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The state—space realization for the inner factor is obtained as Abstract—n this note, we study the’H ., control problem for nonlinear
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servable. Indeed, by transforming the state-space realization into ¢8gj inequalities plus a weak coupling condition. Moreover, a parameteri-

transfer matrix, we find that zation of a family of output feedback controllers solving the problem is also
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identical to the result in [12].

To conclude this note, we would like to point out that for the case
det(F>) = 0, the matrix pencil method as in [1], [4], and [5] can also
be used to compute the solutidi. However, it is not easy to program, For the purpose of control, nonlinear descriptor systems are fre-
in terms of the accuracy of the stabilizing solution to (29). The methétiently described by a set of differential-algebraic equations (DAEs)
from [11] seems to be more effective in this regard. It should also be
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of the form wherez £ col(xy,...,x,)arelocal coordinates for andimensional

&1 =f(21, 22, w) ) state-space m_anlfolal’.ngnls_ a _constant matrl_x and (0, 0) = ()_. The

) constant matrixy € R"*" is, in general, a singular matrix with rank
0=g(z1, @2, u) 2) E = r < n. Without loss of generality, we can assume that
. . I
or in a more compact foriz = F(z, «), whereE = {0 g} and - |:I1‘ U}
o o]

z=[2F 2017 £ col(a1,...,xn) are local coordinates for andi-

The following definition will be used (see [2]).
Definition 1: [2] TheDAE (3) is said to be of (uniform) index one
if the constant coefficient system

mensional state—space manifdldIn the state—spack, dynamic state
variablesr; and instantaneous state variabdesre distinguished. The
dynamics of the states is directly defined by (1), while the dynamics
of x2 is such that the system satisfies the constraint (2): In_ many cases, Ew(t) — Fo(&, 0)w(t) = g(t)
the algebraic constraint (2) of the full DAEs can be eliminated (usu-
ally due to the consistence of initial conditions). As a consequence, iiémpulse free for alk in a neighborhood of the graph of the solution,
DAESs reduce to a well-known state-variable system. NeverthelessWhereF: denotes the Jacobian matti'/0z.
some cases this kind of elimination is not possible (often due to in-The index of a DAE can be thought of as the generalization of the
consistent initial conditions), since it may result in loss of accuracy 8ipotent index [2] of a linear time-invariant descriptor system. The
loss of necessary information. A large class of physical systems dagtion of index provides an easy way to guarantee the solvability of a
be modeled by this kind of DAEs. The paper by Newcomb and Dziur@ziven DAE. Rewrite the DAE (3) in the following form:
[6] gives many practical examples, including circuit and system design, I, 07 [ Fi(z1, 22, u)
robotics, neural network, etc., and presents an excellent review on non- [ 0 0} { } = { ' ]
linear DAEs. Many other applications of DAEs, as well as numerical
treatment, can be found in [2]. Suppose that the aforementioned DAE is of index one. Then, from

Inthis note, we investigate the contractive property of DAEs, nameBefinition 1, itis necessary thad /0 ) F» (21, 22, 0) is nonsingular
theH.. control problem. Our note is mainly divided into two parts. Thé@round the equilibrium point = 0. Consequently, by the implicit
first part concerns various sufficient conditions for the solvability of thiinction theorem, there exists a functib(w) so that the DAE reduces
Hw control problem. Both state feedback and output feedback categin ODE
are considered. We seek sufficient conditions under which a given DAE
has anC, gain no greater than a prescribed positive numbeith in- z1 = Fi(x1, h(z1),u)
ternal stability, and in the mean time, eliminates possible impulse dy- ) ) o
namics and other singularity-induced nonlinearity of the system. Wdlich is always solvable provided that is smooth enough. This im-
will derive a family of output feedback controllers solving the,  Plies that DAE (3) is solvable.
control problem. The underlying ideas are differential games and dissi/n [9], some stability definitions and Lyapunov stability theorems for
pation inequalities. These ideas were also used by Isidori and KangTghlinear descriptor systems have been given. For the sake of brevity,
and Yunget al.[11], in which they have given the central controller andve do not reproduce those results here. Instead, we will derive an im-
a family of controllers, respectively, solving thé.. output feedback Proved version of the Lyapunov stability theorem for DAE (3).
control problem for general nonlinear systems in usual state-variablelheorem 2: Consider DAE (3) withu = 0. Let Ex(0) = Euo
form, i.e., theE matrix is nonsingular. be given. Suppose that there exist€'a functionV : R” — IR

The second part of this note is devoted to a converse result, nameishing at the points wherz = 0 and positive elsewhere which
the derivation of necessary conditions for solutions of local disturbangatisfies the following properties:
attenuation to exist. We obtain necessary conditions given in terms of i) (§/9z)V = VT(,,)E for someC? functionV : R"* — IR";
the existence of nonnegative solutions to two Hamilton—Jacobi inequal- ji) ";’VT(Q)F(Q;_/ 0) < 0forallz # 0;
ities, together with a weak coupling condition. A similar result has pre- jiiy E7V, = V,/ E > 0, whereV, denote the Jacobian &f.
viously been published in [1] for{’-)input affine nonlinear systems then the equilibrium point = 0 is locally asymptotically stable and
with npnsmgularE ma}tnx.. In a recent monograph [7], among manyna pAE is of index one.
pther important contributions, van der Schaft gddressed a number o~f Proof: We first show that the DAE has index one. Sétr) =
issues related to necessary conditions for solutions of local dlsturbar{qq (x1, 22)

2.22 Fg(a:], Zzs, ?l,)

attenuation to exist (see also [3] for some related work). Our resu t%(an z2)
can be thought of as a parallel extension of the results of [1] and [7] to

the DAEs case. As a matter of fact, the results in this note reduce to tﬁ’i 7T (#)F(2,0) |smo= ‘;;T(O)FI(U‘ 0)

} . It is easy to show that

ones given in [1] for state—space systems. g .

This note is organized as follows. In Section II, we will review some —i—F,T(O, 0)Vx(0) < 0. 4
notions of DAEs together with some preliminary results for the theo
of DAEs, including stability theory and dissipativity. Our main result
will be summarized in Sections Ill and IV. We will concentrate on th
output feedback case. However, for the sake of completeness, we
first investigate the state feedback control. We also give a paramet
zaton of a family of output feedback controllers. In Section IV, we will
give anecessary condition for the., output feedback control problem V. (0)F,(0,0) + F. (0,0)V2(0) <0

to be solvable. ETV.(0) = VL (0)E >0.

gondition iii) implies that(8/0z2)V: = 0; this, in turn, implies
éhat(@/@xg)Fz(O, 0) is nonsingular. Consequently, by the continuity
\%"F, the DAE (3) is of index one. Now, consider the constant pair
éﬁ? F:(0,0)}. From inequality (4) and condition iii), we can conclude
hatV(0) is a solution satisfying the generalized Lyapunov inequality

Il. ELEMENTS FORNONLINEAR DESCRIPTORSYSTEMS Hence, by the standard result on Lyapunov stability of linear de-
scriptor systems [8], the paitH, F.(0,0)} is admissible (i.e., regular,
asymptotically stable and impulse free). This, in turn, implies that the
Ei(t) = F(z, u), weEUCR™ (3) DAE (3) withu = 0 is asymptotically stable by noting that the pair

Consider the following DAE:
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{E, F:(0,0)} is a linearization of the DAE around the equilibriumif there exists a constant matrixsuch that &, A + LG} is impulse
pointz = 0. Q.E.D. free), where
Remark: Because the intrinsic property of descriptor systems, the o
initial values must be given in the fordiz, . Its rationale can be better D= <£H>
understood by investigating linear descriptor systems. Consider the fol- -/ (u)=(0,0)
lowing linear differential equation: A= < 9 F)
(z,4)=(0,0)

_ oz
E& = Az(t) + Bu(t). 5
Taking Laplace transform of the previous equation yields G= <%H>( y=(0.0) )

e Ay—1 Tl

X(s) = (sE = A)” [E2(0) + BU(s)]- Suppose that any bounded trajectomy(¢t) of the system
We assume the invertibility of the pencilf — A4) so that unique so- £ = F(z(t), 0) satisfying H(z(), 0) = 0 forall ¢ > 0 is
lutions of the above equation are obtained forfadi(0) and’(s). In ~ Such thatlim; . x(t) = 0. Suppose also that there existsCd
particular, we point out that the initial conditions must be given in thginction? : IR" — IR™ vanishing at the points whedgx = 0 and
form Exz(0). As a matter of fact, given(t) for ¢ > 0, the knowledge POSItive elsewhere yvhlch satisfies the following E)roperues:
of E2(0) is necessary and sufficient to completely deternaityg for ) (9/8z)V = V7 (x)F for someC? functionV : R” — R";
t > 0. Itis part of the reason that the candidate Lyapunov function ii) Y; 2 VT(@)F(z, v) + ||lyl|> — ¥*|lul|?> < 0, forall u € U;
V(z) should be vanishing at the points whellez = 0 rather than iy ETV, = VXE.
z = 0. On the other hand, for an index one descriptor system, (2)¥hen, the DAE has af- gain less than or equal toand the equilib-

simply an algebraic constraint. Therefore, only the part fhat# 0 (jym pointz = 0 is locally asymptotically stable. Moreover, the DAE
contributes to the energy function (see also [4], [9], and [10] for mokg of index one.
details). Proof: The proof of the dissipative property is standard, hence
Next, we give an extension of the LaSalle invariance principle.  gmitted. We now prove asymptotical stability and index one property.
Theorem 3: Consider the DAE We first show that the DAE (6) is of index one. Setting= 0 in Y;
i=f(z y) (5a) and taking the second-order partial derivativerpfwith respect tae

0=falz. y) (5b) at(z, u) = (0,0) 7)ﬂ/lelds ) )
/ s A 7 /

where f1, f2 are continuously differentiable functions. Suppose the ATV(0)+ Ve (0)4+ GG <0. )
DAE is of index one. Letz,y) = (0,0) be an equilibrium point for Since {F, A, G} is impulse observable, inequality (7) along with con-
the DAE (5a), (5b). LeV (z,y) : D — R" = [0, co) be a smooth dition iii) implies that DAE (6) is of index one. To prove asymptotical
positive—definite function on a neighborhodd of (z,y) = (0,0), stability, observe that along any trajectaris) of the DAE withu = 0
such thatt’(z,y) < 0. LetS = {(x,y) € D|V = 0}, and suppose is such that
that no solution can stay forever B, other than the trivial solution.
Then, the origin is locally asymptotically stable. av(z(t)) < —ly|)* <o.

Proof: The proof is straightforward. Since the DAE is of index dt B B

one, as far as the (Sb) is concerned, there exists a unique solutifis shows that the equilibrium poimt= 0 of the DAE (6) is stable.
y = g(x) such thatf(z. g(x)) = 0, with g(0) = 0, provided by |, aqdition, observe that any trajectarye) such that (z(#)) = 0 for
the implicit function theorem_. In.thls case,hfm_,o_o x(t)_ = 0,then 4 > 0 is necessarily a trajectory & = f(z, 0) such thate(t) is
lim¢ . y(t) = 0. The conditiorlim; ... «(¢) = 0 is a direct conse- p,nded andl (z(t), 0) = 0 forall £ > 0. Hence, by hypothesis, it is

quence of the usual LaSalle invariance principle. Q.E-Roncluded thatim;_. .. () = 0 by using Theorem 3. Q.ED.
Remark: In the aforementioned theoreii,denotes differentiation

with respect ta along the solution trajectory of (5a) and (5b). Because
the descriptor system is of index one, it possesses a solution which is
impulse free. Let ¥ be a nonlinear system described by the following DAE:

For the remainder of this section, we will investigate dissipative
property of a given DAE. Consider the following DAE:

Ez =F(z, u), weld CIR”, F(0,0)=0
y=H(z, u), y€YCR, H(0,0)=0 6)

Ill. THE Ho CONTROL PROBLEM

Ex =F(2,w,u), weWCR, veld CR™
z=Z(z,w,u), z€ZCR°
y =Y (&, w,u), y€YCRP (8

wherez € X. Hereu stands for the vector of control inputs, is the
exogenous input (disturbances to-be-rejected or signals to-be-tracked),
s:Ux)Y — R y is the measured output, and finaltydenotes the to-be-controlled
outputs (tracking errors, cost variables). It is assumed throughout that
called the supply rate. It is well known [7] that a usual state—spaqqoﬁoﬁo) =0, Z(0,0,0) = 0 andY(0,0,0) = 0. The standard
system (i.e. = I, the identity matrix) has’, gain < v ifitis 4 __ control problem consists of finding, if possible, a contrallesuch
dissipative with respect to the supply rate that the resulting closed-loop system has a locally asymptotically stable
equilibrium point at the origin, is of index one, and l&asgain (fromw
to z) less than or equal tg. In the state feedbadk -, control problem
This result can also be applied to DAE (6). In fact, we have the folve assume that = @ in (8), i.e., that the whole state is available for
lowing very important result. measurement. We suppose the following.
Theorem 4: Consider DAE (6) withEz(0) = Ex, given. Suppose  Al) The matrixD;» has rankm and the matrixD{; D11 — +°1 is
that the matrixD? D — ~*T is negative definite andE, A, G} is negative definite, wher®,, = (0Z/0u) (z,w,u)=(0,0,0) andDy1 =
impulse observable (the tripled], A, G} is called impulse observable (0Z /0w )(z,w,u)=(0,0,0)-

wherez € X, together with a function

) A - . 9
s(uy y) =7 Nall® = lwll®, v > 0.
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A2) Any bounded trajectoryz(t) of the systemE&(t) = Ad) The matrixDz1 = (3Y /0w )(z,w,u)=(0,0,0) has rankp.
F(z(t), 0, u(t)) satisfyingZ(z(t), 0, u(t)) = 0 forallt > 0is Define

such thalim, .. 2(t) = 0. () 1 <62H(x VT (z),w, u)>
— jwE riil®) =5
A3) The matrix pencil A CME 52 has full column rank 2 Juw? w=ai(r),u=as(z)
12 >
forallw € MU {co}, whereA = (AF/32)(z,u.u)=(0,0,0), B2 = r1a(@) :1 <32H(x VT(z),w, u)>
(aF/au)(r,u 1, u)=(0,0,0)1 and(:I = (az/aa?)(z,u ,u)=(0,0,0)- 2 dudw w=a(x),u=as(x)
Two preliminary I_emmas will be needed in the sequel. _ 1 (0°H(z ,w, )
Lemma 5: Consider the DAE (8). Assume that assumptions ra1(z) = =3 0“ 0“
Al1)-A3) are satisfied. Suppose the following hypothesis also holds. w=a (@) u=az(@)
H1: There exists a smooth real-valued functigi), locally de- _1 <5 H(z , W, u))
fined on a neighborhood of the equilibrium point= 0 in X', which : 2 071 weag (2)u=as ()

is vanishing at the points wheféz = 0 and positive elsewhere suchgng set
that the function

Yi@) = Hz. V@), ai(@). as(2)) R(@z[(l_“)“(“}) rele) }

721 (.'l?) (1 =+ 62)7’22 (1)
is negative semidefinite near = 0, where the functiold : lR™ x L
R" xR xR™ — TR is defined on a neighborhood of, p, w,«) = WHeréer ande, are any real numbers satisfyilg < & < 1 and
(0,0,0,0) as e >0, respectlvely_. The following theorem is rf_eadlly obtained. _
o T ) ) ) Theorem 6: Consider (11). Suppose assumptions A1)-A4) are satis-
H(z,p,w,u) =p" Fz,w,u)+ || Z(z,w.u)[|” =+ |lwll”  (9) fied. Suppose hypothesis H1 of Lemma 5 holds. Suppose the following

(0V/oz) = VT (x)E defined as shown in Theorem 4;(z) = hypothesis also holds.
w*(z, V(x)) andaz(x) = u* (2, V(x)), andw™(z, p) andu*(x, p) H2: There exists a smooth real-valued functiQfz), locally de-
are defined on a neighborhood @f, p) = (0, 0) satisfying fined on a neighborhood af = 0, which is vanishing at the points
OH whereEx = 0 and positive elsewhere such that the function
— (2, p,w* (2, p),u"(2,p)) =0 . i ~ R ~ N ~ N ~ .
3}‘, Yao(z) = K(z, Q(z), w(z, Q(2). §(z, Q(x))). §(x, Q(=)))
G—(m,p,w*(m,p), u*(z,p)) =0 is negative definite near = 0, and its Hessian matrix is nonsingular
u

atz = 0. HereQ R™ — IR™ is a smooth function defined by
(0Q/0x) = QTE with ETQ. = Q.E, the functionk : IR" x
R" x R' x R? — R is defined on a neighborhood of the origin as

with w*(0,0) = 0 and«™(0,0) = 0.
Then, the feedback law = a»(z) solves theH.. state feedback

control problem. 000
Proof: The result of the lemma is a direct consequence of Thé (€, p, w,y) = p" F(z,w + a1 (2),0) — y' V(2,w + a1 (2),0)
orem 4. The details are thus omitted. w r w
Next, consider the case in which the statef the DAE (8) is not { —y (m)] E(z) { — (m)]

available for direct measurement. Motivated by the work of Isidori anghq the functioni(z, p, y), respectivelyj(z. p), defined on a neigh-
Kang [3] and Yungget al.[11], we consider a dynamic controller of thep o rhood of (0,0,0), respectively (0,0), satisfies

form . OK (z,p,w,y) =0 @(0,0,0)=0

B =F(£.01(6). 02(6)) + GOy - ¥ (& a1 (6). 2 (6))) T P

w =ax () (10)  respectively

whereé = col(és,...,&,) are local coordinates for the state-space OK (2, p,w(z,p,y),y) —0 §(0.0)=0
manifold X of the controllerT’. The matrixG(¢), called the output dy y=5(2.p) =0 §(0,0)=0.
injection gain, is to be determined. Substitute the controller (10) in @)nen if ’
to obtain the corresponding closed-loop system as

E‘z° = F (2, w) z=2Z%z", w)=Z(z, w,a(f)) (11) Q(2)G(2) =4 (2, Q(2)) 13)

] E 0
whereE® = , shown in the expressions at the bottom of th@as a smooth solutioG(x) nearz = 0, the nonlinearH.. output

0 E feedback control problem is solved by the output feedback controller
page. Again, we try to render the closed-loop system locally dISSIpatla/ﬁ) WithE = E. oo
with respect to the supply ratg’||w||> — ||z||*. Clearly, it suffices

Proof: Since the result of the theorem is a special case of that

to show that there exists a smooth nonnegative fundii¢a®) with given in Theorem 8, we omit the proof here for brevity.

(0U J92°) = UL E° andE" U, = U} E° such that
UTF“(2°, w)+ || Z(z, w)||* = ¥*|lw|* <0,  forallw (12) A. Parameterization of Output Feedback Controllers

and such that the closed-loop system is locally asymptotically stableRecently, Yunget al. [11] have derived a set of parameterized so-
and is of index one. To state the main result of this section, a furthetions to the .., control problem for general nonlinear systems in

assumption is needed. state-variable form. They have considered both output feedback and
. x
z° = and
|
F(z° _ |: F(m7“}7(}‘2(5))
(z°,w) = ,
F(& 01(8), a2(8)) + G(E)(y — Y(& a1 (€), a2(8))
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state feedback cases. Indeed, we can extend the technique develdpéd.) = J(z., M(a:a), W (&g, M(ma))) vanishes at the points
in [11] to give a family of .. controllers for nonlinear differential-al- wherez, = col(Ez, Ez. 0) = col(0,0,0) and is negative elsewhere.
gebraic systems. Then, the family of controllers (14) witk = FE solves theH .
Motivated by the work of [11], we consider the family of controllersoutput feedback control problem.
described by the following DAES: Proof: Set U(z,) = V(z) + M(z,). It follows that
.. _ T ; Trr _ T
B¢ =F(&, a1(€),a2(8) + ¢(n)) (0U/0z0) = U" (24) Eu With E, U, (24) = Us, (24) Eu, where
+ Gy — Y (& 01(E), 2(&) + ¢(n))) N V= 00 i
- o U =0 0 0 +DM,.
+ §1(§)en) + §2(E)d(n) 0 0 0
Eqi =a(n.y =Y (& a1(8), 02(8) + c(1)) With the equation&’; () andY¥;(z) in hand, we have the following
u =az(§) +c(n) (14)  Hamiltonian equation by using Taylor series expansion:
where§ andn are defined on some neighborhoods of the origin:in dUu o ] ERR T
andR?, respectivelyG(e) satisfies (13)a(e, e) andc(e) are smooth dt HZ(@, w, ax(Q) + )" =7l
functions witha(0,0) = 0 ande(0) = 0. 41 (e), §= () andd(e) areC* i _ w — s (z) T
functions & > 1). Eg is a constant matrix, and, in general, is singular. =Yi(2) + Ys(za) + a2 (€) + e(n) — ()
The functionsi(e, e), c(e), g1 (e), G2 (e), d(e), and the matrixg are errii() 0 w — ()
to-be-determined variables such that the closed-loop system (8)—(14) : { 5 } { . ]
S ; . 2 A . 0 —earaa(®) | | a2(E) + c(n) — az(2)
is dissipative with respect to the supply ratd|w||* — ||z||, and is ~ gt )
locally asymptotically stable with index one. +llw — @ (e, M7 (2a))|| 7o,
Observe first that the DAEs describing the closed-loop system w— o (2) 3
(8)—(14) can be put in the form (&) + e(n) — as ()
B &g =Fu(%a, w) = 3
) —w(x,, M (2, 16
)4 el + 0 (Il = (@, 31" (z)) (16)
E 0 0 where
wherez, 2 col(z.& ), E. 2 |0 E 0 |, and the equa- R(e.) 2 1 (32'](%» M'T(-’L‘a)v w))
0 0 Eo 2 dw? wei(za, 51T (2a))

. = A . N N
tion at the bottom of the page holds. In that equatiéii¢,7) =  and the notatiofjv||3, stands for” Ruv. Itis easy to verify thaf(0) =
P& an(z), aa(§) + c(n) — GOY(E ai(€), 2(§) + c(n). (1 - e)(Df, D11 — 7°I). SinceYi(x) andYs(z,) are nonpositive,
Consider a Hamiltonian functios : IR*"*7 x R*"** x R” — R (16) implies that
defined as follows: dU s 9y 1

(@0 pos ) ZPZFG,(I?(], w) I + |1 Z(z, w, az(&) + c)||” — 7 |lw|l” <0 a7)

w — as(x) T which, in turn, implies that the closed-loop system hag€ aigain less
+ [(12(5) +e(y) - az(m)} than or equal to;. Setw = 0, rearrange terms, and use (16) to get

dU

) — v S o (€ ] 2 s
« R(z) { K a2 () ] s T =~ 12(2.0.02(6) + c(n)[I” + Ya(2) + Ya(2a)
as(8) + e(n) = 02(a) w@ 1 Tarm@ 0
Iti to check that o R
Isagj?y 0¢ ec) a + |:cu2 (&) +c(n)—az(z) :| |: 0 —€earan ()
)T (&a, Payw o1 _ T 2 —a - .
<78w2 ) B =2(1—e)(Dy D11 — 1) . ) az(x) + || (2, AJT(@&))H% )
(24 .pa,w)=(0,0,0) az2(&) + c(n) — az(2) \Fa
which is negative definite by Al). Then, by the implicit function the- 3
orem, there exists a unique smooth functibte,, p. ), defined on a + < —(z) )
neighborhood of the origin, satisfying 22(8) + c(n) — ax(x)

N - T 3
w=(Za0,pa) which is negative semidefinite neay = 0 by hypothesis. This shows
Lemma 7: Consider (8) and (14). Suppose assumptions Al)-Ajat the closed-loop system is stable locally around the equilibrium
are satisfied. Suppose hypotheses H1 of Lemma 5 and H2 of Theorggint. We claim that the DAE (14) has index one. To see this, observe

6 hold. Furthermore, suppose that the following hypothesis also holgigat any trajectory satisfyingiU /dt)(z(t), £(t), #(t)) = 0 for all
H3: There exists a smooth real-valued functidf(z. ), locally ¢ > ¢ is necessarily a trajectory of

defined on a neighborhood of the origin iR*" %, which van-

ishes at the points where, = col(Ez, Ez,0) = col(0,0,0), Ex(t) = F(z, 0, az(g) + c(n)) (18)
is positive elsewhere, satisfie@M (z.)/0z.) = M*(2,)E, such thate(t) is bounded andZ(z, 0, a2(€) + ¢(n)) = 0 for all
with M (z,)E. = EI'M,, (z.), and is such that the function+ > 0. This shows that the previous DAE has index one. Moreover,

N Flz, w, a2() + c(n))
F(&n) + GOY (@, w,a2(6) + () + 1 (E)e(n) + 2()d(n) | .
a(n.Y (2, w. 02() + e(n) = Y (£ 01(€). () + e(n)))

2

Fa
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hypotheses H1 and H3 along with assumption A1) imply that the tréer all (z, £, w) in a neighborhood of (0, 0, 0). Consider the case that

jectory satisfying(dU /dt)(x(t), £(t), n(t)) = Oforallt > 0is € # 0andUe(z, &) # 0. Sinceé # 0, we haved # 0. Hence,

necessarily a trajectory such thatt) = £(¢) andn(¢) = 0 for all from (22), we haveinf max W (e, ¢, w) = —oo, because inequality

t 2 (T) Settingz(t) = £(t) = 0 andw(t) = 0in (15), we have (27) contains a term Ilnearly i?. Next, consider the case th@at# 0

(”T) a(n,Y(0, 0, ¢(n)) =Y (0, 0, e(n))) < 0. foralln # 0,where  pyi {7, (2, ¢) = 0. Suppose thallc. is nonsingular for everya, €)

M"(2.) = [(Mz)" (M¢)" (M,)"]. This shows that the DAE satisfyingUs (z, £€) = 0. Then, by the implicit function theorem, the
Eqn=a(n,Y (0,0, c(n) =Y (0,0, c(n))) (19) previous identity has a differentiable solutigr= ¢(z) with £(0) = 0.

has index one and is asymptotically stable. Hence, by hypothesis 'l[ae previous statement is needed in the subsequent proof. We take it

and the fact that DAE (18) and (19) have index one, we can conclud@ @ standing assumption.

that the closed-loop system (8)—(14) has index one. Asymptotical s}aA? /Uf (1’_5) =0 |I]and only/ if¢ = ((x) for some smootlh function
bility then easily follows by Theorem 4. Q.E.D. with £(0) = 0. Furthermorel/c¢ (, &)|¢=(2) is nonsingular.

The previous lemma gives a general form of the output feedback ConSettmgﬁ = ((2) in (12) yields
trollers. However, it does not explicitly specify how we can choose the” p F(z, w, O(f(z))
free system parametef&;, a(e, o) andc(o_) in order to meet the hy-_ _ I Z(@, w, OU@)|® = |w]® <0, Vu. (23)
pothesisin Lemma 7. In the sequel, we give a way to meet the condition
in Lemma 7, and in the mean time, to reduce the number of indepdris shows that 1(111 | max Wiz, £, w) = Yi(x), where¢ = £(z).
dent variables. Consider the following DAE: Hence, the state feedback law= ©({(x)) solves the state feedback

Egi = a(n,e). (20) H control problem forE. This shows that” is a solution of}7 .
If there exists a smooth functiah(r), locally defined on a neighbor- further necessary condition is obtained by restricting to the class of
hood ofy = 0, which vanishes at the points whelig; = 0, is posi- controllerl” which produces zero control input Consider the Hamil-
= . . 2 n n l p 2

tive elsewhere, satisfig®L(;)/9n) = L(n)" Eq with ESL,(y) = oMan functionf, : IR* x R" x R x IR* — TR defined as

,,(7;) Eq,andis such thaLT(r])a(n *) < 0, then we can conclude K _(x,p,w,y) =p F(a: w,0) — y'Y (2, w,0)
from Theorem 2 that DAE (20) is locally asymptotically s_table and'has 2z, w, 0|2 = 2wl (24)
index one. Henceforth, if some further hypotheses are imposed in the
above inequality, the condition in Lemma 7 can be met. This is surtiis easy to verify that

c(n e(n)

atw = wt(y), viewed as a function of, is negative definite near , )
n = 0, and its Hessian matrix is nonsingularsat= 0. The func- <6‘R.,,,(:I},p,'w-(x,p,y),y)) -
tion w™ () is defined on a neighborhood gf = 0, which satisfies dy? (x,p,5)=(0,0,0)
(0Ya(n,w)/Ow) =g+ (yy = 0 With wT(0) = 0 (This function exists, 1(
for R(0) is nonsingular). 2

Then, if §: (e) andg.(e) satisfy Thus, there exists a smooth functigh(z, p) defined in a neighbor-

Q(ﬂ:)gl (III) = ZBT(:II, 0,0)7“12((1}) - 2(1 + Eg)a/g (:6)7‘22(3‘) hOOd Of (010) SUCh that

and <8I{7(‘T'7p7 g);xp!y)‘U)) — 0 1]*(0,0) — 0
Q()ga(x) = a” (0, Y (2, a1 () + B(x,0,0),0)) )

marized in the following theorem. 92K (2, p,w, y) . )
Theorem 8: Consider (8) and (14). Suppose assumptions A1)-A4) <T) =2(Dy D11 —~°I).

are satisfied. Suppose hypotheses H1 of Lemma 5 and H2 of Theorem (2p,w,9)=(0,0,0,0)

6 hold. Suppose also that the following hypothesis holds. This shows that there exists a smooth functiofx, p, y) defined in a
H4: There exists a smooth functiab(n), defined as previously neighborhood of (0,0,0) such that

shown, such that the function Do

. , w 17 y (W) =0 ©(0,0,0)=0.

Vit ) = L atryo.won+ | 0| ro)| 0] p——

Furthermore, it is also easy to check that

*I — DI D) 'Du DY, (25)

Setw*(z,p) = @w(z,p,y*(2,p)). Then, we have

raspectively, wherp(s, & m) =i (@ [ G2 ~ 2) - Gt ~ LD, K (2, s w, y) < Ko (2, p, (2. 9), ) (26)
the family of controllers (14) witki(;) = L(n) solves thé{ .., output
feedback control problem. oo forall (e, p, w,y)in aneighborhood of the origin and

Proof: Itis straightforward to verify thad/ (z.) =

L(n) satisfies the hypothesis of Lemma 7.

Qz—-¢)+ K. (z, p, @(z,p,y), y)
> K (x, p, w2, p), y"(x,p)). y" (. p)) (27)

IV. CONVERSERESULT—A NECESSARYCONDITION for all (27, D, 1/) ina neighborhood of the Origin. We will show that it is
necessar
Suppose that th&f ., control problem is solved by the output feed- y ~ ) ~ ] ~
back controllel” which has the following representation: K, (z, P(z),w"(x, P(z)),y"(z, P(x))) < 0 (28)
E{=®(¢, y) for some storage functioR(z) with (9P/0x) = PT E. This is sum-
u=0(¢) (21) marized in the following statement.

S . L Theorem 9: Consider system (8) and suppose assumptions A1)—A5)

and letl’ be a smooth funct|on’sat|sfy|ng hold. Suppose that th&.. control problem is solved by the output

Wz, & w) = [frx (jf} { F(:‘:‘/ w, O(8)) feedback controller (21). Suppose that there exists a smooth real-valued
LR Y (=, w, O(8)) functionU (2, ¢), which vanishes at the points whelz° = 0 and

H|Z (2, w, OE))|)* = ¥ |Jw||* <0 (22) is positive elsewhere with*" U, = UL E°, and satisfies (21) for
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all (z, ¢, w) in a neighborhood of (0, 0, 0). Then, the Hamilton—Jacobiespectively. Next, observe that
inequalities
}7( " . - . . . 02Q 62 2‘,,—

1(z) <0andK, (z, P(z),w"(z, P(z)),y" (z, P(x))) <0 e (0) =%5(0) — ——(0)
have solutionsV (z) and, respectivelyP(z) (with (0P/dz) = * 62U 92U 5 l'
PYE) given byV(z) = Ul(e, ((2)) 20 and, respectively, =5z (0:0) = <8 7(0,0) + 5--(0,0)(=(0 )

P(z) =U(z, 0) > 0. FurthermoreQ(a:) P(z)—V(z) > 0.000 62U ’ OZU

Proof: It is obvious thal”(z) is a solution satisfyind’ () < 0 == E(O 0)(z(0) = (2 (0 )OE2 (0,0)(:(0) > 0

from our previous observation. It is claimed thatz) is a solution of (34)

inequality (28). To see this, settigg= 0 in (12) yields

The last inequality holds by assumption A5). This concludes that
Q(z) > 0 by noting thatQ(z) has the following Taylor series
expansion:

P'F(z, w, 0) + U (2,0)8(0,Y (x, w,0))

HZ(z, w, 0)[]* = ¥ [lw]® < 0. (29)
Let U(x, 0)®(x, y) = II"(x, y)y, wherell(z, y) is a vector
of smooth functions. This can always be done because the func-
tion ®(0, y) vanishes aty = 0. UseII'(x, y)y and choose
w = (zx, P,y) in (12) to obtain

oQ 7 0%Q

Q@) = Q)+ 5 - (0)z + :r 2(())m+110t > 0.

It is nonnegative around the origin because it vanishes at the origin
~ . R together with its first-order derivative, and its second-order derivative
K., (z, P,(z, P,y), (z, Y(z, w(z, P,y)))) <0. (30) s positive by (34). This completes the proof. Q.E.D.
Observe that the Hessian matrixef (2, Y (2, w(z, P, y)))isnon-

singular [from assumption A4) and (25)]. Hence, by the implicit func-
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