Robust H_ filter design with filter pole constraints

via n-sharing theory

C.-M. Lee and I-K. Fong

Abstract: The robust H . filtering problem subject to pole-placement constraints for continuous-
time systems with the polytopic type uncertainties is considered. Different from those considered in
the literature, the regional pole-placement constraints considered here focus on the filter dynamics.
To solve the problem, the n-sharing theory is extended to offer a stability criterion that covers the
bounded real lemma as a special case, and the linear matrix inequality approach is adopted to
develop filter design methods based on the convex optimisation procedure. One numerical example

is given to illustrate the proposed methods.

1 Introduction

The filter design problem for dynamic systems is important
in many engineering applications. The filter design techni-
ques therefore have received a large amount of attention in
the literature, for both theoretical and practical aspects. In
recent years, the convex optimisation based filter design
methods under the linear matrix inequality (LMI) frame-
work [1] are very popular because of the efficient
computation algorithms that are available. Also, the
consideration of system poles has become an important
issue in the filter design problem [2-4], just as in the
feedback control problems [5-7]. There are some studies
trying to consider the poles in the robust filtering problem
using the LMI approach [8-11]. However, in these works
there is a common assumption. In order to conveniently
impose the pole-placement constraints of the filter, the poles
of the entire filtering error dynamics are required to lie
inside some desired regions. Thus poles of the system for
which signals are to be estimated must also be assumed to
lie inside the desired regions. In general, such an assumption
not only limits its applicable domain, but also often results
in more conservative designs. Unlike in the feedback control
problems, for which it is natural and feasible to require
poles of the overall system be placed into a certain region, in
the filtering problem the only poles that need to be placed
are those of the filters. Thus it is more reasonable to merely
assume that the system for which signals are to be estimated
is stable, i.e., with all poles located in the open left half of
the complex plane [12]. With this in mind, this paper
considers the robust filtering problem subject to the D-
stability [5] constraint for the filter, which enables the filter
designers to shape the filter characteristics in a flexible
fashion [13, 14].

The concept of energy storage and dissipation in the
circuit theory is well inherited in system theory [15], and is
applied fruitfully to many control and engineering problems,
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such as the stability analysis problems [16-18], the design
and synthesis problems for controllers and filters
[19-21], and so on. Along this line, the m-sharing theory
[22] is an extension of the concepts of passivity [23] and
dissipativity [24]. It uses the so-called n-coefficients to
describe the ‘energy storage and dissipation’ of systems,
and the so-called 7-stability [22] is able to deal with both the
Lyapunov stability and input-output stability simulta-
neously. After proper development [25], the n-sharing theory
is shown to be applicable to MIMO systems within a
convenient LMI framework. Successful application of the 7-
sharing theory to the controller design problem can be found
in [26]. However, the n-sharing theory in [25, 26] is limited to
square systems. Here, an extended n-sharing theory will be
developed under the LMI framework, and applied to the
above filter design problem, which involves non-square
systems. As can be seen subsequently, the z-stability from
the extended n-sharing theory covers the bounded real
lemma [1, 27] as a special case.

Some notations to be adopted are introduced first. The
inequality X > 0 means that the matrix X is symmetric and
positive semi-definite, and X > Y means X — Y > 0.
Similar definitions apply to symmetric positive/negative
definite matrices. Let x(7) and @ (), respectively, be any real
vector and symmetric matrix functions of the continuous-
time time index ¢. Then (@)|x(t)]* = xT(/)®(¢)x(¢) and
(@)||x]> = g xT(¢)®@(t)x(t)dt, where T is a nonnegative
constant. If @ = I, the identity matrix, then it is omitted
from the notations. Finally, for any matrix Z, |Z]|
represents its induced two-norm, and for any symmetric
matrix X, Amax(X) and Amin(X) denote its maximal and
minimal eigenvalues, respectively.

2 n-sharing theory and problem formulation

2.1 Multivariable n-sharing theory

First, the continuous-time multivariable n-sharing theory
[25] is extended in this subsection, but restricted to the linear

time-invariant (LTI) case. Consider the system X, with the
state-space model

(1)
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where x(7) € R" is the state vector, u(¢) € R" is the input
vector, and y(f) € R? is the output vector. The system
matrices A, B, C, D are of appropriate dimensions. The
system X, is said [22, 25] to be w-sharing with respect to the
constant n-coefficients {S,I', @, P, R}, if for all 7 > 0

/ u' (1)Sy(t)dt =(I')|x(T)|* — (I')|x(0)|’

0

+(Q)lIxl7 + (P)lIyll7 + (R ull7 (2)

where I', Q € R™" are positive semi-definite symmetric,
P € RP*P and R € R™™ are symmetric, and § € R™*? is
subject to no special constraint. Define the dissipativity
matrix [25] of the system X, as

My, Mu}

(3)
M}, My

Mdis - [

where
M, =AT+T4+0+C"PC,
My, =TB+ C'PD— %CTST,

My =D"PD+R— —(SD + D'S")

N =

The dissipativity matrix may be used to qualify a set of
n-coefficients in terms of its negative semi-definiteness in the
next lemma.

Lemma 1 [22, 25]: If M4 <0, ' >0, and Q > 0, then
system X, in (1) is m-sharing with respect to {S,T,
O.P,R}.
Note that the conditions in the above lemma are LMIs with
respect to {S, I, Q, P, R} for the given X,.

In the m-sharing theory, the n-stability is defined to
include state and input-output stability at the same time.
Below is the definition of the n-stability.

Definition 1 [22, 25]: The system (1) is n-stable, if there exist
V1s---,74 € R such that

¥l < yillellz + v2|x(0)],
sup [x ()] < ys]|ull7 + 4]x(0)]
0<i<T

for all u(¢r) € R™, x(0) € R", and T > 0.

Obviously, the first condition in Definition 1 is for the £,
stability, and the second one implies stability in the sense of
Lyapunov when the external input # = 0. The next lemma,
adapted from [22, 25] for the LTI case, gives a sufficient
condition for the z-stability in terms of the m-coefficients.

Lemma 2: 1f the system X, in (1) is n-sharing with respect to
{8,,Q,P,R} withI' >yI>0,R> p,I, and P> pyI >0,

then it is 7-stable with y; = (so ++/ pod)/ po, y2 = /70/ Pos
and y; =y, =+/&/y, where 6 = | min{0, py }, 70 = Amax ('),
¢ =max{yy, 6+ (so++/P0d)/ po, \/7o/ Po}, and so = ||S].

Compared with the original - shan'ng theory [22, 25], the
extended - sharmg theory uses f o u"(1)Sy(t)dr instead of

f 0 t)dt in the left-hand side of (2). Thus the
dlfference in form is not large, and the proofs for lemmas 1
and 2 can be extended from the corresponding proofs in
[22, 25] in a straightforward fashion. For the sake of brevity,
the proofs are omitted here. However, the introduction of .S
not only makes handling non-square systems (with m # p)

242

possible, but also lets lemma 2 cover the bounded real
lemma [27] as a special case. For example, the H,
performance specification ||y||7 < #2||ul)3 for a given >0
may be formulated as the n-stability of system X, with
{S,I',Q,P,R} ={0,I',0,1, —n*I}.

2.2 A robust filtering problem

Consider the deconvolution filtering system in Fig. 1. The
source signal s(¢) € R¥ is assumed to be generated by the
signal model

5. { ¥,(t) = Agxy(t) + Bow(t) @
s(t) = Cyx4(t) + Dyw(2)

where x,(¢) € R™ is the model state vector, w(t) € R™ is
the driving signal vector with each element in £,[0, 00), and
A,, B,, C,, D, are known constant matrices of appropriate
dimensions. The source signals are transmitted through a
channel system with an uncertain characteristic modelled by

X (1) = Aex (1) + Bes(1)
c: { (3)
2c(t) = Cexc(t) + Ds(t)

where x.(f) € R™ and z.(f) € R are the channel state
and output signal vectors, respectively. The channel system
matrices {A., B, C.,D.} are only known to belong to a
polytopic set

!
D, = {(AC,BC, CC,D Z Ti ACHBCH Cancz)} (6)

i=1

where all uncertain parameters 7, i = 1,2,...,/, are non-
negative and satisfy Zf:l 7; = 1, and all vertices {A;, B,
C.,D.} of the polytope are known and designated by
i=1,2,...,1.

At the receiving end, the measured signal vector y(¢) €
R7 is equal to z.(¢) + v(¢), where v(?) is an energy-bounded
channel noise vector. To integrate, one can combine the
signal and channel models as

x(t) + Bu,(t)

x(t) = Ax(
> { y(t) = Cx(t) + Du.(t) (7)

s(t) = Lx(t) + Ju,. (1)

where xT=[xT xT], ul =[wT vT], L=[C, 0], and J=[D; 0],
and define the polytopic set
!

DZ:{(ABCD: r,A,,Bl,C,,D)} (8)

i=1

A, 0 B, 0
Ai = ) Bi = )
BciCs Aci BciDs 0

Ci = [DciC.c Cci], D; = [DciDs I]

To optimally recover the source signals s(¢), the signal
vector y(¢) is deconvoluted by a filter with order

where

©)

Signal Transmission v(t)

Deconvolution
model channel i

Iter

Fig. 1  Deconvolution filtering system model
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ny =ns+ ne:
- { Xp(t) = Asx;(1) + Bry(t) (10)
s7(t) = Crxs(t) + Dyy(2)

where x /(1) € R" is the filter state vector, s/(f) € R” is
the filter output vector, and A,,By,C,, D, are filter
system matrices to be designed. Although choosing a fixed
filter under the uncertain channel environment may cause
some conservativeness than choosing parameter-dependent
filters [28, 29], there are also advantages. A fixed filter does
not require the knowledge of exact parameter values of
1;,i =1,2,...,[, and is easier to implement.

Define the filtering error as e(t) = s(t) — s,(¢), which
satisfies

[ £ult) = Auxo(t) + Boae(0)
. { e(t) = Cox,(t) + D.u(2) (1)

with x] (1) = [x"(¢) x}(¢)]. The polytopic set D, is defined
as

/
De = {(AeaBa Ce7De) = Z Ti(AeiaBeiy CeiaDei)} (12)
i=1

where
A; 0 B;
Aei = 5 Bei =
B,C; Ay B;D,

Ci=[L-D;Ci =C], Du=J— DD,

The purpose of this paper is to design a filter X with the
three desired properties below.

(13)

DP-1: The filtering error dynamics X, is bounded stable
[30], i.e., there exists a constant f§ > 0 such that |x.(¢)] < f
for all #+ > 0, no matter what initial condition x,(0) and
input u.(-) € £,[0,00) are.

DP-2: When x,.(0) = 0, the filter has the H,, performance

2 2
le(0)]I7 < 1 llue(0)ll7 (14)
for some scalar >0 and all u, # 0, as T — oc.

DP-3: Poles of the filter must be constrained in the
following region(s) [5, 31] of the x—y plane:

e PC-1: Disc region Pp(cy,ro) centred at the point (co, 0)
with radius r.

e PC-2: Vertical strip Py (ri,r2) lying between the lines
x =r; and x = r, on the x—y plane, where r| <r, € R.

e PC-3: Left conic sector P (c;,0;) with the apex at the
point (¢;,0) and inner angle 6, where 0 < 0, < x.

e PC-4: Right conic sector Pg(c,, 0,) with the apex at the

point (c¢,,0) and the inner angle 0,, where ¢, <0 and
0<0,.<m.

From the above subsection, it is easy to see that both
DP-1 and DP-2 may be implied by the n-stability.
More specifically, if X, is n-sharing with respect to the
n-coefficients {S., I, Q,,P.,R.} satisfying the matrix
inequalities

1
A;l;re + reAei + Qe reBei o EC;I;SE C;l;
1 1
Bile—38.Ca  R.—5(SeDei+ pish) of |=°
Ce,’ Dei _Pgl
(15)
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r.>0, 0.,>0 (16)
P flS
S I
L 0 —upl
2 e e
for all i =1,2,...,/, then not only the H,, performance

specification (14), but also the bounded stability of X¢ is
ensured, since from lemma 2

le(@)ll7 < pllue(D)llr + 2lxe(0)] (18)

for some 7y, >0.

The desired property DP-3 is useful for shaping the filter
characteristics [13]. The corresponding conditions [5, 31]
are described below, which can be applied individually or
together.

¢ PC-1: Existence of a matrix I' ;>0 such that
(Af—C()I)Trf(Af—C()I)—}"(Z)Ff<0 (19)
® PC-2: Existence of a matrix I' ;>0 such that

(Af*FzI)TFf+Ff(Af7r21)<0

(20)
(rd —Ap)' T+l —A4;)<0
e PC-3: Existence of a matrix I" ;>0 such that
.0
Slné[(Af — C]I)Trf + Ff(Af — /)]
0, T
cos I y(Ay —eid) = (A — ail) 1]
0, T
cos{(dy —el) Ty =T s(dy —cl)]
<0 (21)
.0
sin{(Ay —eld) Ty +Tp(Ay —eil)]
e PC-4: Existence of a matrix I' ;>0 such that
sin (el — AT+ T yledd — A,)]
0}' T
COSE[rf(CrI — A/) — (Crl — Af) I‘f}
Gr T
COos E[(C,J — Af) Ff — Ff(crl — Af)]
<0 (22)

sin%[(c,l —Ap)' T+ Tp(ed —Ayp)

It is noted that there are other regions and conditions for
the pole placement constraint, such as those presented in
[5, 32]. Basically it is also possible to accommodate these
conditions in this paper, but the details are omitted for the
sake of brevity.

3 Main results

3.1 Robust H,, filter design

To start developing the filter design method, the n-stability
conditions for the filtering error dynamics X are utilised in
the following theorem.
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Theorem 1: If there exist feasible solutions ,uz, DY, Pe’],
R., X, Y, M, N, Z, and D; to the following matrix
inequalities

AT+ 04,17 (XA4ZC+M)" +DA;+P

XA+ ZCAM+ATO+Y XA+ ZCi+(XA+ZC)) +Y

1 1
Bdei—ESe(L—DfCi—N) (XBI-—&—ZDi)T—ESe(L—DfCi)

L-D;C;—N L-DC;
1 _
cDBi—E(L—D/-C,«—N)TSZ (L-D,C-N)"
1
XB;+ZD,—(L-D;C)"ST (L-D,C)"
1 T T T
Re—5[Se(J=DyDi)+(J-DDi)'S;]  (J=DysD)
J—D/D; -pP;' ]
(23)
o D
>0, Y>¥>0, 1>>0 (24)
o X
—1 1 —1¢T —1
-P _P;'S P
e 2 e e e
1
Sk —pl—R 0 | =0 (25)
P! 0 —1I

foralli=1,..., 1, then the filter £¢ with the gain matrices
A;=-U'MUT", C;=-NUT,
' ' (26)
B, =U"'Z, D;=D;

satisfies the desired propertiecs DP-1 and DP-2 of the
filtering problem, where U is any non-singular matrix

satisfying UUT = X — .

Proof: By the Schur complement [1] and the first inequality

in (24), >0 and X — #>0. Thus, I — X&' is non-
singular and there exist non-singular matrices U and ¥ such

that I — X&' = UVT. Let

|2 ! T (27)
= an =
ytoo 0o U’
where T is non-singular since
1 [0 yr
T =
I —-o'yT
Define
g a1 I, Iy X U
Fe = T T = =
rl, r. u' 1

by letting U = —®V. Under this arrangement I',>0
because X — UUT = X + UV'®d = &> 0.

Next, pre- and post-multiply (23) by diag(®~',I,1,1) at
the same time. Then with (13), (26), (27), U = —-®V,
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Y (Y- U T
0, = (28)
vlvy-v) vlvy-wvwu"

the result can be re-written as
Yo Y T g ct
Y, T
C.,T D, —P,
where

Yoo = T AT+ T'ToAT+ T Q,T
Y, = T'I.B, — %TTCTST

el e

el e

Yo =R, ~ 3(S.Dy + DLS])

Note that Q, > 0 by (24). Now, pre- and post-multiplying

(29), respectively, by diag(T T ) and diag(T LI )
results in (15). Therefore from lemma 2 the error dynamics
¥, in (11) is w-stable with respect to the n-coefficients {S,, I'.,
0.,P., R.} found in the proof.

Finally, with >0, (25) may be re-written as (17) using
the Schur complement. Hence the H, performance
constraint in (14) is satisfied.

It is worth noting that, the result in [10] may be regarded
as a special case of what is obtained here with {S,, I,
Qe7 P,, Re} = {Oa r.o,l1, _H2I}'

Apparently, the matrix inequalities in theorem 1 are not
linear, but bilinear with respect to the variables. However,
closer examination reveals that these inequalities are linear
with respect to x* and V = {®, ¥, P;l,Re, X, Y, M N,
Z,Ds} if S, is held constant. Also, these inequalities are
linear with respect to i and S, if V is held constant. Thus a
coordinate-by-coordinate minimisation [33] procedure is
proposed in the following for finding a filter X that satisfies
the desired properties DP-1 and DP-2, and gives the
minimal value of u. Note that convergence of the procedure
is guaranteed at least to a local optimum, because after each
convex optimisation step u is monotonically non-increasing,.

Procedure A

Step 0. Initialise S, with a pre-selected matrix.

Step 1. Fix S, to the value obtained in the previous step, and
solve the convex optimisation problem

min 1> subject to (23)—(25)
u*y

Step 2. Fix V to the set obtained in the previous step, and
solve the convex optimisation problem

2.8,

min ®  subject to (23),(25), and x*>0
#2,Se

Step 3. Repeat steps 1 and 2 until u converges to a local
optimum. At convergence, compute the filter gain matrices.

3.2 Regional pole-placement constraints
To deal with the third desired property DP-3, ie. the
regional pole-placement constraints, it is shown first that
another set of filter gain matrices

A;=(®-X)"'M, C;=N, (30)
B/ =(®-X)'Z, D;=Dy
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may also be used. Consider the transfer function matrix
G/ (s) of the filter Zf with the gain matrices (26) and recall

the relationship UUT = X — &. The following derivation
Gy(s)=Cy(sl —A;)"'Bs + Dy

= NU"[sI - (-U"'MU T 'U'Z + D,
= N[U(sI — (~U'MU ") (-U")'Z + D,
= N[(-UU")-sI —M]"'Z + Dy

= N[sI —(®-X)"'M)""(®-X)"'Z+D;
(31)

shows the equivalence of X with (30) to X with (26) in the
sense that the filter state vector is transformed from x, to
U Tx . Hence the input-output characteristic and stability
of the filter are not affected.

With the new formulas (31) for the filter gain matrices,
and with the choice I'y =X —® in (19)+22), the
conditions for regional pole-placement constraints may be

easily converted to LMIs with respect to the variables @, X,
and M:

e PC-1: Existence of @, X, and M such that

rR(®—X co(®—X)—MT
o( ) o( ) R
co(®—X)-M - X
e PC-2: Existence of @, X, and M such that
M —M" +2r,® - 21X <0 3
M+M" —2r®+2rX<0
e PC-3: Existence of @, X, and M such that
0
F(0;,¢r) coszl(M -M")
<0 (34)

0,

cosi(MT - M) F(0;,¢))

where
0
F(0,c) = sin{2¢(® — X) — M — M)
e PC-4: Existence of @, X, and M such that

0,

—F(0,,c,) cos 3(MT - M)

0 <0 (35)
cos ?V(M -M") ~F(0,,c,)
The constraints in (32)+35) are much simpler than the ones
developed for the entire filtering error dynamics [9, 10], and
can be augmented into procedure A to produce a procedure
in the following for finding a filter X satisfying all three
desired properties, and with the minimal value of u.

Procedure B
Step 0. Initialise S, with a pre-selected matrix.

Step 1. Fix S, to the value obtained in the previous step, and
solve the convex optimisation problem

rr21ilr}1 ©*  subject to (23)—(25) and any combination
1,

of (32)—(35)

IEE Proc.-Circuits Devices Syst., Vol. 153, No. 3, June 2006

Step 2. Fix V to the set obtained in the previous step, and
solve the convex optimisation problem
min u*  subject to (23), (25) and p*>>0
1 5Se
Step 3. Repeat steps 1 and 2 until p converges to a local
optimum. At convergence, compute the filter gain matrices.

4 A numerical example

In this Section, an example is worked out to illustrate the
proposed filter design procedures. Suppose that the system
shown in Fig. 1 has the signal model Xg with the following
system matrices

_[-L17270 —0.3405} N
s 1 0 ) N 07

C,=[0 1], D;=0

and the channel model X with the following system
matrices

—=2.7731 + 030, —2.1222 —1.2302 — 0.230
A, = 1 —0.40, 0
70.350(2 1 70.50!1

Bl =[1+0y oy 0], C.=[0 1 o], D.=1+"20,

Assume the uncertain parameters o) € [0,0.5] and
oy € [—0.4,0.5]. An optimal H,, filter X is designed by
using procedure A implemented with the LMI Toolbox
[31]. The initial value of Sg is set to [0 0], and the
corresponding optimal 1% is 8.0664 after step 1 is executed
once. Then the procedure is executed until convergence, and
the final optimal g obtained is 8.0653, corresponding to
ST =[0.0010 —0.0012]. These results are put in the first
three rows under the column title ‘Procedure A’ in Table 1,
which show the advantage of having the extra matrix
variable ST

Next, by applying procedure B, four regional pole-
placement constraints, PC-1 with Pp(—2,0.5), PC-2
with Py(-2,-0.5), PC-3 with P;(1.5,7/6), and PC4
with Pg(—1.5,7/6) are separately considered. As in the
above, the initial value of Sg is set to [0 0], and step 1 is
executed once first. Then the procedure is carried out until it
converges. The results are put in the first three rows of
Table 1 under the column title ‘Procedure B’. Correspond-
ing to these constraints, the poles of the filters and the
system, including the signal and channel models at

Table 1: Filter design results from the example

Procedure Procedure

A B
Pp Pv PL Pr
,uz 8.0664 8.3682 8.0923 8.0896 8.1446
,Ltz 8.0653 8.3660 8.0914 8.0886 8.1425
s 0.0010 0.0032 0.0007 0.0022 0.0022
e —0.0012 —0.0003 —0.0013 —0.0011 —0.0020
,uz 8.0686 8.3744 8.0934 8.0956 8.1463
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Fig. 2 Poles of the robust filter, marked by O, and poles of the
system with signal and channel models at the vertices of D.., marked
by X, obtained from procedure B with respect to four regional pole-
placement constraints

the vertices of D, are shown in Fig. 2. Clearly, the poles of
the filters indeed lie inside the desired regions.

Finaly, the proposed method is applied with a special
constraint, i.e., with the n-coefficients {S.,I., Q,, P.,R.}
set to {0,I,,0,1,—p2I} in (23)25), where Q, =0 is
accomplished by setting ¥ = ¥ = 0. This simulates the
solution of the current filtering problem by applying the
bounded real lemma [27] originating from the concept of
positive realness. The last row in Table 1 shows the more
conservative results.

5 Conclusion

The robust H,, filtering problem for linear signal models
and uncertain channels are solved by using the extended
n-sharing theory. Regional pole-placement constraints on
the filter, rather than the entire filtering error dynamics, are
also considered and formulated as LMIs that can be
augmented to the robust H,, filter design procedure. An
example is worked out to illustrate the effectiveness of the
proposed method, in addition to the improvement in
reducing the conservativeness from the use of the bounded
real lemma.
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