH. (15) 

Eqn. 9 then follows immediately by substituting eqn. 15 
into eqn. 13. 
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(Necessity) Assume that there exists a matrix X E M n  
such that eqn. 9 holds, that is 

ETX = XTE 3 0 U6a) 
. .  
I r := A ~ X  + X ~ A  + - X ~ B ~  BTX 

Y 2  
+ crc, < - H ~ L ( c ) ~ G ~ x  - X ~ G L ( ~ ) H  (166) 

for all AA(a) satisfying eqn. 2. Then, for any 
x E nin 

xrrx < - x ~ H ~ L ( ~ ) ~ G ~ x x  - X ~ X ~ G L ( ~ ) H X  

x r r x  5 s ~ ~ { x ~ H ~ L ( o ) ~ G ~ x x  + X ~ X ~ G L ( O ) H X  : 

L(o-)~L(u) I p21, p > 01 - E 

that is 

for sufficiently small 8 > 0. Now observe that, 
nonzero x E 91’’ 

2 0 I IIGTXx - L(o)HxI( 

- < xTXTGGTXx + p 2 x T H T H x  

nonzero 

( 17a) 

(1 76) 

for any 

- X ~ X ~ G L ( ~ ) H X  - x ~ H ~ L ( ~ ) ~ G ~ x x  (18) 

which implies that 

xT[HTL(a)TGTX + XTGL(o)H]x 

- < xT[XTGGTX + p2HTH]x (19) 
Substituting eqn. 19 into eqn. 17a, we have 

x T r x  + xT[XTGGTX + p2HTH]x < 0 (20) 
Therefore, eqn. 11 holds. This completes the proof of part 
(i) of Lemma 2.6. U 

Corollary 2.7: The unforced system in eqn. 6 is quad- 
ratically admissible with disturbance attenuation y if and 
only if the unperturbed auxiliary descriptor system 

is admissible with disturbance attenuation y ,  where 
ii. E W+‘ is the disturbance input, 2 E 9i”J is the auxiliary 
system output which is to be controlled, and the other 
variables are defined as in eqn. 1. 
Proofi Lemma 2.3 leads us to conclude that if eqn. 11 is 
valid, then the auxiliary system in eqn. 21 is admissible 
with disturbance attenuatiorz y .  By Definition 2.5, the 
perturbed system in eqn. 1 is quadratically admissible 
with disturbance attenuation y if eqn. 9 is valid. However, 
by Lemma 2.6, eqn. 9 holds if and only if eqn. 11 holds. 
This simply implies that eqn. 21 is admissible with distur- 
bance attenuation y if and only if eqn. 1 is quadratically 
admissible with disturbance attenuation y ,  which result 
completes the proof. U 

3 Full state feedback control 

Consider the uncertain descriptor system in eqn. 1. In this 
Section, perfect descriptor state information is assumed to 
be available for feedback, that is y = x .  Herein, we are 
concerned with designing a fixed static descriptor state 
feedback law that robustly stabilises the system in eqn. 1, 
while satisfying an H ,  performance constraint for all of 
the possible uncertainties given by eqn. 2. Setting U = Kx 
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in eqn. 1 yields the following perturbed closed-loop 
system: 

E,% = (A, + AS(o))x + B,w, z = C,X (22) 

where E,s =E,  A, = A  + B2K, B, = B, , C,y = C! + D,,K, 
and AA,(o) = AA(a). The following theorem IS readily 
obtained. Its proof is a direct consequence of Lemma 
2.6, and is therefore omitted. 
Theorem 3.1: Suppose that {E:, A} is admissible. Consider 
a positive real number y. The perturbed closed-loop system 
in eqn. 22 is quadvatically admissible via linear state 
feedback with distiirbance attenuation y for all AA(o) if 
and only if there exists a constant matrix P E 9Y inde- 
pendent of AA(o) such that 

ETP = PTE, 2 0 (23a) 

1 

Y 
ATP + PTA, + PT[ B, yG I[ B, yGITP 

eqn. 23 is difficult to solve and contains an unknown 
variable K and a matrix P yet to be determined. Later, 
we will seek an equivalent condition which transforms 
GARI (eqn. 23) to another constant-coefficient GARI and 
obtain an explicit formula of K. To do this we must 
propose the following. 
Proposition 3.2: Consider eqn. 22. The following state- 
ments are equivalent. 
(i) {E,, A, +GL(o)H} is admissible and IIC,(SE,~ - A, 

(ii) {E,y, As} is admissible and 
- GL(D)H)-’B,)), < y ;  

(iii) there exists a matrix P E 9i” 
GARI: 

satisfying the following 

E,rP = 2 0 (24a) 

1 
A,TP + PrA,y + - PT[ B, yG I[ B, yGITP 

Y 2  

ProoJ By Corollary 2.7, the perturbed closed-loop system 
in eqn. 22 is admissible with an L,-gain < y if and only if 
the uncertainty-free auxiliary system 

is admissible with an L,-gain < y .  Therefore, the equiva- 
lence of (i) and (ii) follows directly from Definition 2.2. By 
Theorem 3.1, (i), or equivalently (ii), holds if and only if 
(iii) is satisfied. U 

Eqn. 23b can be written as 

1 
(A + B2K)TP + PT(A + B2K) + -PTB,BrP + PTGGTP 

Y 2  
+(c, + D,,K)~(c ,  + D,,K) + P ~ H ~ H  < o (26) 
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Let R I :  =DT2Dl2 > 0 and K =  - R,'(B:P+ DT2CI) in 
eqn. 26, and complete the square to obtain 

R,(P) := A - B2;I[Dr2 ( 

+P'(;[BI yG][Bl ?GIT -B2RI'Bl)P 

+ CT(I - D12R,'DT2)Cl + p2HTH 

. (27) 
We state the main result of this Section. 
Theorem 3.3: Consider eqn. 22 with y = x. Suppose that 
{E, A} is admissible and R I :  = DT2DI2 > 0. 

Then the perturbed closed-loop system is quadratically 
admissible via linear state feedback with disturbance 
attenuation y for all AA(a) satisfying eqn. 2 if and only 
if the GAR1 

ETP = PTE (28a) 

Rl(P) < 0 I (28b) 

has a constant solution P with ETP = PTE > 0. Moreover, 
when the above condition holds, one such controller is 
given by 

U = Kx = -R;'(BlP + DT~CI)X (29) 

Pro08 (Necessity) The proof of the necessity part of the 
theorem is similar to that given in Theorem 4.2. We 
therefore omit the proof here. 

(Sufficiency) Suppose that eqn. 28 holds. Then, using eqn. 
29 to close the loop yields the following perturbed closed- 
loop system 

E,X = (A, + AA,(o))x + B,w, z = C,X (30) 

where E, = E ,  A, = A  - B2R-'(B;P + DT2C,), B, = B, , 

Therefore 
C,=C,  - D 1 2 R ~ 1 ( B ~ P + D 1 2 C l ) ,  ? and AA,(o)=AA(o). 

1 
ATP + PTA, + ,PT[ B, yG][ B, yGITP 

/ 2  

+ [:;IT[ = Rl(P) < 0 (31) 

By Proposition 3.2, eqn. 31 implies that {Ec, A,} is 
admissible and 

This deduction subsequently implies that the perturbed 
closed-loop system in eqn. 30 is quadratically admissible 
with disturbance attenuation y .  0 

4 Dynamic output feedback control 

In this Section, the system in eqn. 1 is assumed to satisfy 
the following assumptions: 

(Al) {E, A}  is admissible. 
(A2) RI := DT2 DI2 > 0. 
(A3) R2 := D2l DTI > O .  
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(A4) The matrix pencil 

has full column rank for all w E 9i and is column reduced. 
In fact, the assumptions Al-A3 are by no means 

restrictive. They can be achieved by the loop shifting 
method (see [12] for details). We consider a dynamic 
output feedback controller of the following form: 

n .  ,. 
E[ = AC + By, U = c;; (32) 

where 4 E g i n ,  E E !)in and {A, 8, e} have proper 
dimensions. Note that the structure of the matrix E may 
be singular or nonsingular, and equal or not equal to E. 
Define a change of variable, e = x  - 4 .  The closed-loop 
system can now be written as 

E,%, = (A, + AA,(a))x, + Bow, z = Coxo (33) 

E 
where x, = [ ] [:I, E, = [ E - E  L. E 0 1 ,  x - 5  

A + B*C -B2C 1. and 
A - A + B2C - BC2 A - B2C '1 = G,L(a)H,, with Go = 

A N 4  
AA,(o) = [ 

AA(o) 0 

and H,=[H 01. We obtain the following preliminary 
result similar to that in the state feedback case. 
Proposition 4.1: Consider eqn. 33. The following state- 
ments are equivalent: 
(i) {E,, A, +G,L(o)H,} is admissible and I(C,(sE, - 

(ii) {E,, A()} is admissible and 
A" - ~ o L ( ~ ) H o ) - l B o l l m  

(iii) there exists a matrix P E !Rn such that 

ErP = PTE, 2 0 

Y 2  

(34a) 

1 
A:P + PTA, + - PT[ Bo yG, I[ Bo yG, ITP 

Proof: Follows directly from Proposition 3.2. 

The main result of this Section is stated. 
Theorem 4.2: Suppose that Al-A4 hold. Consider the 
system in eqn. 1. The following statements are equivalent: 
(i) Given y > 0, there exists a dynamic output feedback 
controller such that the closed-loop system in eqn. 33 is 
quadratically admissible with disturbance attenuation y .  
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(ii) (a )  There exists a matrix X E 91” ” such that 

E T X  = XTE 2 0 (350) 

A,,, = A - B2R;’[ DT2 i 

1 (I - D12R;‘Dr2)Cl 

t o  (35b) 

E Y ~   YE^ 2 o (36a) 

(b)  There exists a matrix Y E 9i” ” such that 

(36b) 

(c) p ( Y X T )  < y2,  where p(.) denotes the spectral radius. 

(37) 

Moreover, when the conditions are satisfied, one such 
controller of the form of eqn 32 is given by 

* (  ( Y 1  1 )  E = E, B = zc,T + I +,zxT B,D,T, R;’ (38a) 

C = F = -Rrl B,’X + 
= -R;’(BlX + DT2C 

= A + B 2 6  - BC2 

i 
1 

+ - ([BIYGI - B[ D2, 0 I>[ B, YG ITX 

Y2 

Y 2  
1 

= A + B2C - BC2 + - ((B, - BD21)BT + y2GGT)X 

(3 8c) 

where 

z =  ( I - fYXT)- lY =Y(I-$XTY)-I (39) 

ProoJ See Appendix (Section 8). 

Remark 4.3: The results in [ 1, 21 can be regarded as special 
cases of theorem 4.2 if we let AA(a) 3 0. Our method is 
more transparent than the method of [I], since the control- 
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ler is explicitly formulated by 1he solutions of two GARIs. 
The present formulation involves only two variables to be 
determined. It contrasts with the condition given in [I] ,  
which involves two unknown parameters and two variables 
to be determined. Furthermore, our result has wider appli- 
cation than the results of [2], since our approach does not 
depend on the assumptions A2-A4 which were made in 
that paper. 

5 Conclusions 

This investigation has considered the problem of robust 
H, control for a class of uncertain linear time-invariant 
descriptor systems. Algebraic conditions that characterise 
quadratic admissibility with disturbance attenuation condi- 
tions for uncertain descriptor systems are presented. 
Descriptor state feedback control and descriptor dynamic 
output feedback control designs are then proposed. 
According to our results, the robust H, control design 
problem is equivalent to a standard H ,  control problem for 
an auxiliary descriptor system. In both feedback config- 
urations, necessary and sufficient conditions are obtained 
such that the closed-loop systems satisfy a prescribed H,- 
norm disturbance attenuation constraint. An efficient 
method for computing solutions to the Riccati inequalities 
is being investigated. 

6 Acknowledgment 

This work was supported by the National Science Council 
of Taiwan R.O.C. under grant no. NSC 88-2213-E-002- 
087 

7 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

References 

MASUBUCHI, I., KAMITANE, Y., OHARA, A., and SUDA, N.: ‘ H ,  
control for descriptor systems: a matrix inequalities approach’, Allto- 
mutica, 1997, 33, (41, pp. 669-673 
WANG, H.S., YUNG, C.E, and CHANG, ER.: ‘Bounded real. lemma 
and. H ,  control for descriptor systems’; IEE Proc., Control Theon) 
Appl., 1998,;145, (3) ,  pp. 316-322 
DAI, L.: ‘Singular control systems-lecture notes in control and 
information sciences’ (Springer-Verlag, Berlin, 1 989) 
LEWIS, EL.: ‘A survey of linear singular systems’, Circuits svst. 
Signal Process, 1986, 5,  ( I ) ,  pp. 3-36 
BENDER, J., and LAUB, A.J.: ‘The linear-quadratic optimal regulator 
for descriptor system’, IEEE Truns. ilutom. Control, 1987, AC-23, (8), 

KHARGONEKAR, PP., PETERSEN, I.R., and ZHOU, K:: ‘Robust 
stabilisation of uncertain linear systems: quadratic stabilisability and 
H ,  control theory’, IEEE Trans. Auton7. Control, 1990,.AC-35, (3),  pp. 
156-161 

pp. 672-688 

__. --. 
PETERSEN, I.R.: ‘A stabilisation algorithm for a class of uncertain 
linear systems’, Sjwi. Control Lett., 1987,.8, pp. 35 1-357’ 
SAMPEI, M., MITA, T., and NAKAMICHI, M.: ‘An algebraic 
approach to H ,  output feedback control problems’, Syst. control 
Lett., 1990, 14, pp. 13-24 
XIE, L., and DE SOUZA, CE:: ‘Robust H ,  control for linear time- 
invariant systems with norm-bound uncertainty in the input matrix’, 
Sy.sf. Control Lett., 1990, 14, pp. 389-396 
XIE, L., and DE SOUZA, C.E.: ‘lioliust H ,  control for class of 
uncertain linear time-invariant systems’, IEE Proc. 0, Conrrol. Theory 
Appl., 1991, 138, (5 ) ,  pp. 479483 
YANG, E: ‘Robust H, control for systems with, structured uncer- 
tainty’, Confrol Theory Appl., 1998,. 15; (l), pp. 61-68 
SAFONOY M.G., LIMEBEER, D.J.N., and CHIANG, PR.Y.: ‘Simpli- 
fying the Hw theory via- loop: shifbng, matrix pencil and descriptor 
concepts’,.Int. 1. Control, 1988, 50, (6) ,  pp. 246712488 

l~E‘I?roc.-Control:Theor)~.~p~l, Vol. 147,’. No. 6, November 2000 

Authorized licensed use limited to: National Taiwan University. Downloaded on January 9, 2009 at 02:31 from IEEE Xplore.  Restrictions apply.

http://concepts�,.Int


8 Appendix Notably, eqn. 43b can be rewritten as 

1 
A'X + X'A + - X ~ B , B T X  + X'GG~X + p 2 ~ T ~  + CTC,  

Y 2  
- (XTB2 + CTD12)R;'(XTB2 + CTD,# 

< -(XTB2 + CTDl2 + KTRl)Rjl  

(XTB2 + CrD12 + KTRl)T 5 0 (44) 

Proof of Theorem 4.2: In view of Proposition 4.1, we need 
only show that the auxiliary system 

is internally stable with an L, gain < y ,  where {E,, A,, 
B , ,  C O }  and G o ,  H, are defined as in eqn. 33. 

(Necessity) We require the following lemma in the 
intermediate stage (see [ l ]  for proof). 
Lemma 8.1: Consider eqn. 33. Assume that there exists a 
controller of the form of eqn. 32 such that {E,, A,} is 
admissible and 

Then the following conditions hold: 

(a )  There exist a descriptor state feedback matrix K and a 
matrix X such that 

ETX = XTE > 0 (41a) 

(A + B2K)TX + XT(A + B2K) 

(b) There exist an output injection matrix L and a matrix Y 
such that 

In (l) ,  the condition (c) is ET(y2Y-T - X) 2 0, which 
implies ( Y ~ Y - ~  - X) being nonsingular in their work. 
Here we imply the nonsingularity of (y2Y-' - X) by an 
alternative expression p(YXT) < y2. We can now prove the 
necessary. Assume that (i) holds. By Lemma 8.1, eqn. 41 
has a solution X. Rewrite eqn. 41 as 

E'X = XTE 1 0  (434  

1 A ~ X  + X ~ A  + - X'B, BTX + X ~ G G ~ X  + ,O,H~H + cTcl 
Y 2  

KTBrX + XTB,K + KTDT2C, + CyD12K + K'R,K < 0 

(43b) 

The last inequality in eqn. 44 relies on Assumption A2, 
R I  > 0. Thus, matrix X satisfies eqn. 35. By a similar 
argument, it can be shown that eqn. 36 has a solution Y. 
Again, by Lemma 8.1, the spectral radius condition 
p(YXT) < y2 holds. 

(SufJiciency) By assuming that (ii) holds. The parameters 
given by eqn. 38 are well defined so we can use them to 
construct a controller. We must show that a controller thus 
constructed makes {E,, A,} admissible and 

simultaneously. We require the following theorem (see (2) 
for proof). 
Theorem 8.2: Assume that Assumptions Al ,  A2, and A4 
hold and GAR1 (eqn. 35) has a solution X. Then, there 
exist a real number c 0 ,  and a family of symmetric matrices 
S, < 0, such that 

ETX, = XLE 3 0 (45a) 

S, = (A - B2R;'DT2Cl)TX, 

+ X%(A - B2Rj'DT2C,) + p2HTH 

1 
Y +,X,T([Bi YGI[BI S I '  - Y ~ B ~ R T ' B : ) ~ ,  

+ CT(1- D,,R;IDT,)C, < 0 (497) 

has a solution X, . Moreover, lim,,oS, = 0, and in this case, 
X, = X, . X, is an admissible solution of the GARE 

ETX = X'E > 0 (46a) 

1 

Y 
+ ,XT([  B,  YG][ B, ?GIT - y2B2R;'B;)X 

(46b) 

(I - D12R;'DT2)CI 

= o  

Remark 8.3: The above theorem is a modified version of 
the one given in [ 2 ] .  However, the proof is essentially the 
same. Since p ( Y X T )  < y 2 ,  the matrix Z in eqn. 39 is well- 
defined and satisfies EZT = ZET 2 0. Now, by theorem 8.2, 
we can choose a matrix X, such that Ax is arbitrarily small. 
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Hence, there exists a pair of matrices {X, Y} such that 
A y  - lly2YAxYT < 0. Observe that 

1 
Ay - -YAxYT 

Y2 
= k - F Y x T )  1 

. ( G 7 X Y ' )  1 < o  
(47) 

where 

= -R;'(B;X + DF2C1) 

The above discussion shows that condition (ii) implies that 
there exists a matrix Z satisfying the following GARI: 

EZT = ZET 2 0 (484  

(A - B1DlRT1C2)ZT + Z(A - BlDTlR21C2)T +BIB: 

(486) 
1 + - z ( F ~ R ,  F - Y 2 C l ~ ; 1 C , ) ~ T  < o 

Y 2  

Rewrite eqn. 48 as 

EZT = ZET > 0 (494 

1 
A,ZT + ZAL + B,Bz + -ZCzC,ZT < 0 

where A , = A  - B, DTl R,' e, - Z e l  R T 1 e 2 ,  

(49b) 
Y 2  

B, = LB, %CcR;ID21, 

and C, = R ~ / = E  
By Definition 2.2 and Lemma 2.3, we can conclude that 

{E, A,} is admissible and IlC,(sE - AJ-'Ballm < y .  By 
duality, we conclude that {ET,  A:} is admissible and 
IIB:(sET - A:)-'CZII < y .  This result subsequently 
implies that the GARI 

E ~ W  = W ~ E  2 o 

A ~ W  + W ~ A ,  + - W ~ B , B ~ W  + czc, < o 

(50a) 

(50b) 
1 

Y 2  
has a solution W. Let 

x o  
o w  Po := [ 1, EiP, = PLEo (5 1) 

A lengthy but routine calculation shows that Po is a 
solution to the GARI 

ElP, = PiE, > 0 ( 5 2 4  

Then, b y  Proposition 4.1, eqn. 52 implies that the control- 
ler given by eqn. 38 is a dynamic output feedback control- 
ler that internally stabilises the system in eqn 1 and renders 
the closed-loop system in eqn. 33 strictly contractile with 
an L,-gain <y. This result completes the proof of 
Theorem 4.2. 0 
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