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Delay, power, skew, area and sensitivity are the most important concerns in current clock-tree design.
We present in this paper an algorithm for simultaneously optimizing the above objectives by sizing
wires and buffers in clock trees. Our algorithm, based on Lagrangian relaxation method, can optimally
minimize delay, power and area simultaneously with very low skew and sensitivity. With linear storage
overall and linear runtime per iteration, our algorithm is extremely economical, fast and accurate; for
example, our algorithm can solve a 6201-wire-segment clock-tree problem using about 1-minute
runtime and 1.3-MB memory and still achieve pico-second precision on an IBM RS/6000 workstation.
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INTRODUCTION

Delay, skew, power, area and skew sensitivity are the most

important concerns in current clock-tree design. With the

increasing complexity of synchronous ASICs, clock skew

and clock-signal delay have become important factors in

determining circuit performance [2,4,10,17]. Wire width

process variations during fabrication can significantly

impact the delay and skew; thus, it is important to consider

the sensitivity of a design to inter-chip process variations

[13]. As reported in Ref. [7], power dissipation of a clock

tree play a key role in overall chip’s power dissipation.

Therefore, it is desirable to simultaneously consider

delay, skew, power, area and sensitivity in clock-tree

design.

Algorithms for routing-tree optimization have

been proposed in much of the literature recently

[3,4,5,12,13,15,17]. The works in Refs. [3,5,12,15] are

designed for general routing tree, hence, they cannot

handle clock tree issues such as skew and sensitivity.

Although Refs. [4,13,14,17] consider sensitivity, skew

and/or delay, most of these algorithms only size wires and

do not minimize power and area. Moreover, existing

algorithms suffer long runtime and large storage

requirements. For example, Refs. [13,17] convert the

skew minimization problem into the least-squares

minimization problem. However, due to the storage and

inversion of large gradient matrices, their respective

runtime per iteration and storage requirements are about

cubic and quadratic in the problem size.

We present in this paper an algorithm for simul-

taneously optimizing the above-mentioned objectives by

sizing wires and buffers in clock trees. Our algorithm,

based on the Lagrangian relaxation method, can

simultaneously optimize delay, power and area with very

low skew and sensitivity; it relaxes the constraints scaled

with Lagrangian multipliers into its objective function and

then iteratively solve the subproblems resulted from

dynamically adjusting the Lagrangian multipliers. Our

algorithm is extremely fast, economical and accurate; it

requires only linear storage overall and linear runtime per

iteration for adjusting wire and buffer sizes. For example,

we can solve a 6201-wire-segment clock-tree problem

in about 1-min runtime and 1.3-MB memory and still

guarantee pico-second precision on an IBM RS/6000

workstation.
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PRELIMINARIES

We use the following notations in this paper.

. T: A clock tree with a driver w0 at the root (source) and

a set of s sinks {N1;N2; . . .;Ns}:
. wi: i-th wire segment or buffer. wi is a wire segment

when 1 # i # n; or a buffer when n þ 1 # i # n þ m

or i ¼ 0:
. xi, li: Size and length of wi, respectively.

. l: l ¼ ðl1; l2; . . .; lsÞ is the Lagrange-multiplier

vector.

. x: x ¼ ðx0; x1; x2; . . .; xnþmÞ is a wire- and buffer-sizing

solution.

. ri: Resistance of wire per unit length at unit width,

when 1 # i # n; resistance of unit-size buffer, when

i ¼ 0 or n þ 1 # i # n þ m:
. e i: Area capacitance of wire per unit square, when

1 # i # n; capacitance of unit-size buffer, when i ¼ 0

or n þ 1 # i # n þ m:
. ri: Resistance of wi. ri < rili=xi; when 1 # i # n;

ri < ri=xi; when n þ 1 # i # n þ m or i ¼ 0:
. ci: Capacitance of wi. ci < e ilixi; when 1 # i # n;

ci < e ixi; when n þ 1 # i # n þ m or i ¼ 0:
. Ui, Li: Upper bound and lower bound of the size of wi,

respectively, i.e. Li # xi # Ui; 0 # i # n þ m:
. Pi: All wires and buffers on the path from the source to

sink Ni (including Ni).

. Ti: All wires and buffers in the subtree of T rooted at wi

(excluding wi).

. parent(wi): Parent of wi.

. Child(wi): Set of wi’s children.

. Ans(wi): All wires or buffers on the path from wi to the

nearest upstream buffer or the root (excluding wi).

. Dec(wi): All wires, buffers or sinks on the paths from

wi to the neighboring downstream buffers or sinks

(excluding wi).

. Ri: Upstream resistance of wi; Ri ¼
P

wj[AnsðwiÞ
rj:

. Ci: Downstream capacitance of wi; Ci ¼P
wj[ChildðwiÞ

ðCj þ cjÞ þ
P

Nj[ChildðwiÞ
~cj; where c̃j is

the capacitance of sink Nj, 1 # j # s:
. A: Area of a clock tree; A ¼

Pn
i¼1xili þ

Pnþm
i¼nþ1xi þ x0:

See Fig.1 for an illustration of Ri and Ci.

We use a distributed resistance–capacitance (RC)

segment to represent a branch of a clock tree (see

Fig. 2(a)). The distributed RC segment can be modeled as

an equivalent lumped p-circuit. The lumped resistance

and capacitance of the p-model of an RC segment wi are

approximated by rili/xi and e ixili, respectively. We use the

switch-resistor model to compute buffer delays (see Fig.

2(b)) and apply the Elmore delay model [8] to

approximate signal delays in a subtree. Given a distributed

RC routing tree T, its signal delay at sink Ni is computed

by

Di ¼
wj[Pi; 1#j#n

X
rj Cj þ

cj

2

� �
þ
wj[Pi; nþ1#j#nþm

X
rjCj þ r0C0:

In practical CMOS applications, capacitive dissipation

(due to charging and discharging of load capacitances)

FIGURE 1 Upstream resistance and downstream capacitance.

FIGURE 2 RC model for wire and buffer.
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usually dominates the other types of power dissipation [5].

Hence, we consider only the capacitive dissipation in

this paper. Given a clock tree, its power dissipation

P can be approximated by P < fCtotV
2
dd; where f is

the clock frequency and Ctot is the total capacitance of

the tree.

Clock skew is defined as the maximum difference in the

delays from the clock source to clock sinks; that is, the

skew of a clock tree, S ¼ maxi; jjDi 2 Djj: Given wire

width w, the skew sensitivity, D, is defined as the

maximum difference between skews under varying values

of w due to process variations [4]. The goal of sensitivity

minimization is to find an optimal w such that D is

minimized.

This paper addresses the clock-tree wire- and buffer-

sizing problem, targeting multiple objectives such as

delay, skew, power, area and sensitivity. We give the

formulation for the wire- and buffer-sizing problem as

follows:

The Clock-Tree Wire- and Buffer-Sizing Problem

Given: A clock tree T with the source N0 and sinks

{N1;N2; . . .;Ns}; wire segments {w1;w2; . . .;wn}; buffers

{w0;wnþ1;wnþ2; . . .;wnþm}; upper bounds {U0;U1; . . .;
Unþm}; and lower bounds {L0; L1; . . .; Lnþm}:

Objective: Find an x that minimizes max1#i#sDi; S, P, A

and/or D.

An example of Clock-Tree Wire- and Buffer-Sizing

Problem

Figure 3 illustrates an example of clock trees with

source N0. There are three sinks (N1, N2 and N3), five wires

(w1, w2, w3, w4 and w5), and two buffers (w0, w6) in this

clock tree. The goal is to find a set of wire and buffer sizes

to minimize max1#i#sDi; S, P, A and/or D.

DELAY/POWER/AREA MINIMIZATION

We formulate the wire- and buffer-sizing problem for

simultaneous delay, power and area minimization as

follows:

M : Minimize aDmax þ bP þ gA

Subject to DiðxÞ # Dmax; 1 # i # s;

Li # xi # Ui; 0 # i # n þ m;

Dmax . 0;

where a, b and g are the given constants. Note that Dmax is

a variable we introduced to minimize maximum delay. As

shown above, there are two sets of inequalities. The first

set of s inequalities is used to ensure that every sink

satisfies its delay constraint. The second set of inequalities

is used to ensure that the size of every wire segment and

buffer satisfies its size constraints.

By dividing both sides of the delay, lower bound, and

upper bound constraints by Dmax, xi and Ui, respectively,

we can rewrite these constraints as ðDiðxÞ=DmaxÞ # 1;
ðLi=xiÞ # 1 and ðxi=UiÞ # 1: Hence, M becomes a

geometric programming problem which can be reduced

to a convex programming problem by an exponential

transformation [6]. However, since general geometric

programming solvers usually involve gradient matrices

inversions, their storage and runtime requirements are at

least quadratic and cubic in the problem size, respectively.

Therefore, it is desirable to develop an efficient algorithm

for solving this problem.

Our approach for solving M is based on Lagrangian

relaxation [1,9]. We relax the delay constraints into

FIGURE 3 An example of Clock-Tree Wire- and Buffer-Sizing Problem.
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the objective function by introducing Lagrange multipliers

li’s, 1 # i # s; one for each delay constraint

DiðxÞ # Dmax: We have the Lagrangian-relaxation sub-

problem for M as follows:

M0 : Minimize aDmax þ bP þ gA þ
Ps

i¼1 liðDiðxÞ

2DmaxÞ

Subject to Li # xi # Ui; 0 # i # n þ m;

Dmax . 0:

For each l, let L(l ) be the optimal objective function

value ofM0. It is well known thatL(l ) is a lower bound of

the optimal objective value of M [1,9]. On the other hand,

any feasible solution ofM is an upper bound of the optimal

objective value. Hence, we can use these two bounds to

evaluate the quality of a current solution and to determine

the termination criteria. By the Kuhn–Tucker theory [11]

and the fact that M is equivalent to a convex programming

problem, we have the following theorem.

Theorem 1 ðx* ;Dmax* Þ is an optimal solution if and only

if there exists a vector l* ¼ ðl1* ; l2* ; . . .; ls*Þ such that

(1)
Ps

i¼1li* ¼ a;

(2) li* ðDiðx* Þ2 Dmax* Þ ¼ 0; 1 # i # s;

(3) Diðx* Þ2 Dmax* # 0; 1 # i # s;

(4) li* $ 0; 1 # i # s;

(5) xi* ¼ minðUi; maxðLi;FiÞÞ; where

Fi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrimiCiÞ=ðbpi þ gþ e i

X
wj[AnsðwiÞ

rjmj

r
Þ;

pi ¼ f e iV
2
dd;

and

mi ¼
X

Nj[Ti

lj; 0 # i # n þ m:

Proof Since the objective function is a posynominal and

the delay constraints are also posynominals after dividing

both the sides with Dmax. M is a geometric pro-

gramming problem which is equivalent to a convex

programming problem under the following transformation

xi ¼ eyi : Hence, a local minimum of M is a global

minimum of M.

We write down Kuhn–Tucker conditions [11] for M0 as

follows:

›L

›Dmax*
¼ 0; ð1Þ

›L

›xi

¼ 0; 0 # i # n þ m; ð2Þ

liðDiðx* Þ2 Dmax* Þ ¼ 0; 1 # i # s; ð3Þ

Diðx* Þ2 Dmax* # 0; 1 # i # s; ð4Þ

Dmax* . 0; ð5Þ

li $ 0; 1 # i # s: ð6Þ

By Eq. (1), we get

Xs

i¼1

li ¼ a ð7Þ

We can also rewrite Eq. (2) as follows:

Note that the terms that involve xi come fromP
wk[ansðwiÞ

rkmkCk: In fact, only the term e ilixi (the wire

capacitance of wi) and e ixi (the buffer capacitance of wi) in

Ck contribute to the terms with xi, hence

Aiðx*Þ¼

l1 bpiþgþei
wj[ansðwiÞ

P
rjmj

 !
1#i#n;

bpiþgþei
wj[ansðwiÞ

P
rjmj i¼0ornþ1#i#nþm:

8>>>>>><
>>>>>>:

›L

›xi*
¼

›bP þ gA þ
Ps

j¼1 ljDj þ ða2
Ps

j¼1 ljÞDmax*

›xi

¼

›bP þ gA þ
Ps

j¼1 lj
wk[Pj;1#k#n

P
rk Ck þ

ck

2


 �
þ
wk[Pj;nþ1#k#nþm

P
rkCk þ r0C0

" #

›xi

¼

›bP þ gA þ
wk[T ;1#k#n

P
rk Ck þ

ck

2


 �
Nj[decðwkÞ

P
lj þ

wk[T ;nþ1#k#nþm

P
rkCk

P
Nj [ decðwkÞlj þ r0C0

" #

›xi

¼

›bP þ gA þ
wk[T ;1#k#n

P
rkmk Ck þ

ck

2


 �
þ

wk[T ;nþ1#k#nþm

P
rkmkCk þ r0C0

" #

›xi

:
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Since the terms that involve (1/xi) only coming from

rimiCi, we have

Biðx* Þ ¼
lirimiCi 1 # i # n;

rimiCi i ¼ 0 or n þ 1 # i # n þ m:

(

It is clear that Ai(x*), and Bi(x*) are independent of xi.

Hence, we can rewrite (›L/›xi) as follows:

›L

›xi

¼
›Aiðx* Þxi þ

Biðx* Þ
xi

þ Eiðx* Þ

›xi

¼ Aiðx* Þ2
Biðx* Þ

x2
i

;

where Ei(x*) is independent of xi, since while fixing other

variables, (›L/›xi) is a convex function respect to a single

variable xi. We know that the optimal xi* satisfies

following equation:

xi* ¼ min Ui; max Li;

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Biðx* Þ

Aiðx* Þ

r� �� �
;

0 # i # n þ m: ð8Þ

Theorem 1 thus follows. A

Based on the above analysis, we need to find x* and l*

to solve Problem M. Once li’s are assigned, we can

compute x* based on Theorem 1(5). Hence, we can adopt

a two-level approach to solve this problem: in the outer

loop, we dynamically adjust sink weights li’s; weight

associated with each sink is proportional to the signal

delay of the sink. In the inner loop, we find an optimal

wire- and buffer-sizing solution for the given li’s. With

this in mind, we present the Lagrangian-relaxation-based

algorithm shown in Fig. 4; the algorithm iteratively

adjusts the multipliers based on the delay information

associated with sinks and solves the corresponding

Lagrangian relaxation subproblems. Our algorithm runs

in O( pqn ) time using O(n ) storage, where p is the number

of iterations (A3–A6) in OWBA and q is the number of

iterations (S2–S3) in LRS. Empirically, the overall

runtime approaches linear. We have the following

theorem.

Theorem 2 Algorithm OWBA converges to a global

optimal solution.

SKEW AND SENSITIVITY MINIMIZATION

By definition, clock skew S ¼ maxi; jjDi 2 Djj: To reduce

clock skew, we need not only to reduce signal delays but

also to balance delays. We have the following formulation

to minimize clock skew:

M1 : Minimize aDmax þ bP þ gA þ dðDmax 2 DminÞ

Subject to DiðxÞ # Dmax; 1 # i # s;

DiðxÞ $ Dmin; 1 # i # s;

Li # xi # Ui; 0 # i # n þ m;

Dmax . 0; Dmin . 0:

Since M1 introduces negative coefficients, it is no

longer a geometric programming problem and hence there

is no guarantee of convexity. For a non-convex problem,

global optimal solution may not be found easily. We resort

to the following heuristic approach. Following the

Lagrangian relaxation procedure, we relax the delay

constraints by bringing them into the objective function

with associated Lagrange multipliers li’s and si’s, 1 #

i # s; where li and si are the Lagrange multipliers

associated with the delay constraint DiðxÞ # Dmax and

DiðxÞ $ Dmin; respectively. We have the Lagrangian

relaxation subproblem for M1 as follows:

M10 : Minimize aDmax þbPþgAþdðDmax 2DminÞ

þ
Ps

i¼1liðDiðxÞ2DmaxÞ

þ
Ps

i¼1siðDmin 2DiðxÞÞ

Subject to Li # xi #Ui; 0# i# nþm;

Dmax . 0; Dmin . 0:

Hence, by repeatedly solving the Lagrangian relaxation

subproblems, we can minimize clock skew.

Sensitivity is used to measure the influence of

production variations. It can be measured by the first

derivative of the signal delay with respect to wire (buffer)

size which can be shown to be j1iRi 2 ðriliCi=x2
i Þj

ðje iRi 2 ðriCi=x2
i ÞjÞ: Restricting the sensitivity of every

wire (buffer) to be smaller than Dmax, we get je iRi 2

ðriliCi=x2
i Þj # Dmaxðje iRi 2 ðriCi=x2

i Þj # DmaxÞ: In our

algorithm, we dynamically add the following constraints

into Step S3 of LRS during execution:FIGURE 4 The optimal wire- and buffer-sizing algorithm.
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. For 1 # i # n

xi # min Ui; max Li;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riliCi

e iRi 2 Dmax

r� �� �
;

if e iRi 2
riliCi

x2
i

$ 0;

xi $ min Ui; max Li;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riliCi

e iRi þ Dmax

r� �� �
;

if e iRi 2
riliCi

x2
i

, 0:

. For i ¼ 0 or n þ 1 # i # n þ m

xi # min Ui; max Li;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riCi

e iRi 2 Dmax

r� �� �
;

if e iRi 2
riCi

x2
i

$ 0;

xi $ min Ui; max Li;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
riCi

e iRi þ Dmax

r� �� �
;

if e iRi 2
riCi

x2
i

, 0:

While the above approaches reduce skew and

sensitivity, they also tend to increase delay, power, area

and runtime at the same time. In fact, we observe that

Algorithm OWBA already significantly reduces skew and

sensitivity while optimizing delay, power and/or area.

Since Algorithm OWBA tends to allocate higher weights

to sinks with longer delay and smaller weights to the ones

with shorter delay. Consequently, the longer paths get

more resources than the shorter ones. This effect directly

balances the delays between different sinks and hence

reduces clock skew. We observed that OWBA is a good

heuristic for sensitivity minimization as well. To see this,

let us consider delay minimization (i.e. a ¼ 1;
b ¼ g ¼ 0). Our algorithm essentially iteratively sizes

all buffers and wire segments, one at a time (in Step S3 of

LRS) while keeping the sizes of all other buffers/wire

segments fixed. It can be proved that S3 not only optimally

size a buffer/wire segment, it also simultaneously

minimizes the sensitivity with respect to average delay.

EXPERIMENTAL RESULTS

We implemented our algorithm and tested on the five

circuits r1–r5 used in Ref. [16] on an IBM RS/6000

workstation. The per micron resistance and capacitance

used are 3 mV and 0.02 f F, respectively. The lower and

upper bounds for wire widths are 1 and 10 mm,

respectively. Table I lists the names of the circuits,

numbers of wire segments in the circuits, delays,

skews, sensitivity, runtimes and storage requirements.

It shows that our algorithm, on the average, reduced

TABLE I Experimental results in delay, skew and sensitivity

Delay (ns) Skew (ps) Dmax (10215 sec/mmm)
Ckt # Nodes Initial Final Red% Initial Final Red% Initial Final Red% Runtime (sec) Stor (kb) Err (ps)

r1 533 0.775 0.161 481 64 16 400 7.96 0.53 1501 3.50 148 0.2
r2 1195 2.108 0.379 556 221 12 1842 15.86 0.65 2436 13.38 280 0.4
r3 1723 3.376 0.572 590 154 36 427 20.58 0.68 3039 17.25 388 0.6
r4 3805 9.087 1.376 660 716 92 778 42.13 1.48 2850 54.87 812 1.4
r5 6201 15.864 2.312 686 974 102 955 63.51 2.06 3085 67.04 1300 2.3
Avg – – – 595 – – 691 – – 2582 – – –

FIGURE 5 Runtime and storage requirements.

Y-M. LEE et al.592



the respective delay, skew and sensitivity by 595, 691 and

2582% after wire-sizing. Further, our algorithm is

extremely fast and economical. For example, for the

circuit r5 with 6201 wire segments, our algorithm needed

only 67-second runtime and 1.3-MB storage to achieve

2.3-ps precision. In Fig. 5(a),(b), the runtime and storage

requirements, respectively (represented by the vertical

axis), are plotted as a function of the number of wire

segments in a circuit (denoted by the horizontal axis). It

shows that the runtime and storage requirements of our

algorithm approach linear in the number of wire segments.

Figure 6 shows the relationship among the maximum

delays (Dmax), the value of the L(l ) and clock skew at

each iteration. The horizontal axis and the vertical axis

represent the number of iterations and Dmax, L(l ), and

skew (in pico second), respectively. The gap between

Dmax and L(l ) is the error bounds of our algorithm.
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