
Journal of the Chinese Institute of Engineers, Vol. 24, No. 2, pp. 203-220 (2001) 203

THE POSITIVE REAL CONTROL PROBLEM AND THE

GENERALIZED ALGEBRAIC RICCATI EQUATION FOR

DESCRIPTOR SYSTEMS

He-Sheng Wang
Center for Aviation and Space Technology
Industrial Technology Research Institute

Hsinchu, Taiwan 310, R.O.C.

Chee-Fai Yung*
Department of Electrical Engineering

National Taiwan Ocean University
Keelung, Taiwan 202, R.O.C.

Fan-Ren Chang
Department of Electrical Engineering

National Taiwan University
Taipei, Taiwan 106, R.O.C.

Key Words: positive real control, descriptor system, generalized
algebraic Riccati equation.

ABSTRACT

In this paper, some useful properties of generalized algebraic
Riccati equations and generalized positive real lemma for descriptor
systems are given.  Based on these results, the main purpose of this
paper is to investigate the positive real (PR) control problem for de-
scriptor systems.  Necessary and sufficient conditions are derived for
the solution to this problem expressed in terms of two generalized al-
gebraic Riccati equations which may be considered to be generaliza-
tions of the Riccati equations obtained by Sun  et al. (1994).  When
these conditions hold, state space formulae for all controllers solving
the problem are also given.

*Correspondence addressee

I. INTRODUCTION

Consider the standard block diagram shown in
Fig. 1. In our problem, the plant G is a descriptor
system described by the following dynamical
equations:

Ex =Ax+B1w+B2u,
G=GOF=

∆
z =C1x+D11w+D12u,  Ex(0–)=Ex0  given,
y =C2x+D21w, (1)

(the subscript “OF” stands for output feedback) where
x∈IRn is the state, and w∈IRp represents a set of ex-
ogenous inputs which includes disturbances to be re-
jected and/or reference commands to be tracked.
z∈IRp is the output to be controlled and y∈IRl is the
measured output.  u∈IRm is the control input.  A, B1,
B2, C1, C2, D11, D12, and D21 are constant matrices
with compatible dimensions.  E∈IRn×n and rankE=r
<n.

The controller K is, in general, also a descriptor
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system described by

   
K = K OF =

∆ E0x 0 = A0x 0 + B0y ,

u = C 0x 0

(2)

where x 0  is the state of the controller.  Note that the
plant and the controller are assumed the same struc-
ture but they may have different E matrices.  The ob-
jective of the control is to internally stabilize G such
that the closed-loop transfer function Tzw is extended
strictly positive real (ESPR, see section III for a pre-
cise definition).  Here closed-loop internal stability
means that the closed-loop system is regular, impulse-
free, and that the states of G and K go to zero from
all initial values when w=0.

This problem, referred to as the ESPR output
feedback control problem, has been recently ad-
dressed and extensively studied in Sun et al. (1994)
for linear time-invariant (LTI) plant and controller
in state space model, in which several necessary and
sufficient conditions in terms of solutions to algebraic
Riccati equations or inequalities(ARE or ARI) were
proposed for the solvability of the ESPR control
problem. State-Space formulas for the controller de-
sign were also given in Sun et al. (1994).  Most
recently, Yung (1999) has characterized all solutions
to this problem.  He also adopted state space
formulation.

The most general motivation for studying this
problem stems from robust and nonlinear control: If
the system uncertainties (linear and/or nonlinear) can
be characterized by positive real properties, then the
classical results in stability theory can be used to
guarantee robust stability provided an appropriate
closed-loop system is strictly positive real(Popov,
1973; Zames, 1966a, 1966b).  Other materials come
from circuit theory (Anderson, 1973) adaptive con-
trol (Astrom, 1983) and stability analysis (Narendra,
1973; Popov,1973).  It is beyond the scope of this
paper to review the vast literature associated with
positive realness theory.  For a more extensive bibli-
ography and review of the literature, see, e.g., Ander-
son et al. (1973), Joshi (1989), Narendra et al. (1973),
Safonov et al. (1987), Sun et al. (1994), and the ref-
erences cited therein.

The main point of this paper is that we adopt
the descriptor systems model rather than the state
space model.  The control theory based on descriptor
system models has been widely developed for many
years: Cobb (1983) first gave a necessary and suffi-
cient condition for the existence of an optimal solu-
tion to the linear quadratic optimization problem and
also extensively studied the notions of controllability,
observability and duality in descriptor systems (Cobb,
1984). The notions concerning controllability and
observability for descriptor systems will not be
reproduced here. See, e.g., Armentano (1986), Cobb
(1984) for details.  The generalized algebraic Riccati
equations(GARE) for descriptor systems have been
comprehensively studied during the past few years
as well.  Lewis (1986), Bender et al. (1987) and
Takaba et al. (1994) constructed different kinds of
GAREs for solving linear quadratic regulator prob-
lems based on certain assumptions.  Recently,
Kawamoto et al. (1996) elaborated the relationship
between dissipation inequality and GARE.  The prob-
lem of inconsistency of initial conditions was ad-
dressed there as well.

This paper is organized as follows: In section
II, we investigate some properties of GAREs and
GARIs.  In section III, the ESPR output feedback con-
trol problems are examined.  The derivations involve
only elementary ideas beginning with a change of
variables and a version of Positive Real Lemma for
descriptor systems, thus the proofs given are simple.
The Generalized Positive Real Lemma is also elabo-
rated in detail in section III. Finally, some conclud-
ing remarks will be given in section IV.

The following notations will be used in this
paper, throughout.  Let G in Fig. 1 be partitioned as

  
G =

G 11 G 12

G 21 G 22

then the transfer function Tzw is expressed as the lin-
ear fractional transformation denoted by

Tzw=LFT(G,K)=
∆

G11+G12K(I–G22K)–1G21.

A compact packed matrix notation

   
E, A B

C D
=
∆

C(sE – A)– 1B + D .

is used as well.  See also Takaba et al. (1994).

II. GENERALIZED ALGEBRAIC RICCATI
EQUATIONS

In this section we study the coupled generalized

Fig. 1  Standard block diagram
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algebraic Riccati equation(GARE, Takaba et al. 1994)

   
ATX + XTA + Q + XTRX = 0 ,

ETX = XTE ≥ 0 ,
(3)

and the generalized algebraic Riccati inequality
(GARI)

   
ATP + PTA + Q + PTRP < 0 ,

ETP = PTE ≥ 0 ,
(4)

together with the associated matrix pencil, called the
Hamiltonian pencil,

  
s E 0

0 ET –
A R

– Q – AT
(5)

where A, Q, R∈IRn×n with Q, R symmetric.  This pen-
cil was named Hamiltonian since the matrix

   
H =

∆ A R

– Q – AT

is a Hamiltonian matrix.  Consider the following rela-
tively simple descriptor system.

Ex =Ax+Bu,

y=Cx+Du,

Ex(0–)=Ex0,  G(s)=
∆

D+C(sE–A)–1B.

It is well known that a descriptor system contains
three different modes: finite dynamic modes, impul-
sive modes and nondynamic modes.  For a detailed
definition, see (Bender and Laub, 1987).  Briefly, let
q=

∆
deg det(sE–A).  Then {E, A} has q finite dynamic

modes, r–q impulsive modes and n–r nondynamic
modes.  Furthermore, if r=q, then there exist no im-
pulsive modes and in this case the system is said to
be impulse-free.  {E, A} is called stable if there exist
no finite dynamic modes in Re[s]≥0.  {E, A} is ad-
missible if {E, A} is regular, impulse-free and stable.
The triple {E, A, B} is said to be finite dynamics
stabilizable and impulse controllable if there exists a
constant matrix K such that {E, A+BK} is admissible.
Similarly, {E, A, C} is called finite dynamics detect-
able and impulse observable if there exists a constant
matrix L such that {E, A+LC} is admissible.  With-
out loss of generality, we can assume that the system
(6) has a Weierstrass form:

  
E = I 0

0 N
, A =

A1 0
0 I

, B =
B1

B2
,

and C=[C1  C2]. (7)

where N is a nilpotent matrix (that is, Nk=0 for some
positive integer k).

Next, we introduce some important preliminary
results, which are collected in the following and were
essentially taken from Wang, Y. Y. et al. (1993),
Takaba et al. (1994), and Wang, H. S. et al. (1998).
Those results are slightly different from the existing
version, but the proofs are pretty similar.

Proposition 1. Given a matrix quadruple {E, A, Q,
R}, where E, A, Q, R∈IRn×n with symmetric Q, R, and
two matrix pencils,

   
P1(s) =

∆
s

– E
0

+ A
Q

, P2(s) =
∆

s[ – E 0] + [A R] .

Suppose that the pencil sE–A is regular.  Then we
have the following:
(i) Suppose that P1(s)=0 and P2(s)=0 has no zeros

in ℜe(s)≥0, namely P1(s) and P2(s) have full col-
umn and full row ranks, respectively, in ℜe(s)≥0.
Suppose that R≤0.  Furthermore suppose that
{E, A, B} is finite dynamic stabilizable and im-
pulse controllable, and {E, A, C} is finite dynamic
detectable and impulse observable.  Then the
GARE (3) has an admissible solution XE with
ETXE=  XE

T E≥0.
(ii) Consider (6) and the following GARE

   
ATX + XTA + Q + (XTB + C TD)R(BTX + D TC) = 0 ,

ETX = XTE ≥ 0 .

(8)

Suppose that Q, R≥0.  Then GARE (8) has an admis-
sible solution XE with ETXE=  XE

T E≥0 if and only if
ℑm E+A(ℵ(E))=IRn with sE–A=0 having no zeros in
ℜe(s)≥0 and G(s)=

∆
C(sE–A)–1B where CTC=Q and I–

DTD=R such that ||G(s)||∞<1.  Here ℑmE and ℵ(E)
denote the image and null space of E, respectively. �

Recall that a solution to the GARE is said to be
admissible if the pair {E, A+RX} is admissible, i.e.
stable and impulse-free.  In view of Proposition 1, a
corollary is readily obtained.

Corollary 2. Suppose that Q≥0 and R≥(or ≤)0 . Sup-
pose that {E, A, B} is finite dynamic stabilizable and
impulse controllable, {E, A, C} is finite dynamic de-
tectable and impulse observable, and sE–A is regular.
Furthermore, suppose that the Hamiltonian pencil (5)
has no pure imaginary zeros and satisfies
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   ℑm E + H (ℵ( E )) = IR 2n

where 
   

E =
∆ E 0

0 ET .  Then the GARE (3) has an ad-

missible solution. �

In the sequel, we seek the condition in which
one can deduce the existence of admissible solutions
to GARE (3) from the existence of solutions to GARI
(4).  As we can see from the standard results on H∞
control for linear time-invariant systems, this deduc-
tion is of particular interest.  In the subsequent
development, we suppose that ℑmE+A(ℵ(E))=IRn.
Consequently, we can assume, without loss of
generality, that

  
{E, A} = I 0

0 0
,

A1 0
0 – I

(9)

which is a modified Weierstrass form for impulse-
free pair.

Lemma 3. Suppose that ℑmE+A(ℵ(E))=IRn.  Suppose
that R≥0 and the pencil P2(s) has full row rank on
the imaginary axis.  Furthermore, suppose that GARI
(4) has a nonsingular solution P with ETP=PTE≥0 and
is such that if {E, A} is given in the form (9), P can
be chosen in the following form:

  
P =

P11 0
P21 P22

 and P11>0, P22>0. (10)

Then the Hamiltonian pencil (5) has no pure imagi-
nary zeros and satisfies

   ℑm E + H (ℵ( E )) = IR 2n
�

P r o o f .  S e t  Q =
  Q 11 Q 12

Q 21 Q 22
 a n d  R = B B T =

  B1B1
T B1B2

T

B2B1
T B2B2

T
 where the partition is compatible

with form (9), and set

S=ATP+PTA+Q+PTBBTP=
  S 11 S 12

S 21 S 22

Then S<0, by hypothesis.  We first show that the
Hamiltonian pencil is column-reduced.  This is
equivalent to showing that

   
H 22 =

∆ – I B2B2
T

– Q 22 I
(11)

is nonsingular.  Observe now that

S
22

=–P22–P22+Q22+P22B2   B2
T P22

=(–I)TP22+P22(–I)+Q22+P22B2   B2
T P22<0

and clearly, [I–jω  R22] has full row rank for all ω∈IR.
Then, by standard results of ARI (Algebraic Riccati
Inequality), this implies that (11) has no eigenvalues
on the jω-axis (see Knobloch et al., 1993), i.e. H22 is
nonsingular.

We can now show that the Hamiltonian pencil
has no pure imaginary zeros.  We assume, for
convenience, that all signals may be complex (i.e. C n)
at this time.  Observe the following identity

x*(ATP+PT)x+x*Qx–u*u+x*PTBu+u*BTPx

=x*(ATP+PTA+Q+PTBBTP)x–(u–BTP)*(u–BTP)

=x*Sx–(u–BTP)*(u–BTP)≤x*Sx. (12)

Consider the descriptor system

Ex =Ax+Bu

Choose an input u(•), an initial condition Ex(0)∈C n

and let x(•) denote the corresponding solution.  Ob-
serving that

  d(x *(t)PTEx(t))
dt

= x *(ATP + PT)x + x *PTBu + u *BTPx ,

the relation (12) yields

   d(x *(t)PTEx(t))
dt

+ x *Qx – u *u ≤ x *Sx . (13)

Suppose, by contradiction, the pencil had zeros on
the imaginary axis.  By definition, there exist vectors
x0∈C n, p0∈C n and a number ω0∈IR such that

   
A – jω0E R

– Q – AT – jω0E
T

x 0
p 0

= 0
0

.

In this relation x0≠0 because, if this were not the case,
the identities

Rp0=0

(A
T
+jω0ET)p0=0

would contradict the hypothesis on pencil P2(s).  The
previous relation yields
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   p 0
*(A – jω0E)x 0 + p 0

*Rp0 = 0 ,

   x 0
*Qx 0 + x 0

*(A – jω0E)*p0 = 0 ,

and therefore

  x 0
*Qx 0 – p 0

*Rp0 = 0 .

Set u(t)=BTp0ejω0t and note that Ex(t)=Ex0ejω0t is the
solution satisfying Ex(0)=Ex0.  Then

  x *(t)PTEx(t) = x 0
*PTEx 0 ,

  x *(t)Qx(t) – u *(t)u(t) = x 0
*Qx 0 – p 0

*Rp0 = 0 ,

  x *(t)Sx(t) = x 0
*Sx 0 .

Inequality (13) yields x 0
* Sx0≥0 which is a contra-

diction, because S is negative definite and x0≠0.
Q.E.D.

Lemma 4. Suppose that ℑmE+A(ℵ(E))=IRn.  Suppose
that Q≥0 and the pencil P1(s) has full column rank
on the imaginary axis.  Furthermore, suppose that
GARI (4)  has a nonsingular solut ion P with
ETP=PTE≥0 and is such that if {E, A} is given in the
form (9), P can be chosen in the following form:

  
P =

P11 0
P21 P22

 and P11>0, P22>0.

Then there exists an admissible solution XE to the
GARE (3) with ETXE=  XE

T E≥0, and having the prop-
erty that {E, A+RXE} is admissible.  �

Proof. The hypothesis on GARI (4) implies that

  
s

ET 0
0 E

–
AT Q

– R – A
= 0

has no zeros on the jω-axis and is column-reduced
which, in turn, implies that

  
s E 0

0 ET –
A R

– Q – AT
= 0 (14)

has no zeros on the jω-axis and is column-reduced.
Set

  
Q =

Q 11 Q 12

Q 21 Q 22
and R =

R11 R12

R21 R22

where the partition is compatible with form (9).  From

(4), there exists a positive definite matrix P22 such
that

(–I)P22+P22(–I)+Q22+   P22
T R22P22<0. (15)

Clearly [I–jωI  Q22]T has full column rank for all
ω∈IR.  This, again from the standard results of ARI
(Knobloch et al., 1993) implies that there exists a
matrix X22=   X22

T ≥0 satisfying the ARE (Algebraic
Riccati Equation)

–X22–X22+Q22+X22R22X22=0

Rewrite pencil (14) as

  

s
I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

–

A1 R11 R12 0

– Q 11 – A1
T 0 – Q 12

0 R12
T R22 I

Q 12
T 0 I Q 22

    
=
∆

s T 0
0 0

–
T1 T2

T3 T4

From ARI (15), the above pencil can be simplified as

    
sT – [T1 – T2T4

– 1T3] =
∆

sT –
A0 R0

– Q0 – A0
T .

The existence of P22 to ARI (15) implies that Q0≥0
(See Willems 1971, Lemma 1).  Moreover, GARI (4)
and ARI (15) together imply that there exists a posi-
tive definite matrix P0(=P11) satisfying

S(P0)=
∆

  A0
T P0+P0A 0+Q 0+P0R 0P0<0. (16)

Equation (16) as well as the hypothesis on pencil
P2(s) implies that there exists a stabilizing solution
X0≥0 satisfying the ARE S(X0)=0 since one can de-
duce that [   A0

T –jωI  Q 0]T has full column rank for all
ω∈IR from the assumption that [AT–jωET  Q]T has full
column rank on the jω-axis. Set

X21=L2−X22L1 and XE=
  X0 0

X21 X22
,

where

    L 1

L 2
=
∆

– T4
– 1T3

I
X0

which will satisfy the GARE (3) with {E, A+RXE}
admissible.  This completes the proof. Q.E.D.

We end up this section by introducing another
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important lemma which relates the GARE to GARI
(in the opposite direction from Lemma 4.)

Lemma 5. Let X– be a solution of GARE (3) having
the property that {E, A+RX–} is admissible.  Then
there exists a nonsingular matrix P satisfying the
GARI (4) and having the property that ETP=PTE≥ETX.

�

Proof. See Wang, H.S. et al. (1998) for detail.

III. POSITIVE REAL CONTROL PROBLEM

1. Positive Real Systems in Descriptor Formula-
tion

We start this section with various definitions of
positive real systems which are essentially generali-
zations of the definitions given in Sun et al. (1994)
for a system in state space model.

Definition 6. Consider the descriptor system (6).
Denote by G(s) its transfer function matrix.  Then

(1) The system (6) is said to be positive real (PR) if
G(s) is analytic in ℜe(s)>0 and satisfies G(s)+
GT(s*)≥0, ∀ℜe(s)>0,

(2) The system (6) is strictly positive real (SPR) if
G(s) is analytic in ℜe(s)≥0 and satisfies G(jω)
+GT(–jω)>0, ∀ω∈[0, ∞),

(3) The system (6) is extended strictly positive real
(ESPR) if it is SPR and G(j∞)+GT(–j∞)>0.      �

The following lemma is a generalization of the
well known Kalman-Yacubovich-Popov positive real
lemma to the descriptor system case.  It plays a cru-
cial role in our later proofs.  This lemma connects
the ESPR property of descriptor systems with solu-
tions of GARE and GARI.

Lemma 7. Generalized Positive Real Lemma

Consider the system (6).  Suppose that D+DT=
∆ ∆

>0 and p=m.  Then the following statements are
equivalent.

(i) The pair {E, A} is admissible and G(s) is ESPR,
(ii) The pair {E, A} is admissible and the Hamilto-

nian pencil    P(S) =
∆

SE – H  with

   
E =

∆ E 0
0 ET , and H =

∆ A – B∆– 1C B∆– 1BT

– C T∆– 1C – AT + C T∆– 1BT
,

has no pure imaginary zeros and satisfies

   ℑmE + H(ℵ(E)) = IR 2n , (17)

(iii) The GARE

   
ATX + XTA + (XTB – C T)∆– 1(XTB – C T)T = 0 ,

ETX = XTE
    (18)

has an admissible solution XE with ETXE=  XE
T E≥0,

(iv) The GARI

   
ATP + PTA + (PTB – C T)∆– 1(PTB – C T)T < 0 ,

ETP = PTE
    (19)

has a nonsingular solution P with ETP=PTE≥0.      �

Proof. Note that the GARE (18) can be rewritten as:

   
(A – B∆– 1C)TX + XT(A – B∆– 1C) + C T∆– 1C

+ XTB∆– 1BTX = 0 ,

ETP = PTE

Then the following implications are immediate from
our preliminary results in section II.

(ii) ⇒ (iii) ⇒ (iv).

The equivalence between (i) and (iv) follows by us-
ing Propostion 1 and the fact that G(s) is ESPR if

and only if 
   

∆
1
2 + ∆

– 1
2(C – BTP)(sE – A)– 1B

∞
<1.  It re-

mains to show the implication: (i) ⇒ (ii).  First ob-
serve that

  det[sE – H] = kdet[sE – A]det[sET + AT]det[G T( – s) + G(s)]

where k is some real constant.  Clearly det   [sE – H]=0,
by hypothesis, has no pure imaginary zeros and is not
identical to zero.  This implies that P (s)=0 has no
pure imaginary zeros.  Next, since the pair {E, A} is
admissible, the two polynomials det[sE–A] and
det[sET+AT] both have degree r.  Furthermore, since
G(s) is ESPR, the rational function  det[GT(–s)+G(s)]
has relative degree 0.  These amount to showing that
the polynomial det   [sE – H]  has degree 2r.  This, in
turn, implies that the pair   {E, H}  is impulse-free,
i.e., (17) is satisfied.  This completes the proof.
Q.E.D.

2. ESPR Control Problem - State Feedback Case

In this subsection, we first study a special and
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important case, namely the state feedback control.
Consider the standard system connection shown in
Fig. 1 with the plant G given by

Ex =Ax+B1w+B2u,
G=GOF=

∆
z =C1x+D11w+D12u,  Ex(0–)=Ex0  given,
y =x. (20)

The following standing assumptions are made
throughout this paper.

(A1) (D11+   D 11
T )=

∆
R0>0,

(A2) {E, A, B2} is finite dynamic stabilizable and im-
pulse controllable,

(A3) The matrix D12 has full column rank
(A4) The matrix pencil P1(s)=

∆
sE1+H1, where

  
E1 =

– E 0
0 0

, H 1 = A B2

C 1 D12

is of full column rank on the jω-axis and is col-
umn reduced (i.e.,   H 1

– 1 (ℑmE1)∩ℵ(E1)={0}).
(A5) {E, A, C2} is finite dynamic detectable and im-

pulse observable
(A6) The matrix D21 has full row rank,
(A7) The matrix pencil P2(s)=

∆
sE2+H2, where

  
E2 =

– E 0
0 0

, H 2 = A B1

C 2 D21

is of full row rank on the jω-axis and is row re-
duced (i.e., ℑmE2+H2(ℵ(E2))=IRn+p).  Note that
E1 is, in general, not equal to E2 (They may have
different sizes).

Before getting started, let’s make some further ob-
servation on the ESPR control problem.  Consider the
standard system connection (1).  Suppose that the fol-
lowing GARE

   R1(X) =
∆

[A – B1R0
– 1C 1 – (B2 – B1R0

– 1D12)∆1
– 1D 12

T R0
– 1C 1]

TX

   + XT[A – B1R0
– 1C 1 – (B2 – B1R0

– 1D12)∆1
– 1D 12

T R0
– 1C 1]

   + XT[B1R0
– 1B1

T – (B2 – B1R0
– 1D12)∆1

– 1(B2 – B1R0
– 1D12)T]X

   + C 1
TR0

– 1(R0 – D12∆1
– 1D 12

T )R0
– 1C 1 = 0    ETX=XTE

has an admissible solution XE with ETXE=  XE
T E≥0,

where ∆1    =
∆

D 12
T R0

– 1 D12.  Define a change of variables
as follows (see also Yung,1999):

r=
∆

w–F1x

q=
∆

D11r+D12(u–F2x) (21)

Then

q=–(D11F1+D12F2)x+D11w+D12u. (22)

where

   F2 =
∆ ∆1

– 1D 12
T R0

– 1(B1
TXE – C 1) – ∆1

– 1B2
TXE (23)

   F1 =
∆

R0
– 1(B1

TXE – C 1 – D12F2) (24)

Pre-multiplying (22) by   D 12
T R0

– 1  and solving it for u,
we obtain

   u = (F2 + ∆1
– 1D 12

T R0
– 1D11F1)x – ∆1

– 1D 12
T R0

– 1D11w

   + ∆1
– 1D 12

T R0
– 1q .

Then the closed-loop system in Fig. 1 can be decom-
posed as two interconnected subsystems as follows:

   Ex = (A + B2F2 + B2∆1
– 1D 12

T R0
– 1D11F1)x

   + (B1 – B2∆1
– 1D 12

T R0
– 1D11)w + B2∆1

– 1D 12
T R0

– 1q

z = (C1+D11F1+D12F2)x+q

r=–F1x+w

and

Ex =(A+B1F1)x+B1r+B2u

q=–D12F2x+D11r+D12u

y=(C1+D21F1)x+D21w.

This is shown pictorially in Fig. 2, where

Fig. 2  Decomposition of the closed-loop system
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P = E,

A + B2F2 B1 – B2∆1
– 1D 12

T R0
– 1D 11 B2∆1

– 1D 12
T R0

– 1

+ B2∆1
– 1D 12

T R0
– 1D11F1

C 1 + D11F1 + D12F2 0 I

– F1 I 0

(25)

and

  

G = E,
A + B1F1 B1 B2

– D12F2 D 11 D12

C 2 + D21F1 D21 0
.

Let x denote the state of G with respect to a given
input w, and z its corresponding output.  Then, by a
standard game-theoretic argument, it can be shown
that

  d
dt

(xTETXEx) – z Tw

   
= 1

2
xTR1(XE)x – 1

2
w – w *(x)
u – u *(x)

T

M
w – w *(x)
u – u *(x)

,  (26)

where u*(x)=F2x, w*(x)=F1x and

    
M =

R0 R12

D 12
T 0

.

Integrating (26) from zero to infinity and setting x(0)
=x(∞)=0 yields

   z T(t)w(t)dt
0

∞
= q T(t)r(t)dt

0

∞
(27)

Equation (27) shows that Tzw (transfer function ma-
trix from w to z) is ESPR if and only if Tqr is. This is
summarized in the following statement.

Proposition 8. Consider the standard system connec-
tion (1). Suppose that the following GARE

   R1(X) =
∆

[A – B1R0
– 1C 1 – (B2 – B1R0

– 1D12)∆1
– 1D 12

T R0
– 1C 1]

TX

   + XT[A – B1R0
– 1C 1 – (B2 – B1R0

– 1D12)∆1
– 1D 12

T R0
– 1C 1]

   + XT[B1R0
– 1B1

T – (B2 – B1R0
– 1D12)∆1

– 1(B2 – B1R0
– 1D12)T]X

   + C 1
TR0

– 1(R0 – D12∆1
– 1D 12

T )R0
– 1C 1 = 0 ,    ETX=XTE

has an admissible solution XE with ETXE=  XE
T E≥0.

Then K internally stabilizes G and Tzw is ESPR if and
only if K internally stabilizes G  and Tqr is ESPR.

The main result of this section reads as follows.

Theorem 9. Consider the plant G=GSF and assume
that assumptions (A1) to (A4) are satisfied.  Then
there exists a state feedback controller u=Fx such that
the resulting closed-loop system is internally stable
and ESPR if and only if the GARE

   R1(X) =
∆

[A – B1R0
– 1C 1 – (B2 – B1R0

– 1D12)∆1
– 1D 12

T R0
– 1C 1]

TX

   + XT[A – B1R0
– 1C 1 – (B2 – B1R0

– 1D12)∆1
– 1D 12

T R0
– 1C 1]

   + XT[B1R0
– 1B1

T – (B2 – B1R0
– 1D12)∆1

– 1(B2 – B1R0
– 1D12)T]X

   + C 1
TR0

– 1(R0 – D12∆1
– 1D 12

T )R0
– 1C 1 = 0 ,   ETX=XTE

has an admissible solution XE with ETXE=  XE
T E≥0,

where ∆1    =
∆

D 12
T R0

– 1 D12.  Moreover, when this condi-
tion holds, all ESPR state feedback controllers can
be parameterized as K=LFT(MSF, Q), where

  

MSF = E,
A + B1F1 + B2F2 0 B2

0 F2 I
– I I 0

,

Q∈RH∞, and D11+D12Q P is ESPR with

  
P = E,

A + B1F1 + B2F2 B1

I 0
,

in which

   F2 =
∆ ∆1

– 1D 12
T R0

– 1(B1
TXE – C 1) – ∆1

– 1B2
TXE (28)

   F1 =
∆

R0
– 1(B1

TXE – C 1 – D12F2) (29)

�



H.S. Wang et al.: The Positive Real Control Problem and the Generalized Algebraic Riccati Equations 211

(i) Proof of Necessity

Suppose that u=Fx is one such controller.  Us-
ing this as a feedback law and closing the loop to get
(see Fig. 1)

  
T zw = E,

A + B2F B1

C 1 + D12F D 11
,

which is internally stable and ESPR.  By generalized
Positive Real Lemma (Lemma 7), it follows that there
exists a nonsingular matrix P satisfying the GARI

   
(A + B2F)TP + PT(A + B2F) + [PTB1

– (C 1 + D12F)T]R0
– 1[PTB1 – (C 1 + D12F)T]T < 0 ,

ETP = PTE ≥ 0 .

After some algebraic manipulation, the above GARI
can be rewritten in a more comapct form, i.e.

R1(P)<0, with ETP=PTE≥0. (30)

We see that if the hypotheses in Lemma 4 were
satisfied, then we can deduce from (30) that GARE
R1(X)=0 has an admissible solution.  In view of
Lemma 4, we need to prove the following:

1. The pencil

   
– jωE + [A – B1R0

– 1C 1 – (B2 – B1R0
– 1D12)∆1

– 1D 12
T R0

– 1C 1]
C 1

TR0
– 1(R0 – D12∆1

– 1D 12
T )R0

– 1C 1

has no pure imaginary zeros.

It is easy to verify this point by assumption (A4).

2. {E, A–B1   R0
– 1 C1–(B2–B1   R0

– 1 D12)    ∆1
– 1D 12

T R0
– 1 C1} is

impulse-free.
Observe the following identity,

   
=

I – (B2 – B1R0
– 1D12)∆1

– 1D 12
T R0

– 1

0 I

I – B1R0
– 1

0 I

   
⋅

– jωE + A B2

C 1 D12

   

=

– jωE + A – B1R0
– 1C 1 0

– (B2 – B1R0
– 1D12)∆1

– 1D 12
T R0

– 1C 1

C 1 D12

Since P1(s) is column reduced, the matrix pencil
on the right side of the above identity should be
column reduced as well.  This implies that {E, A–
B1   R0

– 1 C1–(B2–B1   R0
– 1 D12)    ∆1

– 1D 12
T R0

– 1 C1} is im-
pulse-free.  This completes the proof of necessity.

(ii) Proof of Sufficiency

Suppose now that the GARE R1(X)=0 has an ad-
missible solution XE.  Motivated by Proposition 8,
we first make a change of variables defined as (21)
which we reproduce here for the sake of clarity.

r=
∆

w–F1x

q=
∆

D11r+D12(u–F2x).

Then the closed-loop system in Fig. 1 with G=GSF

can be decomposed as two interconnected subsystems
as follows:

   Ex = (A + B2F2 + B2∆1
– 1D 12

T R0
– 1D11F1)x

   + (B1 – B2∆1
– 1D 12

T R0
– 1D11)w + B2∆1

– 1D 12
T R0

– 1q

z=(C1+D11F1+D12F2)x+q

r=–F1x+w

and

Ex =(A+B1F1)x+B1r+B2u

q=–D12F2x+D11r+D12u

y=x.

This is shown pictorially in Fig. 3, where

Fig. 3 Decomposition of the closed-loop system in state feedback
case
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and

  

G SF = E,
A + B1F1 B1 B2

– D 12F2 D11 D12

I 0 0
.

Set K=
  

EK,
AK BK

C K 0
.  Then the dynamical equa-

t ions for the l inear fractional  transformation
LFT(G SF, K) are:

  

LET(G SF, K) = E 0
0 EK

,
A + B1F1 B2C k B1

BK AK 0
– D12F2 D12C K D11

   
=
∆

E, A B
C D

,

and the dynamical equations for the closed-loop sys-
tem LFT(GSF, K) are

  LFT(G SF, K) = LFT(P, LFT(G SF, K))

   
=
∆

EC,
AC BC

C C D C

where

  
AC =

A + B2F2 AC1

AC2 A

with AC1=[–B2F2  B2CK] and AC2=
  – B1F1

0
,

  
BC =

B1

B
, CC = [C 1 + D12F2 C] ,

and DC=D11, EC=
  E 0

0 E

Let    ∆ =
∆

D
T

+ D  and ∆C    =
∆

D C
T +DC.  It is easy to

see that ∆=DC=R0>0.  Now using equations Eqs. (28)
and (29), it is straightforward but tedious to verify
that, with

   
XC =

∆ XE 0

0 X

for some X ,

   RC(XC) =
∆

(AC – BC∆C
– 1CC )TXC + XC

T (AC – BC∆C
– 1CC )

   + C C
T ∆C

– 1CC + XC
T BC∆C

– 1BC
T XC

  
=

R1(XE) 0

0 R(X)

where

   R(X) =
∆

(A – B∆– 1C)TX + X
T
(A – B∆– 1C)

   + C
T∆– 1C + X

T
B∆– 1B

T
X .

Furthermore, it is straightforward to verify that

   AC – BC∆C
– 1CC + BC∆C

– 1BC
T XC

   

=
A + B1F1 + B2F2 *

0 A – B∆– 1C + B∆– 1B
T
X

where the ‘*’ stands for an irrelevant entry.  Hence,
using the fact that XE is an admissible solution to the
GARE R1(X)=0 together with Proposition 8, we can
conclude that XC is an admissible solution to the
GARE RC(XC)=0 if and only if X  is an admissible
solution to the GARE   R(X) =0, and, in addition,

 EC
T XC=  XC

T EC≥0 if   E
T
X = X

T
E ≥0.  Then K internally

stabilizes GSF and Tzw is ESPR if K internally stabi-
lizes G SF and Tqr is ESPR.  The rest of the proof is

   

P = E,

A + B2F2 B1 – B2∆1
– 1D 12

T B0
– 1D11 B2∆1

– 1D 12
T R0

– 1

+ B2∆1
– 1D 12

T R0
– 1D11F1

C 1 + D11F1 + D12F2 0 I

– F1 I 0

(31)
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then to find all internally stabilizing K for G SF such
that Tqr is ESPR.

Take an admissible realization of Q:

  
Q = EQ,

AQ BQ

C Q DQ
.

Since Q∈RH∞, {EQ, AQ} is admissible.  Note that the
dynamical equations for D11+D12QP are

  

E 0

0 EQ

,

A + B1F1 + B2F2 0 B1

BQ AQ 0

D12DQ D12C Q D 11

   
=
∆

E, A B
C D

.

The fact that {E, A+B1F1+B2F2} is admissible
implies that   { E , A }  is also admissible.  Together
with the hypothesis that D11+D12QP, is ESPR, it fol-
lows from Lemma 7 that there exists a matrix  X
which satisfies the GARE

  
( A – B R0

– 1 C )T X + X T( A – B R0
– 1 C )

+ C TR0
– 1 C + X T B R0

– 1 B T X = 0 ,

E T X = X T E ,

with   E T X = X T E >0 and is such that the matrix pair
{   E , A – B R0

– 1 C + B R0
– 1 B T X } is admissible.  The

dynamical equations for the closed-loop system are:

LFT(GSF, K)=LFT(GSF, LFT(MSF, Q))

  

=

E 0 0

0 E 0

0 0 EQ

,

  
A + B2F2 – B2DQ B2DQ B1

+ B2DQ

B2DQ A + B1F1 + B2F2 B2DQ 0

– B2DQ

BQ – BQ AQ 0

C 1 + D12F12 – D12DQ D12DQ D11

+ D12DQ

.

Apply an equivalent  transformation with M=
  I 0 0

I – I 0
0 0 I

 on the left and N=M–1 on the right to the

last realization to get

   
LFT(G SF, K) = E °, A ° B °

C ° D ° ,

where

   

E ° =

E 0 0

0 E 0

0 0 EQ

   
A ° =

A + B2F2 A1
°

A2
° A

with

   
A1

° = [B2DQ B2DQ] and A2
° =

– B1F1

0
,

   
B ° =

B1

B
, C ° = [C 1 + D 12F2 C ]

and

   D ° = D = D11

Then it can be shown by a routine calculation that
the matrix

   
X ° =

∆ XE 0
0 X

satisfies the GARE

   
(A ° – B °R0

– 1C °)TX ° + X °T(A ° – B °R0
– 1C °)

+ C °TR0
– 1C ° + X °TB °R0

– 1B °TX ° = 0 ,

E °TX ° = X °TE ° ,

    (32)

with E°TX°=X°TE°≥0.  Moreover, it is straightforward
to show that the matrix pair

   {E °, A – B °R0
– 1C ° + B °R0

– 1B °TX °}

  

= E 0
0 E

,

A + B1F1 *

+ B2F2

0 A – B R0
– 1 C

+ B R0
– 1 B T X
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is admissible.  Hence, X° is an admissible solution to
the GARE (32).  It now follows from Generalized
Positive Real lemma that the controller K=LFT(MSF,
Q) for any given Q∈RH∞ with D11+D12QP ESPR does
internally stabilize GSF and render the closed-loop
system ESPR.

To complete the proof, we need to show that for
any given state feedback controller K  that achieves
closed-loop internal stability and ESPR can be ex-
pressed in the form of LFT(MSF, Q ) for some Q ∈RH∞

with D11+D12Q P ESPR.  Now introduce

   

MSF =
∆

E,
A + B1F1 – B2F2 B2

– F2 – F2 I
I I 0

.

Then K  internally stabilizes M SF since K  internally
stabilizes G SF by Proposition 8. Thus LFT(M SF, K )
∈RH∞.  Let    Q =

∆
LFT(M SF, K )∈RH∞.  Then it can be

shown after some algebraic manipulation that
D11+D12Q P=LFT(G SF, K ).  Again, it follows from
Proposition 8 that D11+D12Q P is  ESPR.  Moreover,
it is straightforward to verify that LFT(MSF, Q )=LFT
(MSF, LFT(M SF, K ))=LFT(NSF, K ), where

  N SF =

  

E 0
0 E

,

A + B1F1 + 2B2F2 – B2F2 – B2F2 B2

B2F2 A + B1F1 – B2F2 B2

F2 – F2 0 I
– I I I 0

.

Conjugating the states of NSF by 
  I 0

– I I
 on the left

and 
  I 0

– I I

– 1

= I 0
I I

 on the right yields

  

N SF = E 0
0 E

,

A + B1F1 – B2F2 – B2F2 B2

+ B2F2

0 A + B1F1 0 0
+ B2F2

0 – F2 0 I
0 I I 0

  = 0 I
I 0

.

Thus LFT(MSF, Q )=LFT(NSF, K )=K .  This completes
the proof.

Remark. The parameter Q above is governed by an
ESPR-like constraint.  The weighting matrices D12

and P  can be eliminated by multiplying certain ma-
trix inverses as described in Zhou (1996) which gives
all state feedback controllers for H∞ control problem.
Nevertheless,  the influence of D11 cannot be
eradicated.

IV. ESPR OUTPUT FEEDBACK CONTROL
PROBLEM

1. Central Controller

Before proceeding to the main problem of this
paper, we need a preliminary result which is stated in
the following theorem.

Theorem 10. Consider the standard system connec-
tion (Fig. 1) with

Ex=Ax+B1w+B2u

G=GFI=
∆

z=C1x+D11w+D12u,

  y = x
y .

Suppose that assumption (A1) to (A4) hold.  Then
the ESPR full information control problem for de-
scriptor systems is solvable if and only if the GARE
R1(X)=0 has an admissible solution XE with ETXE=

 XE
T E≥0.  Moreover, if this condition is satisfied, one

such controller is given by u=[F2  0]y.  �

Remark. The proof is pretty similar to the proof of
Theorem 9 and is, thus, omitted.  Note that the as-
sumption (A1) can be replaced by a weaker one.  We
will not pursue this point here.

The following theorem provides a the necessary
and sufficient condition for the solvability of ESPR
output feedback control problem.

Theorem 11. Consider the standard system connec-
tion (Fig. 1) with G=GOF.  Suppose that assumptions
(A1) to (A7) hold.  Then the following statements are
equivalent.

(I) There exists a controller of the form (2) such that
the resulting closed-loop system is internally
stable and ESPR.

(II) (i) the GARE R1(X)=0 has an admissible solu-
tion XE with ETXE=  XE

T E≥0.
(ii) the GARE
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   R3(Z) =
∆

AZZ + Z TAZ
T – Z T(C 2Z

T ∆2
– 1C2Z – F2

T∆1F2)Z

  + B1ZR0
– 1B1Z

T = 0 ,

  EZ = Z TET

has an admissible solution ZE with EZE=
 Z E

T ET≥0, where

   ∆2 =
∆

D21R0
– 1D 21

T

   AZ =
∆

A + B1R0
– 1(B1

TXE – C1) – B1R0
– 1D 21

T ∆2
– 1C2Z

   B1Z =
∆

B1(I – R0
– 1D 21

T ∆2
– 1D21)

   C2Z =
∆

C2 + D21R0
– 1(B1

TXE – C1)

Moreover, when these conditions are satisfied, one
such controller is given as in the form (2) with

  E0 = E

  A0 = A + B2C0 – B0C2

  + (B1 – B0D21)R0
– 1(B1

TXE – C1 – D12C0)

   B0 = (Z E
TC 2Z

T + B1R0
– 1D 21

T )∆2
– 1

  C0 = F2 �

Before giving the proof of the theorem, we note that
the hierarchically coupled pair of GAREs given above
can be further manipulated to yield two mutually
decoupled GAREs, with a separated additional spec-
tral radius condition.  This is summarized in the fol-
lowing statement.

Corollary 12. Suppose that GARE R1(X)=0 has an
admissible XE with ETXE=  XE

T E≥0.  Suppose also that
the following conditions are satisfied.

(i) The GARE

   R2(Y) =
∆

[A – B1R0
– 1C1 – B1R0

– 1D 21
T ∆2

– 1(C2 – D21R0
– 1C1)]Y

   + Y T[A – B1R0
– 1C1 – B1R0

– 1D 21
T ∆2

– 1(C2 – D21R0
– 1C1)]T

   + Y T[C 1
TR0

– 1C1 – (C2 – D21R0
– 1C1)T∆2

– 1(C2 – D21R0
– 1C1)]Y

   + B1R0
– 1(R0 R21

T ∆2
– 1D21)R0

– 1B1
T = 0

EY=YTET,

has an admissible solution YE with EYE=  Y E
T ET≥0

(ii) The Spectral Radius ρ(YE, XE)<1

Then the condition (II)  of Theorem 11  holds.

Moreover, when these conditions are satisfied, the
matr ices  XE,  Y E and  Z E have  the  fo l lowing
relationship:

ZE=(I–YEXE)–1YE=YE(I–XEYE)–1. �

Remark. This corollary is easily verified by involv-
ing some simple algebraic calculations.  Unlike the
LTI case [7], this result is, in general, not a neces-
sary and sufficient condition since the matrix I+XEZE

may not be invertible.

(i) Proof of Sufficiency of Theorem 11

Observe that the closed-loop system (1)-(2) can
be written as

    εC
x
e = AC

x
e + BC w

   z = CC
x
e + DCw

where

   
εC =

∆ E 0

0 E0

    
AC =

∆ A + B2C0 – B2C0

A – A0 + B2C0 – B0C2 A0 – B2C0

    
BC =

∆ B1

B1 – B0D 21

    CC =
∆

[C 1 + D12C0 – D12C0]

    DC =
∆

D11

and e    =
∆

x – x 0

The GARE R3(Z)=0 can be rewritten as:

  R3(Z) = ( A Z – B ZR0
– 1 C Z)Z + Z T( A Z – B ZR0

– 1 C Z )T

  + BZ R0
– 1 B Z

T + Z T C Z
TR0

– 1 C Z Z = 0 ,

EZ=ZTET

where

   A Z =
∆

AZ – Z E
TC 2Z

T ∆2
– 1C 2Z + B ZR0

– 1 C Z

   B Z =
∆

B1Z – Z E
TC 2z

T ∆2
– 1D 21

   C Z =
∆

R0
1/2∆1

1/2F2
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Note that ZE is also the admissible solution to GARE
(33).

By Generalized Positive Real Lemma, we can
conclude that {ET,   A Z

T } is admissible and   B Z
T (sET–

  A Z
T )–1   C Z

T +   D 11
T  is ESPR. This, in turn, implies that

{E,   A Z } is admissible and   C Z (sE–   A Z )–1   BZ +D11 is
ESPR.

Again by Generalized Positive Real Lemma, the
GARE

  R4(W) = ( A Z – BZ R0
– 1 C Z )TW + WT( A Z – BZ R0

– 1 C Z )

  + C Z
TR0

– 1 C z + WT B ZR0
– 1 B Z

TW = 0

ETW=WTE

has an admissible solution WE with ETWE=  WE
T E≥0.

Now Set

    
PC =

∆ XE 0
0 WE

.

Clearly,    E C
T PC = PC

T EC .  Lengthy but otherwise rou-
tine calculation shows that PC is an admissible solu-
tion to the GARE

   AC
T P + PTAC + (PTBC – CC

T )R0
– 1(PTBC – CC

T )T = 0 ,

    εC
T P = PTεC

with     εC
T PC = PC

T εC ≥0.  It follows, again from Gener-
alized Positive Real Lemma, that (2) is a stabilizing
controller such that Tzw is ESPR.  This completes the
proof of sufficiency.

(ii) Proof of Necessity of Theorem 11

Suppose that KOF is one solution.  Then the con-
troller KFI=KOF[C2  D21] solves the FI problem. From
Theorem 10, it follows that GARE R1(X)=0 has an
admissible solution.  Consequently, we see that F1,
F2 are well defined.  As in the state feedback case,
we shall make a change of variables described by (21).
Then by a similar argument as in the proof of Theo-
rem 9, the closed-loop system in Fig. 1 can be de-
composed as two interconnected subsystems.  This is
illustrated in Fig. 4, where P  is given as in (31) and

  

GOF = E,
A + B1F1 B1 B2

– D12F2 D11 D12

C 2 + D21F1 D21 0
.

Since the GARE R1(X)=0 has an admissible

solution XE with ETXE=  XE
T E≥0, then, by Proposition

8, K internally stabilizes GOF and Tzw is ESPR if and
only if K internally stabilizes G OF and Tqr is ESPR.
The rest of the necessity proof follows by observing
first that K internally stabilizes G OF and Tqr is ESPR
if and only if KT internally stabilizes  G OF

T
 and  T qr

T  is
ESPR.  Now introduce

   G b =
∆

G OF
T

  

= ET,

(A + B1F1)
T – F2

TD 12
T (C2 + D21F1)

T

B1
T D 11

T D 21
T

B2
T D 12

T 0

   

=
∆

E,

A B1 B2

C 1 D11 D12

C 1 D21 0

.

As a consequence of Proposition 8 and the above
observation, the ESPR OF problem for Gb is also
solvable.  Again, suppose that Kb solves the ESPR
OF problem for Gb then the controller Kb=[  C2     D21 ]
solves the FI problem inherited from Gb.  It follows,
again from Theorem 10, that GARE

   R1(X) =
∆

[A – B1R0
– 1C1 – (B2 – B1R0

– 1D12)∆1
– 1D 12

T R0
– 1C1]TX

   + XT[A – B1R0
– 1C1 – (B2 – B1R0

– 1D12)∆1
– 1D 12

T R0
– 1C1]

   + X[B1R0
– 1B1

T – (B2 – B1R0
– 1D12)∆1

– 1(B2 – B1R0
– 1D12)T]X

   + C 1
TR0

– 1(R0 – D12∆1
– 1D 12

T )R0
– 1C1

Fig. 4 Decomposition of the closed-loop system in output feed-
back case
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  ETX = XTE

has an admissible solution X  with  ETX =  XTE ≥0 where
 R0 =   D 11

T
+   D11 =R0 and  ∆1 =   D 12

T R0
– 1D12 =∆2.  It is easy

to verify that  R1 (X) is exactly R3(X).  This shows that
   X =
∆

ZE indeed exists.  This completes the necessity
proof.

2. Characterization of All ESPR Output Feedback
Controllers

The following theorem, which is the main re-
sult of this section, characterizes all output feedback
controllers that achieve closed-loop internal stability
and ESPR

Theorem 13. Suppose that assumptions (A1) to (A7)
are satisfied.  Suppose also that condition (II) of
Theorem 11 holds.  Then the set of all output feed-
back controllers that achieve closed-loop internal sta-
bility and ESPR can be parameterized as K=LFT
(MOF, Q), where

  

MOF = E,

A0 B0 B1

C0 0 I

– (C 2 + D21F1) I 0

,

A 0, B 0, C 0 are defined as in Theorem 11,

   B1 =
∆

(I + XEZ E)T(B2 – B1R0
– 1D12)

  + (C1Z E + D 21
T B0

T
)TR0

– 1D12 (34)

Fig. 5  Block diagram for LFT(Gb, Kb)

Fig. 6  Decomposition of LFT(Gb, Kb)

and Q∈RH∞ with D11+D12Q D21 ESPR. �

Proof. From subsection (ii), the problem of param-
eterizing all internally stabilizing controllers for GOF

such that Tzw is ESPR is equivalent to the problem of
parameterizing all internally stabilizing controllers Kb

for Gb  such that  T qr
T  is ESPR.  In what follows, we

shall focus on the problem of parameterization of all
internally stabilizing controllers Kb for Gb such that

 T qr
T  is ESPR.  Denote by x , {w , u } and {z , y } the

state, inputs and outputs of Gb, respectively, as shown
in Fig. 5.  Next, make a change of variables as follows:

   r =
∆

w – F1x

   q =
∆

D11 r + D12(u – F2x)

where

   F1 =
∆

R0
– 1(B1

TX – C1 – D12F2)

   F2 =
∆ ∆1

– 1D 12
T R0

– 1(B1
TX – C1) – ∆1

– 1B2
TX .

Then it follows, by direct verification using the same
arguments as before, that the closed-loop system in
Fig. 5 can be decomposed as two interconnected
subsystems. This is shown pictorially in Fig. 6, where

   

Pb = E,

A + B2F2 B1 – B2∆1
– 1D 12

T R0
– 1D11 B2∆1

– 1D 12
T R0

– 1

+ B2∆1
– 1D 12

T R0
– 1D11F1

C1 + D11F1 + D12F2 0 I

F1 I 0
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and

  

G b = E,

A + B1F1 B1 B2

– D12F2 D11 D12

C 2 + D21F1 D21 0

.

Again, applying Proposition 8 shows that Kb inter-
nally stabilizes Gb and TqrT=  T zw

 is ESPR if and only
if Kb internally stabilizes G b and  T qr  is ESPR.

Now let L=
∆

  F2
T =   C 0

T
, then simple algebra shows

that {E , A +   B1F1 +L(  C2 +   D 21F1 )}={ET, (A+B1F1+
B2F2)T which is admissible.  Also note that if we let
F=

∆
–   B0

T
, then it is straightforward to verify that {E ,

A +   B1F1 +  B2 F}={ET,  AZ
T –    C 2Z

T ∆2
– 1 C2ZZE+   F2

T ∆1F2ZE},
which is also admissible since ZE is an admissible so-
lution to R3(Z)=0.  Then, from Theorem 2 of Wang,
H. S. et al. (1997), all internally stabilizing control-
lers for G b can be parameterized as Kb = LFT(Mb,
Qb) with Qb∈RH∞, where

  

Mb = E,

A + B1F1 – B2B0
T

– C 0
T

B2

+ C 0
T
(C2 + D21F1)

– B0
T

0 I

– (C2 + D21F1) I 0

.

It is easy to see that Mb can be rewritten as

  

Mb = E,

A0
T

– C 0
T

(C2 + D21F1)
T

– B0
T

0 I

– B1
T

I 0

,

where B 1 is as defined by (34).
Moreover, a little bit of algebra shows that

  T qr = LFT(G b, LFT(Mb, Q b)) = D 11
T + D 21

T Q bD 12
T .

So  T qr  is ESPR if and only if   D 11
T +   D 21

T Qb   D 12
T  is

ESPR.
Thus all internally stabilizing controllers for

 G OF
T

 such that  T qr
T is ESPR can be parameterized as

Kb=LFT (M b ,  Qb) ,  where  Qb∈RH∞ wi th    D 11
T +

  D 21
T Qb   D 12

T  ESPR.  Consequently, all internally stabi-
lizing controllers for G OF such that Tqr is ESPR can
be parameterized as K=  K b

T =LFT(  Mb
T ,  Q) where

Q    =
∆

Q b
T ∈RH∞ with D11+D12QD21 ESPR. It is easy to

see that  Mb
T =MOF.  This completes the proof. Q.E.D.

The parametrization given above is an implicit
one.  We leave this form here for the readers’ sake of
comparision with the SF parametrizaton.  However,

the parametrization can be explicitly defined via
simple algebraic manipulations.

Theorem 14. Suppose that assumptions (A1) to (A7)
are satisfied.  Suppose also that condition (II) of
Theorem 11 holds.  Then the set of all output feed-
back controllers that achieve closed-loop internal sta-
bility and ESPR can be parameterized as K=LFT
(  Mb

T
OF, G ), where

   

MOF= E,

A0 – B1D 12
– L B0 + B1D 12

– L B1D 12
– L

⋅ D11(D 21
– R + F1) ⋅ D11D 21

– R

– C 0 – D 12
– LD11 D 12

– LD11D 21
– R D 12

– L

⋅ (D 21
– R + F1)

– (D 21
– RC2 + F1) D 21

– R 0

,

with Q  ESPR, where   D 12
– L  and   D 21

– R  denote any left
and right inverses of D12 and D21, respectively.      �

Proof. The proof is fairly straightforward, thus
omitted.

V. CONCLUSION

In this paper, we have given the descriptor for-
mulations of all state feedback and output feedback
controllers, respectively, that achieve closed-loop
internal stability and ESPR.  We have also investi-
gated some properties of the GARE.  The ESPR con-
trol problem for which D11+   D 11

T >0 (assumption (A1))
is examined. (A1) is a necessary condition for an
ESPR problem to be solvable in the usual linear time-
invariant case; but, quite the contrary, this is no longer
the case for the descriptor systems.

As a bottleneck of the quadratic optimization
problems, we believe it is time for us to survey some
properties of the generalized algebraic Riccati
equation.  In this paper, we have recovered some prop-
erties of the coupled GARE (3) and GARI (4).  It’s
seen that GAREs have a property similar to the mono-
tonicity of AREs: If X is an admissible solution of a
GARE and P is a solution of the GARI deduced from
the GARE, then, xTETPx–xTETXx>0 for all x∈ℑmE.

Parameterization of all output feedback control-
lers is via the Youla parameterization for descriptor
systems.  The parameterization is given in an explicit
form; but this is not the situation for the state feed-
back parameterization.  We see that state feedback
controllers have no influence on “D11w” term; hence,
it is reasonable that the constraint on Q should in-
volve the D11 matrix.
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NOMENCLATURE

ℑmE image space of matrix E
ℵ(E) null space of matrix E

  C + closed right-half complex
plane

E, A, B, B1, B2, C, C1, C2 constant matrices
D, D12, D21 constant matrices
Ak, B1k, C1k, Dk, R constant matrices
X, P variable matrix in gener-

alized algebraic Riccati
equation (GARE)

G(s), K(s) transfer function matrices
J1(u,w), J2(u,w) cost functional used in

Nash game
X1, X2, Q1, Q2 admissible solution of

GARE
K, K1, K2 static feedback gain ma-

trices
H2 Hilbert space
H∞ Hardy space
RH∞ the set of all real rational

proper stable matrix func-
tions
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描述系統之正實控制問題與廣義代數Riccati
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摘　要

本文首先探討描述系統的廣義代數Riccati方程式以及廣義正實引理的一

些性質。以這些結果為基礎，本文的主要目的是求解描述系統正實控制問題的

所有穩定控制器。描述系統輸出正實控制問題有解的充分必要條件為兩個廣義

代數Riccati方程式有穩定解。這一結果可視為由 Sun等人（1994）所得代數

Riccati方程式結果的推廣。在正實控制問題有解的情況下，本文給出所有解的

狀態空間表示式。

關鍵詞：正實控制，描述系統，廣義代數Riccati方程式。


