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Delay, power, skew, area and sensitivity are the most important concerns in current clock-tree design.
We present in this paper an algorithm for simultaneously optimizing the above objectives by sizing
wires and buffers in clock trees. Our algorithm, based on Lagrangian relaxation method, can optimally
minimize delay, power and area simultaneously with very low skew and sensitivity. With linear storage
overall and linear runtime per iteration, our algorithm is extremely economical, fast and accurate; for
example, our algorithm can solve a 6201-wire-segment clock-tree problem using about 1-minute
runtime and 1.3-MB memory and still achieve pico-second precision on an IBM RS/6000 workstation.
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Clock trees

INTRODUCTION

Delay, skew, power, area and skew sensitivity are the most
important concerns in current clock-tree design. With the
increasing complexity of synchronous ASICs, clock skew
and clock-signal delay have become important factors in
determining circuit performance [2,4,10,17]. Wire width
process variations during fabrication can significantly
impact the delay and skew; thus, it is important to consider
the sensitivity of a design to inter-chip process variations
[13]. As reported in Ref. [7], power dissipation of a clock
tree play a key role in overall chip’s power dissipation.
Therefore, it is desirable to simultaneously consider
delay, skew, power, area and sensitivity in clock-tree
design.

Algorithms for routing-tree optimization have
been proposed in much of the literature recently
[3,4,5,12,13,15,17]. The works in Refs. [3,5,12,15] are
designed for general routing tree, hence, they cannot
handle clock tree issues such as skew and sensitivity.
Although Refs. [4,13,14,17] consider sensitivity, skew
and/or delay, most of these algorithms only size wires and
do not minimize power and area. Moreover, existing

*Corresponding author.

ISSN 1065-514X print/ISSN 1563-5171 online © 2002 Taylor & Francis Ltd
DOI: 10.1080/1065514021000012200

algorithms suffer long runtime and large storage
requirements. For example, Refs. [13,17] convert the
skew minimization problem into the least-squares
minimization problem. However, due to the storage and
inversion of large gradient matrices, their respective
runtime per iteration and storage requirements are about
cubic and quadratic in the problem size.

We present in this paper an algorithm for simul-
taneously optimizing the above-mentioned objectives by
sizing wires and buffers in clock trees. Our algorithm,
based on the Lagrangian relaxation method, can
simultaneously optimize delay, power and area with very
low skew and sensitivity; it relaxes the constraints scaled
with Lagrangian multipliers into its objective function and
then iteratively solve the subproblems resulted from
dynamically adjusting the Lagrangian multipliers. Our
algorithm is extremely fast, economical and accurate; it
requires only linear storage overall and linear runtime per
iteration for adjusting wire and buffer sizes. For example,
we can solve a 6201-wire-segment clock-tree problem
in about 1-min runtime and 1.3-MB memory and still
guarantee pico-second precision on an IBM RS/6000
workstation.
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FIGURE 1

PRELIMINARIES

We use the following notations in this paper.

e T: A clock tree with a driver wy at the root (source) and
a set of s sinks {N{,N,,...,Ns}.

e w; i-th wire segment or buffer. w; is a wire segment
when 1 =i =n,orabufferwhenn+1=i=n+4+m
ori=0.

® x; [;: Size and length of w;, respectively.

o A A= (A, Ay,...,Ay) is the Lagrange-multiplier
vector.

® X: X = (Xg,X1,X2,..
solution.

e p;: Resistance of wire per unit length at unit width,
when 1 = i = n; resistance of unit-size buffer, when
i=0orn+1=i=n+m.

® ¢€; Area capacitance of wire per unit square, when
1 =i = n; capacitance of unit-size buffer, when i = 0
orn+1l=i=n+m

e r;: Resistance of w,. r; = pili/x;, when 1 =i=n;
ri=pi/xi,whenn+1=<i=n+mori=0.

e ¢;: Capacitance of w;,. ¢; = €;lix;, when 1 =i =n;
ci=¢€xi,whenn+1=i=n+mori=0.

e U, L; Upper bound and lower bound of the size of w;,
respectively, ie. L, =x, = U, 0=i=n-+m.

e P;: All wires and buffers on the path from the source to
sink N; (including N;).

e T;: All wires and buffers in the subtree of 7 rooted at w;
(excluding w;).

e parent(w;): Parent of w;.

s Xp+m) 18 @ wire- and buffer-sizing

wire pl/x
© VWA T o
Fa Exl/2
IE —= Exl/2 l I_ x
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Sink nodes

Upstream resistance and downstream capacitance.

e Child(w;): Set of w;’s children.

e Ans(w;): All wires or buffers on the path from w; to the
nearest upstream buffer or the root (excluding w;).

e Dec(w;): All wires, buffers or sinks on the paths from
w; to the neighboring downstream buffers or sinks
(excluding w;).

e R;: Upstream resistance of wi; Ri = >, cansow)-

e (;;: Downstream capacitance of w;; C;=
2 wechidon) (G + € + Dy echila & Where & s
the capacitance of sink N;, 1 =j = .

o A:Areaofaclocktree; A = >0 xili + S 00" x; + Xo.

See Fig.1 for an illustration of R; and C;.

We use a distributed resistance—capacitance (RC)
segment to represent a branch of a clock tree (see
Fig. 2(a)). The distributed RC segment can be modeled as
an equivalent lumped mr-circuit. The lumped resistance
and capacitance of the m-model of an RC segment w; are
approximated by p;l;/x; and €x,l;, respectively. We use the
switch-resistor model to compute buffer delays (see Fig.
2(b)) and apply the Elmore delay model [8] to
approximate signal delays in a subtree. Given a distributed
RC routing tree 7, its signal delay at sink »; is computed
by

DiZZ VJ(CJ—F%)—}- erCj+70CO.

w,EP;, 1=sj=n Wi EP;, n+1=j=n+m

In practical CMOS applications, capacitive dissipation
(due to charging and discharging of load capacitances)

buffer
; pix
Size x
D—Dy—o — Ex:-l-.l E'i%

fb)

FIGURE 2 RC model for wire and buffer.
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usually dominates the other types of power dissipation [5].
Hence, we consider only the capacitive dissipation in
this paper. Given a clock tree, its power dissipation
P can be approximated by P = watVfM, where f is
the clock frequency and Cy is the total capacitance of
the tree.

Clock skew is defined as the maximum difference in the
delays from the clock source to clock sinks; that is, the
skew of a clock tree, S = max;;|D; — D;|. Given wire
width w, the skew sensitivity, A, is defined as the
maximum difference between skews under varying values
of w due to process variations [4]. The goal of sensitivity
minimization is to find an optimal w such that A is
minimized.

This paper addresses the clock-tree wire- and buffer-
sizing problem, targeting multiple objectives such as
delay, skew, power, area and sensitivity. We give the
formulation for the wire- and buffer-sizing problem as
follows:

The Clock-Tree Wire- and Buffer-Sizing Problem

Given: A clock tree T with the source N, and sinks
{N1,N,,...,Ns}, wire segments {wy,wy,...,w,}, buffers
{Wo, Wnt1, Wag2, - s Wpem }, upper bounds {Uy, Uy,...,
U,+m}, and lower bounds {Ly,L;,...,Lytm}-

Objective: Find an x that minimizes max;<;<,D;, S, P,A
and/or A.

An example of Clock-Tree Wire- and Buffer-Sizing
Problem

Figure 3 illustrates an example of clock trees with
source Ny. There are three sinks (N, N, and Ns), five wires
(wy, wa, w3, wy and ws), and two buffers (wg, we) in this
clock tree. The goal is to find a set of wire and buffer sizes
to minimize max=;=,D;, S, P, A and/or A.

Source node

N_O w_
1

DELAY/POWER/AREA MINIMIZATION

We formulate the wire- and buffer-sizing problem for
simultaneous delay, power and area minimization as
follows:

A : Minimize  aDp,, + BP + A
Subject to Di(X) = Dyax, 1 =i=s,
Li =x = Ul',

Dmax > 07

O=i=n+m,

where «, B and vy are the given constants. Note that D, is
a variable we introduced to minimize maximum delay. As
shown above, there are two sets of inequalities. The first
set of s inequalities is used to ensure that every sink
satisfies its delay constraint. The second set of inequalities
is used to ensure that the size of every wire segment and
buffer satisfies its size constraints.

By dividing both sides of the delay, lower bound, and
upper bound constraints by Dy,.«, X; and U;, respectively,
we can rewrite these constraints as (D;(X)/Dpax) = 1,
(Li/x)) =1 and (x;/U;) =1. Hence, .# becomes a
geometric programming problem which can be reduced
to a convex programming problem by an exponential
transformation [6]. However, since general geometric
programming solvers usually involve gradient matrices
inversions, their storage and runtime requirements are at
least quadratic and cubic in the problem size, respectively.
Therefore, it is desirable to develop an efficient algorithm
for solving this problem.

Our approach for solving .# is based on Lagrangian
relaxation [1,9]. We relax the delay constraints into

Sink nodes

FIGURE 3  An example of Clock-Tree Wire- and Buffer-Sizing Problem.



590 Y-M. LEE et al.

the objective function by introducing Lagrange multipliers
A’s, l=i=ys, one for each delay constraint
Di(x) = Dpax- We have the Lagrangian-relaxation sub-
problem for .# as follows:

M': Minimize  aDpax + BP + yA + 31, Ai(Di(x)

_Dmax)

Subject to Li=x,=U;, 0=i=n+m,

Dnax > 0.

For each A, let #(A) be the optimal objective function
value of .#'. 1tis well known that #()) is a lower bound of
the optimal objective value of .# [1,9]. On the other hand,
any feasible solution of .# is an upper bound of the optimal
objective value. Hence, we can use these two bounds to
evaluate the quality of a current solution and to determine
the termination criteria. By the Kuhn—Tucker theory [11]
and the fact that .# is equivalent to a convex programming
problem, we have the following theorem.

THEOREM 1
if there exists a vector A* = (AF, A%, ..

(x*, Difax) is an optimal solution if and only
., A¥) such that

() YA =
(2) AF(Di(x*) = Dma*) = 0,1 =i = s

Proof Since the objective function is a posynominal and
the delay constraints are also posynominals after dividing
both the sides with D.. # is a geometric pro-
gramming problem which is equivalent to a convex
programming problem under the following transformation
x; = e”. Hence, a local minimum of .# is a global
minimum of ..

We write down Kuhn—Tucker conditions [11] for .#' as
follows:

4
=0, (1)
aDmax*

A4
=0, 0=i=n-+m, )

axi
Ai(Di(x*) = Diax*) =0, 1=i=ys, 3)
Di(X*) - Dmaxﬂ< = 07 l=i= s, (4)
Dpai* > 0, (5)
A=0, 1=i=s. (6)

By Eq. (1), we get

Z)\,- =a (7)

We can also rewrite Eq. (2) as follows:

0.7 OBP+ YA+ 3T ADj+ (a = 350 A)Dimas*

ax;* ax;

IBP+ YA+ A 27
Wik i 1=k=n

Sore(Ce+4) +

Zrka + I’QC()

Wy EPj ,n+1=<k=n+m

ax,-

IBP+YA+ | Sn(Ce+9%)

wi €T, 1=k=n

YA+ > G

Nfedec(wk)

>_N; € dec(wi)A; + roCo
wi €T n+1=k=n+m

IBP + YA +

wiET 1=k=n

c
2
Zrlivk(Ck + ) + Zrkuka + roCo

wiET n+1=k=n+m

axi

axi

(3) Di(X*) - Dmax>l< = O; l=i= 85
@ \N=01=i=gy
(5) x# = min(U;, max(L;, ®;)), where

O, = \/ (piiCo)/(Bpi + v+ EiZWJEAm(W,)rJ ),

Pi = fEiV,zjdv
and

Hi = ZNjETA/\j’

O=i=n+m.

Note that the terms that involve x; come from
> iansowy) kM Cr- In fact, only the term €/;x; (the wire
capacitance of w;) and €.x; (the buffer capacitance of w;) in
C,. contribute to the terms with x;, hence

Iy <Bpi+'y+€eiz:(rjl-)bj> I=i=n,
Ai(x*)=

Bpi+y+ey ripj  i=0orn+1=<i=n+m.

wjEans(w;)
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Since the terms that involve (1/x;) only coming from
;i Ci, we have

lipiniCi 1 =i=n,

Bi(x*) =

piniCi i=0orn+l1=i=n+m

It is clear that A,(x*), and B;(x*) are independent of x;.
Hence, we can rewrite (0. %/dx;) as follows:

02 A + 200 + Ei(x) Bi(x*)
- / = Ai(x*) = =5
0X; ax; X7

b

where E;(x*) is independent of x;, since while fixing other
variables, (8 ¥/dx;) is a convex function respect to a single
variable x;, We know that the optimal x;* satisfies
following equation:

s — minl U L B
x;* = min|( U;, max|( L;, 105 )
0=i=n+m. ®)

Theorem 1 thus follows. [J

Based on the above analysis, we need to find x* and A*
to solve Problem .#. Once A;’s are assigned, we can
compute x* based on Theorem 1(5). Hence, we can adopt
a two-level approach to solve this problem: in the outer
loop, we dynamically adjust sink weights A;’s; weight
associated with each sink is proportional to the signal
delay of the sink. In the inner loop, we find an optimal
wire- and buffer-sizing solution for the given A;’s. With
this in mind, we present the Lagrangian-relaxation-based
algorithm shown in Fig. 4; the algorithm iteratively
adjusts the multipliers based on the delay information
associated with sinks and solves the corresponding
Lagrangian relaxation subproblems. Our algorithm runs

Algorithm: OWBA (Optimal Wire- and Buffer-sizing Algorithm)
Allet k=0, 2;, = L;, 0 <i<n+m.
A2),=1/s,1<i<s.
A3Call Subroutine LRS.
A4 Recursively compute all sink delays D;’s; let

Do = max;(D;(x)).
A5 Adjust sink weights A;’s according to the formula

A= A+ 04(Dy(%) = Dypa), 1 <0 < 5,

where step size 6, satisfies limy,_, 0, = 0 and Zle 0; — oo.
A6k =Fk+ 1.
AT7Repeat A3-A6 until D,,,, — £()\) < error bound.
Subroutine: LRS (Lagrangian-Relaxation Subroutine)

S1.Compute all the wire-segment weights in a bottom-up
manner using the formula: y1; :.ije(;,',,,d(w‘) Aj.

S2.Compute the downstream capacitance in a bottom-up man-
ner using the formula C, = Zw,ec'/nzq(‘u~,)(6./ +¢;).

S3.Traverse the clock tree in the dept-first-search order;
During visiting w;, keeping other wire and buffer sizes fixed,
compute R, = Ryarent, + tparent,Tparent;: Ch = 1t:C;, and

P.C;
»\ BPAyHER;
S4.Repeat S2-S3 until no improvement.

a; = min (U, max | L;

FIGURE 4 The optimal wire- and buffer-sizing algorithm.

in O(pgn ) time using O(n ) storage, where p is the number
of iterations (A3—A6) in OWBA and ¢ is the number of
iterations (S2—S3) in LRS. Empirically, the overall
runtime approaches linear. We have the following
theorem.

THEOREM 2 Algorithm OWBA converges to a global
optimal solution.

SKEW AND SENSITIVITY MINIMIZATION

By definition, clock skew S = max; ;|D; — Dj|. To reduce
clock skew, we need not only to reduce signal delays but
also to balance delays. We have the following formulation
to minimize clock skew:

A1 : Minimize ~ aDmax + BP + YA + 0(Dmax — Dimin)
Subject to Di(X) = Dpax, | =i=sy,
Di(X) = Dpin, 1=i=s,
L=x=U, 0=i=n+m,

Dmux > 0» Dmin > 0.

Since .#'1 introduces negative coefficients, it is no
longer a geometric programming problem and hence there
is no guarantee of convexity. For a non-convex problem,
global optimal solution may not be found easily. We resort
to the following heuristic approach. Following the
Lagrangian relaxation procedure, we relax the delay
constraints by bringing them into the objective function
with associated Lagrange multipliers A;’s and o;’s, 1 =
i =s, where A; and o; are the Lagrange multipliers
associated with the delay constraint D;(X) = Dy, and
D;(X) = Dy, respectively. We have the Lagrangian
relaxation subproblem for .#1 as follows:

A1 : Minimize  aDyax + BP + YA + 8(Dimax — Dimin)
+> i Ai(Di(X) — Dinay)

+3>°1—1 0i(Diin — Di(X))
L=x=U; 0=i=n+m,

Dmax > 07 Dmin >0.

Subject to

Hence, by repeatedly solving the Lagrangian relaxation
subproblems, we can minimize clock skew.

Sensitivity is used to measure the influence of
production variations. It can be measured by the first
derivative of the signal delay with respect to wire (buffer)
size which can be shown to be |&;R; — (pil;C;/x7)|
(l€:R; — (piCi/x})|). Restricting the sensitivity of every
wire (buffer) to be smaller than Ay, we get |€;R; —
(pilici/xiz)l = Anax(l€:Ri — (piCi/x,‘z)l = Anax)- In our
algorithm, we dynamically add the following constraints
into Step S3 of LRS during execution:
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TABLE I Experimental results in delay, skew and sensitivity

Delay (ns) Skew (ps) Apax (107 15 sec/pwmm)
Ckt # Nodes Initial Final Red% Initial Final Red% Initial Final Red% Runtime (sec) Stor (kb) Err (ps)
rl 533 0.775  0.161 481 64 16 400 7.96 0.53 1501 3.50 148 0.2
r2 1195 2.108  0.379 556 221 12 1842 15.86 0.65 2436 13.38 280 0.4
3 1723 3376  0.572 590 154 36 427 20.58 0.68 3039 17.25 388 0.6
4 3805 9.087 1.376 660 716 92 778 42.13 1.48 2850 54.87 812 1.4
5 6201 15.864  2.312 686 974 102 955 63.51 2.06 3085 67.04 1300 2.3
Avg - - - 595 - - 691 - - 2582 - - -
e Forl=i=<n Algorithm OWBA already significantly reduces skew and
sensitivity while optimizing delay, power and/or area.
. piliCi Since Algorithm OWBA tends to allocate higher weights
x; = min( U;, max | Ly, /[ ——F— ] |, . ) .
€iR; — Apax to sinks with longer delay and smaller weights to the ones
LC with shorter delay. Consequently, the longer paths get
if €R; — p’;z’ =0, more resources than the shorter ones. This effect directly
A balances the delays between different sinks and hence
C reduces clock skew. We observed that OWBA is a good
X = min(Ui, max (Lh A [ Pititi ))) heuristic for sensitivity minimization as well. To see this,
€iRi + Amax let us consider delay minimization (i.e. a=1,
piliC; B = vy=0). Our algorithm essentially iteratively sizes
. (Ad) 1 . . .
if €R; — 2 <O0. all buffers and wire segments, one at a time (in Step S3 of
! LRS) while keeping the sizes of all other buffers/wire
e Fori=0orn+l<i=n+m segments fixed. It can be proved that S3 not only optimally
piC; size a buffer/wire segment, it also simultaneously
X; = min (U i; Mmax (Lh 7) >7 minimizes the sensitivity with respect to average delay.
€R; — Amax
) C.
if E,’Ri - P121 = 0,
Xi EXPERIMENTAL RESULTS
. C. . .
X = mm(Ui, max (L,-, RPI—IA)>’ We implemented our algorithm and tested on the five
€iRi 4 Amax circuits r1—r5 used in Ref. [16] on an IBM RS/6000
. piC; workstation. The per micron resistance and capacitance
if &R ——5=<0. used are 3m{) and 0.02 fF, respectively. The lower and

' upper bounds for wire widths are 1 and 10 pm,
respectively. Table I lists the names of the circuits,

While the above approaches reduce skew and  numbers of wire segments in the circuits, delays,
sensitivity, they also tend to increase delay, power, area skews, sensitivity, runtimes and storage requirements.

and runtime at the same time. In fact, we observe that It shows that our algorithm, on the average, reduced

Runtime Storage
70T T T T T T T T T T
6ol @ ] 1.2 (p) E
< S0F . LOF 7
=
g 40 - ~ 0.8 —
<
£ 300 1 o6t i
" 20+ - <
0.4 N
or ] 0.2 .
) ' ' : : | I I I I
1 2 3 4 5 6 7 2 3 4 5 0
Number of wire segments x 1 0’ Number of wire segments x 1 o’

FIGURE 5 Runtime and storage requirements.
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FIGURE 6 The values of Dy, (upper bound), #(A) (lower bound) and clock skew during execution on rl.

the respective delay, skew and sensitivity by 595, 691 and
2582% after wire-sizing. Further, our algorithm is
extremely fast and economical. For example, for the
circuit r5 with 6201 wire segments, our algorithm needed
only 67-second runtime and 1.3-MB storage to achieve
2.3-ps precision. In Fig. 5(a),(b), the runtime and storage
requirements, respectively (represented by the vertical
axis), are plotted as a function of the number of wire
segments in a circuit (denoted by the horizontal axis). It
shows that the runtime and storage requirements of our
algorithm approach linear in the number of wire segments.
Figure 6 shows the relationship among the maximum
delays (Dpax), the value of the Z(A) and clock skew at
each iteration. The horizontal axis and the vertical axis
represent the number of iterations and D,.x, L(A), and
skew (in pico second), respectively. The gap between
Dynax and #()) is the error bounds of our algorithm.
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