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A novel approach for recovering the human body configuration based

on the silhouette is presented. By considering pose inference as

traversing the difference subspaces and using a data-driven mechan-

ism, reversible jump Markov chain Monte Carlo (RJMCMC) can

explore such solution space very efficiently. Experimental results are

provided to demonstrate the efficiency and effectiveness of the

proposed approach.

Introduction: The challenges in the problem of human pose estima-

tion are mainly due to the appearance of variations, which include

clothing, self-occlusion and articulated-deformation. According to the

methodologies used, the approaches for recovering the human pose

can be divided into three classes: the component-based approach [1],

the template-based approach [2], and the parameterisation-based

approach [3]. The limitation of the component-based approach is

that detecting body parts may be difficult, especially in a cluttered

image. As for the template-based approach, its performance is heavily

dependent on the templates used for learning. The parameterisation-

based approach is the more effective and general one, but it is

time-consuming. This Letter proposes an efficient and effective

parameterised-based approach.

Estimation framework: The problem of human pose estimation is

formulated as computing the maximum a posteriori (MAP):

o* ¼ argmax
o2O

PrðojIÞ

where O is the solution space of the pose to be estimated and I is the

currently observed image. Following the Bayes rule, the posterior

probability can be decomposed into a likelihood term Pr(I jo) and a

prior term Pr(o), i.e. o*¼ arg maxo2O Pr(I jo) Pr(o).
Here, a 2D pictorial human model, which consists of ten body parts

as shown in Fig. 1a is used to present a human pose wherein each body

part i is parameterised by a configuration Yi¼ (xi, yi, yi, si, li). The
definitions of these five parameters are given in Fig. 1b. For a human

body, the adjacent body parts are connected by a flexible joint and have

a geometry constraint called connectivity. Let pij
J be a joint point

specified by the configuration Yi of the part i which is connected to

the part j. Ideally, pij
J and pji

J should refer to the same point and thus the

Euclidean distance between pij
J and pji

J modelled by a Gaussian

distribution can be expressed as:

cconnectivityðYi;YjÞ ¼ exp �
kpJij � pJjik

2

2s2c

( )

where k � k is the Euclidean distance and sc is a standard deviation.

Besides connectivity, the widths between adjacent parts should have a

consistent scaling factor. The scale consistency between the adjacent

parts i and j is defined as:

cscaleðYi;YjÞ ¼ exp �
kfcontrastðSi; SjÞ � fcontrastð

�Si; �SjÞk
2

2s2s

( )

where fcontrast (a, b)¼ (a� b)=(a þ b) is the contrast function, ss is the
standard deviation, and s̄i and s̄j are the physical widths of parts i and j,

respectively. As a result, the prior distribution of a pair of adjacent parts

i and j is defined as Pr(Yi, Yj)¼ 1=Z1cconnectivity (Yi,Yj)cscale (Yi,Yj),

where Z1 is a normalisation constant.

Here, we use the human silhouette to define the likelihood

distribution. Let Is be the region of the human silhouette obtained

using the background subtraction technique, and Io be the region

formed by the union of regions specified by the part configurations of

the solution o. A measure computing the region distance is intro-

duced to define a better likelihood distribution Pr(I jo) of seeing I

given a solution o as:

PrðI joÞ ¼
1

Z2
exp �ðdhðIo; IsÞ þ dhð

�Io; �IsÞÞ
� �

where dh(A, B)¼
P

a2A minb2B(ka� bk) measures the distance

between two regions A and B, and Z2 is a normalisation constant.
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Fig. 1 Structure of human model, configuration of body parts, and
connectivity property

a Structure of human model consists of ten parts and nine joints
b Configuration of body parts in a schematic form
c Connectivity property between parts H and LUL

Human pose inference: Inspired by the component-based approach

[1], the manner of recovering the pose configuration may be consid-

ered as an assembling process. Fig. 2 shows the structure of the

solution space. By constructing a solution space in this way, two

merits can be obtained. First, instead of finding the solutions directly

in O10 (the solution space consisting of ten body parts) as the work

reported in [3] does, the solutions are explored by traversing the

subspaces of different dimensionality. This drastically improves the

efficiency of solution exploration because the bad solutions in

the early subspace with low dimensionality will have a low prob-

ability of being visited and jump to the higher subspace. Secondly, the

proposed process is a probabilistic framework but not a deterministic

one. This gives the system a chance to recover the human configura-

tion even though some body parts are difficult to detect.

Ω0

Ω1

Ω
Ω5Ω4 Ω9

Ω10

Fig. 2 Structure of solution space O for problem of human pose estimation

The solution space is high-dimensional and the posterior distribution

over such a space is multimodal. It is impractical to do the exact

inference. An approximation technique called RJMCMC [4] is utilised

to approximate the posterior distribution by drawing samples. The three

types of MCMC dynamics we utilise to explore the solution space are

according to the work listed in [4] and are described as:

Drift dynamic: randomly selects one body part in the solution and then

diffuses its values by following a Gaussian distribution.

Addition dynamic: adds a new body part to the assembly and jumps to

the subspace with a higher dimension.

Removal dynamic: takes away one body part from the assembly and

jumps to the subspace with a lower dimension.

To reduce burn-in period and mix rapidly, the key issue is how to

compute an effective proposal probability for proposing the parameters

in addition dynamic. Here, we achieve this by extracting all symmetry

candidates using symmetry transform [5].

Results: In this Section, several images with a resolution 512� 768

are considered to validate our proposed method. Our system is

implemented on a personal computer with a 1.4 GHz Pentium IV

processor. For each image, 100 samples are drawn from the defined

posterior distribution. Fig. 3 shows the curve of posterior probability
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over these 100 iterations and shows a rapid convergence rate. The

average time for processing each frame is about 5.3s and is much

faster than the approaches in [3] (about 1s). The estimated

results shown in Fig. 4 are the samples with the maximum posterior.

Figs. 4a–d are four images of a person exhibiting different postures.

Figs. 4e and f demonstrate the effectiveness of our approach for the

case when skin colour of body parts is invisible. The cases when

some parts are occluded are shown in Figs. 4g and h. For evaluation,

we compare the estimated centre position and orientation of the

parts with the manually annotated ones. Table 1 shows the RMS

(root mean square) errors of head, torso and limbs, respectively.
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Fig. 3 Curve of posterior probability over 100 drawn samples
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Fig. 4 Some estimation results of proposed approach

Table 1: Average RMS error: unit of Dd is pixel and of Dy is
degree

Head Torso Limb

Dd Dy Dd Dy Dd Dy

10.8 2.3 17.02 2.3 24.86 9.5

Conclusion: We have proposed an effective and efficient approach to

recover the human pose even when the skin colour and some body

parts are invisible. The efficiency is achieved by incorporating the

domain knowledge and formulating the estimation problem as solu-

tion exploration over 11 subspaces with different dimensionality.
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