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Abstract: The robust HN filtering problem subject to pole-placement constraints for continuous-
time systems with the polytopic type uncertainties is considered. Different from those considered in
the literature, the regional pole-placement constraints considered here focus on the filter dynamics.
To solve the problem, the p-sharing theory is extended to offer a stability criterion that covers the
bounded real lemma as a special case, and the linear matrix inequality approach is adopted to
develop filter design methods based on the convex optimisation procedure. One numerical example
is given to illustrate the proposed methods.

1 Introduction

The filter design problem for dynamic systems is important
in many engineering applications. The filter design techni-
ques therefore have received a large amount of attention in
the literature, for both theoretical and practical aspects. In
recent years, the convex optimisation based filter design
methods under the linear matrix inequality (LMI) frame-
work [1] are very popular because of the efficient
computation algorithms that are available. Also, the
consideration of system poles has become an important
issue in the filter design problem [2–4], just as in the
feedback control problems [5–7]. There are some studies
trying to consider the poles in the robust filtering problem
using the LMI approach [8–11]. However, in these works
there is a common assumption. In order to conveniently
impose the pole-placement constraints of the filter, the poles
of the entire filtering error dynamics are required to lie
inside some desired regions. Thus poles of the system for
which signals are to be estimated must also be assumed to
lie inside the desired regions. In general, such an assumption
not only limits its applicable domain, but also often results
in more conservative designs. Unlike in the feedback control
problems, for which it is natural and feasible to require
poles of the overall system be placed into a certain region, in
the filtering problem the only poles that need to be placed
are those of the filters. Thus it is more reasonable to merely
assume that the system for which signals are to be estimated
is stable, i.e., with all poles located in the open left half of
the complex plane [12]. With this in mind, this paper
considers the robust filtering problem subject to the D-
stability [5] constraint for the filter, which enables the filter
designers to shape the filter characteristics in a flexible
fashion [13, 14].

The concept of energy storage and dissipation in the
circuit theory is well inherited in system theory [15], and is
applied fruitfully to many control and engineering problems,

such as the stability analysis problems [16–18], the design
and synthesis problems for controllers and filters
[19–21], and so on. Along this line, the p-sharing theory
[22] is an extension of the concepts of passivity [23] and
dissipativity [24]. It uses the so-called p-coefficients to
describe the ‘energy storage and dissipation’ of systems,
and the so-called p-stability [22] is able to deal with both the
Lyapunov stability and input-output stability simulta-
neously. After proper development [25], the p-sharing theory
is shown to be applicable to MIMO systems within a
convenient LMI framework. Successful application of the p-
sharing theory to the controller design problem can be found
in [26]. However, the p-sharing theory in [25, 26] is limited to
square systems. Here, an extended p-sharing theory will be
developed under the LMI framework, and applied to the
above filter design problem, which involves non-square
systems. As can be seen subsequently, the p-stability from
the extended p-sharing theory covers the bounded real
lemma [1, 27] as a special case.

Some notations to be adopted are introduced first. The
inequality X � 0 means that the matrix X is symmetric and
positive semi-definite, and X � Y means X � Y � 0.
Similar definitions apply to symmetric positive/negative
definite matrices. Let x(t) and UðtÞ, respectively, be any real
vector and symmetric matrix functions of the continuous-

time time index t. Then ðUÞjxðtÞj2 ¼ xTðtÞUðtÞxðtÞ and

ðUÞkxk2T ¼
R T
0 xTðtÞUðtÞxðtÞdt, where T is a nonnegative

constant. If U ¼ I , the identity matrix, then it is omitted
from the notations. Finally, for any matrix Z, kZk
represents its induced two-norm, and for any symmetric
matrix X, lmaxðXÞ and lminðXÞ denote its maximal and
minimal eigenvalues, respectively.

2 p-sharing theory and problem formulation

2.1 Multivariable p-sharing theory
First, the continuous-time multivariable p-sharing theory
[25] is extended in this subsection, but restricted to the linear
time-invariant (LTI) case. Consider the system So with the
state-space model

_xðtÞ ¼ AxðtÞ þ BuðtÞ
yðtÞ ¼ CxðtÞ þDuðtÞ

ð1Þ
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where xðtÞ 2 Rn is the state vector, uðtÞ 2 Rm is the input
vector, and yðtÞ 2 Rp is the output vector. The system
matrices A, B, C, D are of appropriate dimensions. The
system So is said [22, 25] to be p-sharing with respect to the
constant p-coefficients fS;C;Q;P;Rg, if for all T � 0Z T

0

uTðtÞSyðtÞdt �ðCÞjxðT Þj2 � ðCÞjxð0Þj2

þ ðQÞkxk2T þ ðPÞkyk
2
T þ ðRÞkuk

2
T ð2Þ

where C;Q 2 Rn�n are positive semi-definite symmetric,
P 2 Rp�p and R 2 Rm�m are symmetric, and S 2 Rm�p is
subject to no special constraint. Define the dissipativity
matrix [25] of the system So as

Mdis ¼
M11 M12

MT
12 M22

" #
ð3Þ

where

M11 ¼ ATCþ CAþQ þ CTPC ;

M12 ¼ CB þ CTPD� 1

2
CTST;

M22 ¼ DTPDþ R� 1

2
ðSDþDTSTÞ

The dissipativity matrix may be used to qualify a set of
p-coefficients in terms of its negative semi-definiteness in the
next lemma.

Lemma 1 [22, 25]: If Mdis � 0, C � 0, and Q � 0, then
system So in (1) is p-sharing with respect to fS;C;
Q;P;Rg.
Note that the conditions in the above lemma are LMIs with
respect to fS;C;Q;P;Rg for the given So.

In the p-sharing theory, the p-stability is defined to
include state and input-output stability at the same time.
Below is the definition of the p-stability.

Definition 1 [22, 25]: The system (1) is p-stable, if there exist
g1; . . . ; g4 2 R such that

kykT � g1kukT þ g2jxð0Þj;

sup
0�t�T

jxðtÞj � g3kukT þ g4jxð0Þj

for all uðtÞ 2 Rm, xð0Þ 2 Rn, and T � 0.

Obviously, the first condition in Definition 1 is for the L2

stability, and the second one implies stability in the sense of
Lyapunov when the external input u � 0. The next lemma,
adapted from [22, 25] for the LTI case, gives a sufficient
condition for the p-stability in terms of the p-coefficients.

Lemma 2: If the system So in (1) is p-sharing with respect to
fS;C;Q;P;Rg with C� gI40, R� r0I , and P�p0I40,

then it is p-stable with g1¼ ðs0þ
ffiffiffiffiffiffiffiffi
p0d

p
Þ=p0, g2¼

ffiffiffiffiffiffiffiffiffiffiffiffi
g0=p0

p
,

and g3¼ g4¼
ffiffiffiffiffiffiffi
x=g

p
, where d¼ jminf0; r0gj, g0¼ lmaxðCÞ,

x¼maxfg0; dþðs0þ
ffiffiffiffiffiffiffiffi
p0d

p
Þ=p0;

ffiffiffiffiffiffiffiffiffiffiffiffi
g0=p0

p
g, and s0¼kSk.

Compared with the original p-sharing theory [22, 25], the

extended p-sharing theory uses
R T
0

uTðtÞSyðtÞdt instead ofR T
0 uTðtÞyðtÞdt in the left-hand side of (2). Thus the

difference in form is not large, and the proofs for lemmas 1
and 2 can be extended from the corresponding proofs in
[22, 25] in a straightforward fashion. For the sake of brevity,
the proofs are omitted here. However, the introduction of S
not only makes handling non-square systems (with m 6¼ p)

possible, but also lets lemma 2 cover the bounded real
lemma [27] as a special case. For example, the HN

performance specification kyk2T � Z2kuk2T for a given Z40
may be formulated as the p-stability of system So with
fS;C;Q;P;Rg ¼ f0;C; 0; I ;�Z2Ig.

2.2 A robust filtering problem
Consider the deconvolution filtering system in Fig. 1. The
source signal sðtÞ 2 Rps is assumed to be generated by the
signal model

SS :
_xsðtÞ ¼ AsxsðtÞ þ BswðtÞ

sðtÞ ¼ C sxsðtÞ þDswðtÞ

(
ð4Þ

where xsðtÞ 2 Rns is the model state vector, wðtÞ 2 Rms is
the driving signal vector with each element in L2½0;1Þ, and
As, Bs, Cs, Ds are known constant matrices of appropriate
dimensions. The source signals are transmitted through a
channel system with an uncertain characteristic modelled by

SC :
_xcðtÞ ¼ AcxcðtÞ þ BcsðtÞ

zcðtÞ ¼ C cxcðtÞ þDcsðtÞ

(
ð5Þ

where xcðtÞ 2 Rnc and zcðtÞ 2 Rpc are the channel state
and output signal vectors, respectively. The channel system
matrices fAc;Bc;C c;Dcg are only known to belong to a
polytopic set

Dc � ðAc;Bc;C c;DcÞ ¼
Xl

i¼1
tiðAci;Bci;Cci;DciÞ

( )
ð6Þ

where all uncertain parameters ti, i ¼ 1; 2; . . . ; l, are non-

negative and satisfy
Pl

i¼1 ti ¼ 1, and all vertices fAci;Bci;
C ci;Dcig of the polytope are known and designated by
i ¼ 1; 2; . . . ; l.

At the receiving end, the measured signal vector yðtÞ 2
Rpc is equal to zcðtÞ þ vðtÞ, where v(t) is an energy-bounded
channel noise vector. To integrate, one can combine the
signal and channel models as

S :

_xðtÞ ¼ AxðtÞ þ BueðtÞ

yðtÞ ¼ CxðtÞ þDueðtÞ

sðtÞ ¼ LxðtÞ þ JueðtÞ

8>><
>>:

ð7Þ

where xT¼½xT
s xT

c �, uT
e ¼½wT vT�, L¼½C s 0�, and J¼½Ds 0�,

and define the polytopic set

Dz ¼ ðA;B;C ;DÞ ¼
Xl

i¼1
tiðAi;Bi;C i;DiÞ

( )
ð8Þ

where

Ai ¼
As 0

BciC s Aci

� �
; Bi ¼

Bs 0

BciDs 0

� �
;

C i ¼ DciC s C ci½ �; Di ¼ DciDs I½ �
ð9Þ

To optimally recover the source signals sðtÞ, the signal
vector yðtÞ is deconvoluted by a filter with order

Fig. 1 Deconvolution filtering system model
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nf ¼ ns þ nc:

SF :
_xf ðtÞ ¼ Af xf ðtÞ þ Bf yðtÞ
sf ðtÞ ¼ Cf xf ðtÞ þDf yðtÞ

�
ð10Þ

where xf ðtÞ 2 Rnf is the filter state vector, sf ðtÞ 2 Rps is
the filter output vector, and Af ;Bf ;Cf ;Df are filter
system matrices to be designed. Although choosing a fixed
filter under the uncertain channel environment may cause
some conservativeness than choosing parameter-dependent
filters [28, 29], there are also advantages. A fixed filter does
not require the knowledge of exact parameter values of
ti; i ¼ 1; 2; . . . ; l, and is easier to implement.

Define the filtering error as eðtÞ ¼ sðtÞ � sf ðtÞ, which
satisfies

Se :
_xeðtÞ ¼ AexeðtÞ þ BeueðtÞ
eðtÞ ¼ C exeðtÞ þDeueðtÞ

�
ð11Þ

with xT
e ðtÞ ¼ ½xTðtÞ xT

f ðtÞ�. The polytopic set De is defined

as

De ¼ ðAe;Be;C e;DeÞ ¼
Xl

i¼1
tiðAei;Bei;C ei;DeiÞ

( )
ð12Þ

where

Aei ¼
Ai 0

Bf C i Af

� �
; Bei ¼

Bi

Bf Di

� �

C ei ¼ L�Df C i �Cf
� �

; Dei ¼ J �Df Di

ð13Þ

The purpose of this paper is to design a filter SF with the
three desired properties below.

DP-1: The filtering error dynamics Se is bounded stable
[30], i.e., there exists a constant b � 0 such that jxeðtÞj � b
for all t � 0, no matter what initial condition xeð0Þ and
input ueð�Þ 2 L2½0;1Þ are.
DP-2: When xeð0Þ ¼ 0, the filter has the H1 performance

keðtÞk2T � m2kueðtÞk2T ð14Þ

for some scalar m40 and all ue 6¼ 0, as T !1.

DP-3: Poles of the filter must be constrained in the
following region(s) [5, 31] of the x–y plane:

� PC-1: Disc region PDðc0; r0Þ centred at the point ðc0; 0Þ
with radius r0.

� PC-2: Vertical strip PV ðr1; r2Þ lying between the lines
x ¼ r1 and x ¼ r2 on the x–y plane, where r1or2 2 R.
� PC-3: Left conic sector PLðcl; ylÞ with the apex at the
point ðcl; 0Þ and inner angle yl, where 0 � yl � p.
� PC-4: Right conic sector PRðcr; yrÞ with the apex at the
point ðcr; 0Þ and the inner angle yr, where cr � 0 and
0 � yr � p.

From the above subsection, it is easy to see that both
DP-1 and DP-2 may be implied by the p-stability.
More specifically, if Se is p-sharing with respect to the
p-coefficients fSe;Ce;Qe;Pe;Reg satisfying the matrix
inequalities

AT
eiCeþCeAeiþQe CeBei�

1

2
CT

eiS
T
e CT

ei

BT
eiCe�

1

2
SeC ei Re�

1

2
ðSeDeiþDT

eiS
T
e Þ DT

ei

C ei Dei �P�1e

2
66664

3
77775� 0

ð15Þ

Ce40; Qe � 0 ð16Þ

Pe �1
2

ST
e

�1
2

Se Re

2
64

3
75 � I 0

0 �m2I

� �
ð17Þ

for all i ¼ 1; 2; . . . ; l, then not only the H1 performance
specification (14), but also the bounded stability of Se is
ensured, since from lemma 2

keðtÞkT � mkueðtÞkT þ g2jxeð0Þj ð18Þ
for some g240.

The desired property DP-3 is useful for shaping the filter
characteristics [13]. The corresponding conditions [5, 31]
are described below, which can be applied individually or
together.

� PC-1: Existence of a matrix Cf40 such that

ðAf � c0IÞTCf ðAf � c0IÞ � r20Cfo 0 ð19Þ

� PC-2: Existence of a matrix Cf40 such that

ðAf � r2IÞTCf þ Cf ðAf � r2IÞo 0

ðr1I � Af ÞTCf þ Cf ðr1I � Af Þo 0
ð20Þ

� PC-3: Existence of a matrix Cf40 such that

sin
yl

2
½ðAf � clIÞTCf þ Cf ðAf � clIÞ�

cos
yl

2
½Cf ðAf � clIÞ � ðAf � clIÞTCf �

2
6664

cos
yl

2
½ðAf � clIÞTCf � Cf ðAf � clIÞ�

sin
yl

2
½ðAf � clIÞTCf þ Cf ðAf � clIÞ�

3
7775o 0 ð21Þ

� PC-4: Existence of a matrix Cf40 such that

sin
yr

2
½ðcrI � Af ÞTCf þ Cf ðcrI � Af Þ�

cos
yr

2
½Cf ðcrI � Af Þ � ðcrI � Af ÞTCf �

2
6664

cos
yr

2
½ðcrI � Af ÞTCf � Cf ðcrI � Af Þ�

sin
yr

2
½ðcrI � Af ÞTCf þ Cf ðcrI � Af Þ�

3
7775o 0 ð22Þ

It is noted that there are other regions and conditions for
the pole placement constraint, such as those presented in
[5, 32]. Basically it is also possible to accommodate these
conditions in this paper, but the details are omitted for the
sake of brevity.

3 Main results

3.1 Robust HN filter design
To start developing the filter design method, the p-stability
conditions for the filtering error dynamics Se are utilised in
the following theorem.
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Theorem 1: If there exist feasible solutions m2, U, W, P�1e ,
Re, X, Y, M, N, Z, and Df to the following matrix
inequalities

AT
i UþUAiþW ðXAiþZC iþMÞTþUAiþW

XAiþZC iþMþAT
i UþW XAiþZC iþðXAiþZC iÞTþY

BT
i U�1

2
SeðL�Df C i�NÞ ðXBiþZDiÞT�

1

2
SeðL�Df C iÞ

L�Df C i�N L�Df C i

2
666666664

UBi�
1

2
ðL�Df C i�NÞTST

e ðL�Df C�NÞT

XBiþZDi�
1

2
ðL�Df CÞTST

e ðL�Df C iÞT

Re�
1

2
½SeðJ�Df DiÞþðJ�Df DiÞTST

e � ðJ�Df DiÞT

J�Df Di �P�1e

3
777777777775

�0

ð23Þ

U U

U X

" #
40; Y � W � 0; m240 ð24Þ

�P�1e
1

2
P�1e ST

e P�1e

1

2
SeP�1e �m2I � Re 0

P�1e 0 �I

2
666664

3
777775
� 0 ð25Þ

for all i ¼ 1; . . . ; l, then the filter SF with the gain matrices

Af ¼ �U�1MU�T; Cf ¼ �NU�T;

Bf ¼ U�1Z; Df ¼ Df

ð26Þ

satisfies the desired properties DP-1 and DP-2 of the
filtering problem, where U is any non-singular matrix

satisfying UUT ¼ X �U.

Proof: By the Schur complement [1] and the first inequality

in (24), U40 and X �U40. Thus, I � XU�1 is non-
singular and there exist non-singular matrices U and V such

that I � XU�1 ¼ UVT. Let

T̂ ¼
U�1 I

VT 0

" #
and �T ¼

I X

0 UT

" #
ð27Þ

where T̂ is non-singular since

T̂
�1 ¼

0 V�T

I �U�1V�T

" #

Define

Ce ¼ �T T̂
�1 ¼

Ce1 Ce0

CT
e0 Ce2

" #
¼

X U

UT I

" #

by letting U ¼ �UV . Under this arrangement Ce40

because X �UUT ¼ X þUVTU ¼ U40.

Next, pre- and post-multiply (23) by diagðU�1; I ; I ; IÞ at
the same time. Then with (13), (26), (27), U ¼ �UV ,

Ce ¼ �TT̂
�1
, and

Qe ¼
Y ðY �WÞU�T

U�1ðY �WÞ U�1ðY �WÞU�T

2
4

3
5 ð28Þ

the result can be re-written as

U11 U12 T̂
T

CT
ei

UT
12 U22 DT

ei

CeiT̂ Dei �P�1e

2
6664

3
7775 � 0 ð29Þ

where

U11 ¼ T̂
T

AT
eiCeT̂ þ T̂

T
CeAeiT̂ þ T̂

T
QeT̂

U12 ¼ T̂
T
CeBei �

1

2
T̂

T
CT

eiS
T
e

U22 ¼ Re �
1

2
ðSeDei þDT

eiS
T
e Þ

Note that Qe � 0 by (24). Now, pre- and post-multiplying

(29), respectively, by diagðT̂�T; I ; IÞ and diagðT̂�1; I ; IÞ
results in (15). Therefore from lemma 2 the error dynamics
Se in (11) is p-stable with respect to the p-coefficients fSe;Ce;
Qe;Pe;Reg found in the proof.

Finally, with m240, (25) may be re-written as (17) using
the Schur complement. Hence the H1 performance
constraint in (14) is satisfied.

It is worth noting that, the result in [10] may be regarded
as a special case of what is obtained here with fSe;Ce;
Qe;Pe;Reg ¼ f0;Ce; 0; I ;�m2Ig.

Apparently, the matrix inequalities in theorem 1 are not
linear, but bilinear with respect to the variables. However,
closer examination reveals that these inequalities are linear

with respect to m2 and V ¼ fU;W;P�1e ;Re;X ;Y ;M;N ;
Z;Df g if Se is held constant. Also, these inequalities are
linear with respect to m2 and Se if V is held constant. Thus a
coordinate-by-coordinate minimisation [33] procedure is
proposed in the following for finding a filter SF that satisfies
the desired properties DP-1 and DP-2, and gives the
minimal value of m. Note that convergence of the procedure
is guaranteed at least to a local optimum, because after each
convex optimisation step m is monotonically non-increasing.

Procedure A

Step 0. Initialise Se with a pre-selected matrix.

Step 1. Fix Se to the value obtained in the previous step, and
solve the convex optimisation problem

min
m2;V

m2 subject to ð23Þ�ð25Þ

Step 2. Fix V to the set obtained in the previous step, and
solve the convex optimisation problem

min
m2;Se

m2 subject to ð23Þ; ð25Þ; and m240

Step 3. Repeat steps 1 and 2 until m converges to a local
optimum. At convergence, compute the filter gain matrices.

3.2 Regional pole-placement constraints
To deal with the third desired property DP-3, i.e. the
regional pole-placement constraints, it is shown first that
another set of filter gain matrices

Af ¼ ðU� XÞ�1M ; Cf ¼ N ;

Bf ¼ ðU� XÞ�1Z; Df ¼ Df

ð30Þ
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may also be used. Consider the transfer function matrix
Gf ðsÞ of the filter SF with the gain matrices (26) and recall

the relationship UUT ¼ X �U. The following derivation

Gf ðsÞ ¼ Cf ðsI � Af Þ�1Bf þDf

¼ �NU�T½sI � ð�U�1MU�TÞ��1U�1Z þDf

¼ N ½UðsI � ð�U�1MU�TÞÞð�UTÞ��1Z þDf

¼ N ½ð�UUTÞ � sI �M ��1Z þDf

¼ N ½sI � ðU� XÞ�1M��1ðU� XÞ�1Z þDf

ð31Þ
shows the equivalence of SF with (30) to SF with (26) in the
sense that the filter state vector is transformed from xf to

U�Txf . Hence the input-output characteristic and stability
of the filter are not affected.

With the new formulas (31) for the filter gain matrices,
and with the choice Cf ¼ X �U in (19)–(22), the
conditions for regional pole-placement constraints may be
easily converted to LMIs with respect to the variables U, X,
and M:

� PC-1: Existence of U, X, and M such that

r20ðU� XÞ c0ðU� XÞ �MT

c0ðU� XÞ �M U� X

" #
o0 ð32Þ

� PC-2: Existence of U, X, and M such that

�M �MT þ 2r2U� 2r2Xo0

M þMT � 2r1Uþ 2r1Xo0
ð33Þ

� PC-3: Existence of U, X, and M such that

Fðyl; clÞ cos
yl

2
ðM �MTÞ

cos
yl

2
ðMT �MÞ Fðyl; clÞ

2
664

3
775o0 ð34Þ

where

Fðy; cÞ ¼ sin
y
2
½2cðU� XÞ �M �MT�

� PC-4: Existence of U, X, and M such that

�Fðyr; crÞ cos
yr

2
ðMT �MÞ

cos
yr

2
ðM �MTÞ �Fðyr; crÞ

2
664

3
775o0 ð35Þ

The constraints in (32)–(35) are much simpler than the ones
developed for the entire filtering error dynamics [9, 10], and
can be augmented into procedure A to produce a procedure
in the following for finding a filter SF satisfying all three
desired properties, and with the minimal value of m.

Procedure B

Step 0. Initialise Se with a pre-selected matrix.

Step 1. Fix Se to the value obtained in the previous step, and
solve the convex optimisation problem

min
m2;V

m2 subject to ð23Þ�ð25Þ and any combination

of ð32Þ�ð35Þ

Step 2. Fix V to the set obtained in the previous step, and
solve the convex optimisation problem

min
m2;Se

m2 subject to ð23Þ; ð25Þ and m240

Step 3. Repeat steps 1 and 2 until m converges to a local
optimum. At convergence, compute the filter gain matrices.

4 A numerical example

In this Section, an example is worked out to illustrate the
proposed filter design procedures. Suppose that the system
shown in Fig. 1 has the signal model SS with the following
system matrices

As ¼
�1:7270 �0:3405

1 0

� �
; Bs ¼

1

0

� �
;

C s ¼ 0 1½ �; Ds ¼ 0

and the channel model SC with the following system
matrices

Ac ¼
�2:7731þ 0:3a2 �2:1222 �1:2302� 0:23a1

1 �0:4a2 0

�0:35a2 1 �0:5a1

2
64

3
75

BT
c ¼ 1þ a1 a2 0½ �; Cc ¼ 0 1 a1½ �; Dc ¼ 1þ 2a2

Assume the uncertain parameters a1 2 ½0; 0:5� and
a2 2 ½�0:4; 0:5�. An optimal H1 filter SF is designed by
using procedure A implemented with the LMI Toolbox

[31]. The initial value of ST
e is set to [0 0], and the

corresponding optimal m2 is 8.0664 after step 1 is executed
once. Then the procedure is executed until convergence, and
the final optimal m2 obtained is 8.0653, corresponding to

ST
e ¼ ½0:0010 � 0:0012�. These results are put in the first

three rows under the column title ‘Procedure A’ in Table 1,
which show the advantage of having the extra matrix

variable ST
e .

Next, by applying procedure B, four regional pole-
placement constraints, PC-1 with PDð�2; 0:5Þ, PC-2
with PV ð�2;�0:5Þ, PC-3 with PLð1:5; p=6Þ, and PC-4
with PRð�1:5; p=6Þ are separately considered. As in the

above, the initial value of ST
e is set to [0 0], and step 1 is

executed once first. Then the procedure is carried out until it
converges. The results are put in the first three rows of
Table 1 under the column title ‘Procedure B’. Correspond-
ing to these constraints, the poles of the filters and the
system, including the signal and channel models at

Table 1: Filter design results from the example

Procedure
A

Procedure
B

PD PV PL PR

m2 8.0664 8.3682 8.0923 8.0896 8.1446

m2 8.0653 8.3660 8.0914 8.0886 8.1425

Se

0:0010
�0:0012

� �
0:0032
�0:0003

� �
0:0007
�0:0013

� �
0:0022
�0:0011

� �
0:0022
�0:0020

� �

m2 8.0686 8.3744 8.0934 8.0956 8.1463
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the vertices of Dc, are shown in Fig. 2. Clearly, the poles of
the filters indeed lie inside the desired regions.

Finaly, the proposed method is applied with a special
constraint, i.e., with the p-coefficients fSe;Ce;Qe;Pe;Reg
set to f0;Ce; 0; I ;�m2Ig in (23)–(25), where Qe ¼ 0 is
accomplished by setting Y ¼ W ¼ 0. This simulates the
solution of the current filtering problem by applying the
bounded real lemma [27] originating from the concept of
positive realness. The last row in Table 1 shows the more
conservative results.

5 Conclusion

The robust H1 filtering problem for linear signal models
and uncertain channels are solved by using the extended
p-sharing theory. Regional pole-placement constraints on
the filter, rather than the entire filtering error dynamics, are
also considered and formulated as LMIs that can be
augmented to the robust H1 filter design procedure. An
example is worked out to illustrate the effectiveness of the
proposed method, in addition to the improvement in
reducing the conservativeness from the use of the bounded
real lemma.
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