
11

ASG: Automatic schematic
generator

Yeu-Shen Jelmg, Liang-Gee Chen and Tai-Ming Parng

Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan 10764

Received 16 March 1990

Abstract. In this paper a heuristic placement and routing method with a value propagation
approach, the bubbling technique, is presented to do automatic schematic generation to
match human esthetics. Algorithms embedded in the method are derived to link the
schematic placement and routing in human habits. Meanwhile, the left edge algorithm is
modified with channel routing aspect to achieve the compact channel size and regular channel
routing. The primary considerations include circuit levelling, feedback loop detection, signal
flow resolution, feedback and fanout signal routing, channel size estimation, and track
assignment. The implemented system, automatic schematic generator (ASG), accepts the
results of high level syntheses, schedules the schematic placement and routing, and finally,
commits the browsing to the schematic editor to support friendly user interfaces. The tested
examples show that the proposed system can really achieve good results which are near
human design.

Keywords. User interface, automatic schematic generation, value propagation, heuristic
placement and routing.

I. Introduction

As the rapid progress of VLSI process techniques, the design circuit becomes
more complex. It leads to more design data handled by CAD design automation
systems and more graphic overheads to enhance their man-mach ine interfaces.
Since a schematic diagram is one of the most comprehensive design representa-
tion for human designers, it is important to have a tool which can automatically
generate schematic diagrams to serve as a pipe for the communication between a
design automation system and human designers. However, schematic drawing is

Elsevier
INTEGRATION, the VLSI journal 11 (1991) 11-27

0167-9260/91/$03.50 © 1991 - Elsevier Science Publishers B.V.

12 Yeu-Shen Jehng et al. / ASG: Automatic schematic generator

such an a r twork that everyone may have d i f ferent views. There fore , schemat ic
diagrams must be regular, symmetr ica l , func t iona l ly readable , genera l ly under -
s tandable and esthet ical ly pleasing to h u m a n designers when they are ut i l ized to
browse the p r imary funct ions in c i rcui t ry such that they can satisfy as m a n y
circuit designers as possible.

To meet the above requirements , the schemat ic d rawing with c o m p o n e n t
p lacement and net rout ing mus t be cons idered in h u m a n aspects. However , it is
no t easy to derive the schemat ic p l acemen t and rou t ing a lgor i thms wi th h u m a n
esthetic considerat ions . The re have been m a n y researches who a t t e m p t e d to
p rov ide this feature. Ah l s t rom [6] suppor t ed the Heur is t ica l ly A u g m e n t e d L a y o u t
(H A L) p ro to type designed by a rule-based exper t system. This serves as an
intell igent in terface for a f r o n t - e n d digital sys tem design tool to p r o d u c e a
schematic drawing f rom a ha rdware descr ip t ion file. But the knowledge in-
ferences will slow down the overall process ing in a general p u rp o se compute r .
K u m a r [1] and Stok [4] descr ibed a mo d u le ne twork ing a lgor i thm and emphas ized

Yeu-Shen Jehng was born in Taipei, Taiwan, R.O.C., in 1963. He received
the B.S. in Electrical Engineering from the University of Chinese Culture,
and M.S. degrees in Electrical Engineering from National Taiwan Univer-
sity, in 1987 and 1989, respectively. He is currently working towards the
Ph.D. degree in department of Electrical Engineering at National Taiwan
University. His research interests include VLSI CAD frameworks, DSP
architecture design and video coding for communications.

Liang-Gee Chen was born in Yun-Lin, Taiwan, R.O.C., in 1956. He
received the BS, MS, and Ph.D degrees in Electrical Engineering from
National Cheng Kung University, in 1979, 1981, and 1986, respectively.

He was an Instructor (from 1981 to 1985), and an Associate Professor
(from 1986-1988) in the Department of Electrical Engineering, National
Cheng Kung University. In the military survice during 1987 and 1988, he
was an Associate Professor in the Institute of Resource Management,
Defense Management College. Currently, he is an Associate Professor in
the Department of Electrical Engineering at National Taiwan University.
His current research interests are DSP architecture design, Silicon Compi-
lation, and Logic Synthesis.

Dr. Chen is a member of IEEE, and the Association for Computing
Machinery. He is also a member of the honor society Phi Tan Phi.

Tai-Ming Parng is a professor in the Electrical Engineering Department at
National Taiwan University (Taiwan). He received his BS, MS, and Ph.D.
degrees from the same university in 1971, 1973, and 1981 respectively. He
has been a visiting scholar to IBM T.J. Watson Research Center (1978-
1979), Carnegie-Mellon University (1983-1984), and UC Berkeley (1988-
1989). His current research interests are in knowledge-based ASIC specifi-
cation and design, framework for system-level design automation, as well
as VLSI architectures for parallel processing. He is a member of IEEE.

Yeu-Shen Jehng et al. / ASG: Automatic schematic generator 13

on schematic placement and routing. The drawback is that it is not easy to blend
heuristics into algorithms to recognize all of the circuit patterns. Majewski [5]
took the advantage of an adjacency matrix to process constructive initial place-
ment and routing to draft schematic diagrams. Chun [7] extracted net lists from
VHDL and applied an incidence matrix to detect the feedback loops. However,
the latter two systems which focused their processing on matrix operations may
slow down the system speed when large circuits are processed.

Based on the discussions mentioned above, the major problems in the previous
researches can be summarized as follows:
(1) Lack of global consideration of full circuit interconnection and distribution.
(2) The emphases on routibility are similar to layout routing but lose the feeling

of schematic esthetics.
(3) Lack of considering the drawing habit of human designers.
(4) The massive matrix operations may slow down the system speed when large

amounts of data are processed.
To solve the above problems, schematic placement must be considered to

follow the signal flows of circuit and routing must be specially concerned for the
feedback and fanout interconnections rather than just a blind search. There are
several basic considerations described as follows:
(1) For the purpose of reducing the complexity of the circuit, arbitrarily shaped

functional modules with terminals all around can be used hierarchically.
(2) In human habit, the signal flows of circuits are always scheduled to go from

left to right. To match this habit, the placement should also be considered to
follow the signal flows from left to right.

(3) The feedback loops in circuits are always grouped together, especially for the
latch loops in sequential circuits. These groups will be processed individually.
It will expose the circuit functions to enhance the readability of circuits.

(4) The fanout and feedback interconnections must be extracted to schedule
them regularly, straightly, and evidently to express the characteristics in
circuitry.

(5) The pin assignment can exchange pins to reduce the number of interconnec-
tion crossovers. In general, the feedback pins will be assigned to the boundary
of the feedback side.

(6) The regularity, symmetry, and tidiness are more important than the minimi-
zation of crossovers, bends, and path length.

(7) To speed up the processing and for the convenience of algorithm traversal, it
is better to represent the circuit in dynamic data structure.

Based on these considerations, we model the circuit as a directed graph in a
generalized list representation and develop a heuristic placement and routing
method with a value propagation approach called the bubbling technique. This
method supports algorithms to link the schematic placement and routing in
human aspects and emphasizes on the routing considerations especially for
feedback and fanout signals, channel size estimation, and track assignment.

In this paper, Section 2 describes the environment of the generator and the
internal data structure which was used to model the circuit. Section 3 describes

14 Yeu-Shen Jehng et al. / ASG: Automatic schematic generator

the heuristic placement and routing method in detail, and the implementation
and some tested examples are analyzed in Section 4.

2. System description

Figure 1 describes the environment of the generator - ASG. The VLSI chip
design may begin by entering the hardware description languages which include
the functional and structural definitions of designed circuits. The high level
synthesis tools accept the languages and allocate components by selecting desig-
ned modules in the design data base to generate the structural component
(module) description form. Figure 2(a) illustrates the form corresponding to the
example circuit shown in Fig. 2(b). It describes the modules to be used and the
full interconnections between the modules. Also, it acts as a common entry of
ASG and is portable between CAD systems to solve the incompatibility of design
data bases. ASG is invoked by the schematic editor to accept the structural
component description form and access information (graphic shape, pin count,
etc.) about the components from design data base to detailedly schedule their
placement and net routing. At last, ASG controls the schematic editor to browse
the final arrangements of the circuit and the designer may interactively revise the
circuit or commit the final design to the design data base.

High Level
Synthesis Tools [Translator [

J ASG
module ~

Des ign information

Data browsin tivation
Base

commitment I

J Schematic
Editor

module w
information

module design
network ! modules

I

Fig. 1. The environment of the generator.

Yeu-Shen Jehng et al. / ASG: Automatic schematic generator 15

(a)
m o d u l e J K M A S ' I E R _ S L A V E F F (i n , o)

{
i n p u t i n [3] ;

output o[2];
i n t e r n a l h a t [7] ;

g a t e n d 3 { n a i a d 3 }

g a t e n d 2 { h a n d 2 }

g a t e i n v { n o t }

i n s t a n c e g a t e n d 3 { n d l , n d 2 }

i n s t a n c e g a t e n d 2 { n d 3 , n d 4 . r i d 5 , r i d 6 , n d 7 , r i d 8 }

i n s t a n c e g a t ~ h a y { i n v 9 }

c o n n e c t n d l (o [1] , i n [0] , i n [2] , h a t [0]) ;

c o n n e c t n d 2 (h a i l] , i n [2] , o [0] , h a t [3]) ;

c o n n e c t r i d 3 (i n t [0] , i n t [4] , h a t [l]) ;

c o n n e c t n d 4 (i n t [1] , i n t [3] , h a t [4]) ;

c o n n e c t n d 5 (i n t [1] , h a t [6] , h a t [2]) ;

c o n n e c t n d 6 (i n t [4] , i n t [6] , h a t [5]) ;

c o n n e c t r i d 7 (i n t [2] , o [1] , o [0]) ;

c o n n e c t r i d 8 (o [0] , i n t [5] , o [1]) ;

e o r t n e e t n d 9 (h a [2] , i n t [6]) ;

(b)

~'~ m ~ * ~ 1 1 S~=¢21 ".

~'Pl I

Fig. 2. Structural component description form: (a) structural component description form for the
example circuit; (b) example circuit.

16

module

fanout
list

input pin list

output pin list

F ig . 3. I n t e r n a l d a t a s t r u c t u r e - a g e n e r a l i z e d l is t .

In ASG processing, the circuit is modelled as a directed graph in a generalized
list representation which is shown in Figure 3. For each input pin, output pin,
and fanout of modules, there exists a list node to keep their relation between
modules respectively. Therefore, all relations in circuitry can be constructed in
the generalized list structure. It will both benefit the algorithm traversal either
forward or backward and speed up the overall processing. In this paper, the
signal flow of the circuit is always considered from left to right so the input and
output ports are limited at the left and the right side of the circuit, respectively.

3. Heuristic placement and routing method

The heuristic placement and routing method can be divided into two phases.
The first phase, called the logical phase, finds the relationships between modules
to generate the initial placement. The second phase, called the physical phase,
estimates the channel size around modules and assigns the routing signals to
tracks in channels detailedly. To summarize the overall processing, the design
flow is as follows:
Logical phase:
(1) extract the circuit connectivities from the structural component description

form;
(2) partition the circuit into levels from left to right with respect to its signal

flows:

Yeu-Shen Jehng et al. / ASG: Automatic schematic generator 17

(3) for each level, resolute the vertical precedence of modules;
(4) detect the fanout and feedback interconnections and make room for their

routing in advance;
(5) pin assignment for each module.
Physical phase:
(6) select the most heavily connected level L and fix it in coordinates;
(7) include both of the adjacent levels into L and estimate their channel size

around modules as well as exactly assign nets to tracks in channels;
(8) repeat (7) to expand L until all levels are included;
(9) follow the resultant schedule to do the physical placement and routing.

3.1. Logical phase

In this phase, the circuit will be considered first with respect to its signal flows
in both the horizontal and vertical direction to construct the initial placement.
Furthermore, the fanout and feedback interconnections can be extracted to make
room for their routing. The purpose of considering this in advance is to render
their routing more straight, regular, and evident without any obstacle. After the
above processing, the pins of the module can be assigned by comparing the

(a) module example(in, o)
[

input in[3];
output 0[2];
internal int[4];

instance A, B, C, D, E;

connect A (int[0], in[0], int[1]);
connect B (in[2], "mt[2]);
connect C (int[1].int[3]);
connect D (in[l], int[2], o[1]);
connect E (int[3], int[0], o[0]);

(b)
decycle it to force the levelization

backtrace to recognize the loop

level 0 level 1 level 2 level 3 level 4

Fig. 4. Example for levelling algori thm: (a) example for circuit s t ructural c o m p o n e n t descr ip t ion
form; (b) circuit after levelling.

18 Yeu-Shen Jehng et al. / ASG: Automatic schematic generator

precedence of the modules connected to it. It will reduce the crossovers for
further routing. The detailed steps can be described as follows:

(1) Levelling. Originally, the circuit may be described by using a structural
component description form. An example is shown in Fig. 4(a). To begin with the
processing, the connectivities must be firstly extracted from the description form
and then the circuit can be modelled as a directed graph for the convenience of
traversal. The levelling algorithm is derived to have the abilities of directed graph
traversing, loop decycling, breadth first ordering, and module grouping for
feedback loops. It unifies the signal flows of the circuit to go from left to right. By
horizontally partitioning the circuit into sections, called the levels, with respect to
its signal flows, the initial horizontal placement can be achieved. In the traversal,
the feedback loops will be detected and decycled to continue the traversing, in the
meantime, modules in feedback loops will be extracted and grouped together in
the neighborhood. It will make the feedback loops more evident in the drawings.
Figure 4(b) illustrates the circuit after levelling. There are two parts in the
algorithm: PART I tries the best to accumulate the levels in the order of breadth
first search. If there is no feedback in the directed graph, it need not execute
PART II. Otherwise, whenever PART I can not continue traversing the directed
graph because there is no zero-indegree module, PART II is executed to detect
the feedback loop by backtracking and then return to continue the PART I
processing. By interleaving the PART I and II processing, the circuit can be
levelled to achieve the horizontal placement. The proposed algorithm can be
described as:

Part I: levelling and feedback detection
(1) Insert the input ports IP into BFS-queue;
(2) Empty the feedback-queue;
(3) repeat
(4) Remove element A from BFS-queue;
(5) if (indegree of A = 0)

then
(6) for (each module P connected to A)
(7) Set the level of P next to A if P was not

behind A originally;
(8) Decrement the indegree of P;
(9) Union P to BFS-queue;

end for
(10) else insert A to feedback-queue;
(11) until BFS-queue is empty;
(12) Remove element in feedback-queue which has zero indegree;
(13) if (feedback-queue is empty)
(14) then exit with success;
(15) else branch to part II;
end part I.

Yeu-Shen Jehng et al. / ASG: Automatic schematic generator 19

Part 11." loop resolution and decycling
(1) Select the one A with the smallest level in feedback-queue;
(2) Backtrack from A to find a loop;
(3) if (there exists a loop)

then
Resolute the loop and group them together;

(5) Decrement the indegree of A;
(6) Insert A to BFS-queue;
(7) Remove A from feedback-queue if A has zero indegree;
(8) Branch to part I (3);

else
(9) Remove A from feedback-queue;

(10) Branch to part I (13);
end part II.

(2) Bubbfing resolution. After levelling, the input ports are weighted with
decreasing values, called the bubble values, in accordance with the precedence
predefined by the designer as illustrated in Fig. 5(a). To weight all of the
modules, the bubble values will be propagated through the circuit. Figure 5(b)
depicts the propagation. Each module averages the values which came from the
modules attached to its input pins and propagates it to the modules attached to
its output pins. The propagation continues until the output ports. After propa-
gation, the modules with the same level can be sorted in decreasing order of their
bubble values to obtain the vertical precedence in each level. To explain the
phenomenon of bubbling resolution, the modules with larger bubble values will
go up, while the smaller ones go down. That is why it is called the bubble value.
To evaluate the bubble values, there are some decisions described as follows:
(1) The values which came from the levels except for the immediate previous

level will not be considered for evaluation;
(2) The values which came from fanout signals will not be considered for

evaluation;
(3) If there is only one value to be considered, it is the bubble value.

The reason to make the above decisions is to prevent the fanout, feedback, and
long path interconnections from confusing the local resolution in order to obtain
the objective bubble values. However, the fanout, feedback, and long path
interconnections can not be ignored and will be specially concerned in later
processing. As the examples illustrate in Fig. 5(c), the number of signal crossovers
is reduced and makes a clear drawing. The bubbling technique not only benefits
the vertical resolution but also the fanout, feedback signal scheduling, and pin
assignment. The later discussions will describe the reasons.

(3) Fanout and feedback detection. To generate a human like drawing, it is
essential to control in detail the fanout and feedback routing in human style
because both of them seriously reflect the human design characteristics in circuits.
The general fanout and feedback routing style in human habits are depicted in
Fig. 6. It can be viewed as a trunk with branches. In order to generate the human
style routing, a trunk routing algorithm can be added to our bubbling technique.

20 Yeu-Shen Jehng et aL / ASG: Automatic schematic generator

(a)

(b) (150) (250)
(300) ~ 2 1 2 . 5)

(5o)

bubble values t.._d (2OO)

(150)
Fig. 5. Bubbling technique: (a) assign initial bubble values to input ports; (b) bubble value

propagation; (c) sorting with bubble values in decreasing order for each level.

The procedures are denoted as follows:
(i) Regard output pin as the source and input as the destination. Their bubble

values are inherited from their connected module respectively;
(ii) The trunk is presented straight in the direction of the destinations;

(iii) Each of the destinations projects perpendicularly to the trunk to create the
branches; if many destinations project to the same perpendicular point on
the trunk, they share the same branch;

(iv) Adjust the branches and trunk into the channels and make room for their
routing.

To hold space for trunk routing, a so-called pseudo module can be inserted to
occupy the holding space. The pseudo modules reserve space for trunk routing
rather than for module placement. That is why it is called a pseudo module. As
shown in Fig. 7(a), the fanout trunk goes through several levels. To make it go
straight, the spaces which it passes must be reserved by pseudo modules. Thus, by
comparing the bubble value of the trunk to those of the modules in each passed

Yeu-Shen Jehng et al. / ASG: Automatic schematic generator 21

(a) (b) (c)

Fanout patterns

"J Jk k

7 7

(a) (b) (c)

Feedback patterns

Fig. 6. General routing style for fanout and feedback.

_1

_1

7

7

(a) (b)

trunk

insert pseudo module
with bubble value 105
to hold space

Fig. 7. Feedback and fanout considerations: (a) fanout t nmk routing and pseudo module insertion;
(b) feedback t runk routing and pseudo module insertion.

22 Yeu-Shen Jehng et al. / ASG: Automatic schematic generator

(a) (b)

400

200

Fig. 8. Example for pin sorting with respect to bubble values: (a) before pin sorting; (b) after pin
sorting.

level, the pseudo modules can be inserted to hold space for trunk routing
appropriately. Figure 7(b) also illustrates the feedback trunk routing. The above
processing will make the fanout and feedback routing more comprehensive and
will expose the characteristics of human design in circuit to achieve a readable
drawing.

(4) Pin assignment. After initial placement, the precedence between modules
can be obtained. However, since the initial relative ordering of pins to a module is
irrelevant from the current scheduling of initial placement, the pin assignment
must be reconsidered with respect to the current scheduling to attain the esthetic
goals of reducing the crossover of signal paths and increasing the symmetry. To
consider the modules with exchangeable pins, the pin assignment can be done by
in decending order sorting the bubble values of modules attached to their pins.
From the sorted order, the pins can be assigned accordingly. Besides, for those
pins that are attached to feedback signals, they are assigned to the boundary of
modules. As shown in Fig. 8, the number of crossovers is greatly reduced and the
drawing becomes more symmetrical and clearer.

From the above scheduling, the initial placement can be constructed, more-
over, the fanout, feedback, and pin assignment can be considered in advance to
profit the later routing. It is evident that the bubbling theory benefits most of the
processing to achieve the heuristic placement and routing method.

3.2. Physical phase

The primary goal in this phase is to perform the detailed placement and
routing. Often, the most heavily connected level plays an important role in a
design and it can be viewed as the kernel of circuit. Thus, the most heavily
connected level must first be selected and fixed to start the level expansion.
Consequently, the other levels can easily be attached to it with little adjustment to
achieve normal distribution in placement without the overhead of readjustment in
levels. To begin with the expansion processing from the selected level, the
adjacency levels will be included. Therefore, the channel size between them can

Yeu-Shen Jehng et a L / A SG." A utomatic schematic generator 23

be estimated and the routing in channels can be assigned exactly to the tracks.
The processing continues to the rest levels until the whole levels to be included.
Thus, the overall scheduling of detailed placement and routing can be accom-
plished. Finally, the schematic editor will follows the resultant scheduling to
generate the whole schematic diagrams and the designer can revise it interactively
to commit the overall design. In the following, the detailed method will be
described.

(1) Level expansion from the most heaviest connection. After the initial schedul-
ing for placement and routing, the most heavily connected level will be selected to
start the level expansion processing. The top module in the selected level will be

(a)

level x
70 I

5

55

vertical coordinate

. /

15 20 ~ ' - -
5

level x+l

(b)

level x

net1

85 ~ 8 0

55

net2
- net3

70 T net4

40 ---=- net5

level x+l

track no. -~
(cl

level x

3 2 1

i5 netl 80
70 net2

net3

55 An level x+l
net4

:25 [net5
1 I 20 f

15 5

Fig. 9. Example for channel est imation and track assignment: (a) initial nets; (b) sorted nets;
(c) after channel est imation and track assignment.

24 Yeu-Shen Jehng et al. / ASG: Automatic schematic generator

firstly fixed in coordinates. In the selected level, the size of intergaps between
modules can be obtained by evaluating the space reserved by pseudo modules
and the routing space for vertical pins. By continuously accumulating the inter-
gaps, the other modules in the selected level can also be fixed in coordinates.
Besides, if there exist latch loops in level, they must be grouped together to
enhance the readability of drawings. After having fixed the selected level, the
other levels can be attached to it accordingly with vertical adjustment to aim the
output pin at the connected input pin in order to reduce the bended nets. By
estimating the channel size between levels and assigning the nets to tracks in the
channel, the expansion can be done level by level and the whole global scheduling
is completed. The method to estimate channel size between levels and intergaps
between vertical modules as well as the track assignment will be described later.

(2) Channel size estimation and track assignment. The left edge algorithm [2]
can be modified with channel routing aspect (Fig. 9). To start the processing, the
vertical segments of bended nets in the channel must first be collected to be
sorted in decreasing order with respect to the position of top edge. From the
sorted order, the segment with a small vertical coordinate is tested if it can be
filled to the same track occupied by the segment with a large vertical coordinate
without range conflict. If yes, it is assigned to the track. Otherwise, it tries the
descending track in the same manner. The algorithm can be described as follows:
(1) Collect the vertical segments of bended nets;
(2) Sort the segments with respect to the position of top edge in decreasing

order;
(3) From the sorted order, denote the nets to be NETi; 1 ~< i ~< N where N is the

total net number;
(4) Denote NET/ to be in track NETik; 1 ~< i~< N; 1 ~< k ~< T where T is the

channel size;
(5) NETik ~ 1; for 1 ~< i ~< N;
(6) for (i from 2 to N)
(7) 1: for (j from NET, k to i - 1)
(8) if ((NETj/, = NET~k) and (the top position of NET~ is

within the range of NETj))
then

NET~k ~ NET~ + 1;
goto 1;

end if
end for j

end for i
(11) Channel size T ~ MAX{NET, k; 1 ~< i ~ N};
(12) The NETik indicates the assigned track for NET,.; 1 ~< i ~< N.
This algorithm not only finds the compact channel size but also assigns the nets
to the exact tracks in decreasing order. The advantage of this application is that
the scheduled circuit is tight enough and does not need the extra compaction
process used in [1] and that the routing is tidy. This algorithm can not only be
used for channel processing between levels but can also be used for the size

(10)

Yeu-Shen Jehng et al. , / A SG: Automatic schematic generator 25

estimation of the gaps between vertical modules in each level. By cooperating
channel processing with level expansion, the overall scheduling is thus accom-
plished.

(3) Physical placement and routing. To do the real placement and routing, the
schematic editor follows the final scheduling to browse the overall schematic
diagrams and takes over the control to continue the interactive processing.

4. Implementation and results

The ASG is written in C and works on a SUN 3/110 workstation. This system
is linked with a database management system [3] to support the ability of a
user-friendly interface and high level synthesis browsing. Figures 10-12 show the
schematic diagrams automatically generated by ASG. Table 1 shows the statisti-
cal data and run time including the full graphic response time, number of
modules, and connections. The characteristics of schematic diagrams generated
by ASG can be analyzed as follows:

(i) From Figure 10, two latch loops can be detected and grouped together
respectively. Both of the fanout and feedback signal paths follow the trunk
routing algorithm. Consequently, the final drawing can be immediately
identified as J K master slave flip-flop.

(ii) From Figure 11, the J K flip-flops with vertical pins can be processed and
the feedback with fanout signal paths can be routed in human habits. The
same as in (i), the final drawing is fully identical to that in databook.

(iii) From Figure 12, the more complex fanout signal paths are included. It can
be seen that the routing in channels is very regular in decreasing order. It is
profited from the channel size estimation and track assignment.

The experiments have shown that the drawings are very close to the human
designs and have the characteristics of regularity, symmetry, functional readabil-
ity, and artistry as expected. Moreover, the generation time is also endurable for
the circuit designers.

Fig. 10. J K master slave flip-flop circuit.

26 Yeu-Shen Jehng et al. / ASG: Automatic schematic generator

uD

D

D

tED

E D p,

Fig. 11. Parallel load 4-bit binary counter.

D
0
0

0
0
[~

0

0

ED
t ~

Fig. 12. SN74181 arithmetic logic unit chip.

Yeu-Shen Jehng et al. / ASG: Automatic schematic generator

Table 1
Test cases statistics and run time

27

Circuit name Number of Number of Run time *
modules connections (s.)

J K master slave F.F. 11 21 4.27
Binary counter 28 69 14.37
SN74181 32 126 19.86

• Time unit: SUN 3/110 CPU SEC

5. Conclusions

In this paper, we have presented a systematic heuristic placement and routing
method to consider the automatic schematic generation in detail. The features of
the method are summarized as follows:

(i) The levelling algorithm partitions the circuit from left to right and processes
the feedback loops.

(ii) The bubbling algorithm resolutes the circuit to benefit the initial placement,
trunk routing, and pin assignment.

(iii) The trunk routing algorithm controls the fanout and feedback routing in
human style.

(iv) The level expansion benefits the normal distribution in placement.
(v) The channel size estimation and track assignment benefit the compact and

regular routing.
By combining the above features with heuristics, the ASG can efficiently

generate schematic diagrams which are very close to the drawings of human
designers. The examples show that the proposed system works perfectly.

References

[1] Kumar, A., Arya, A., Swaminathan, V.V. and Misra, A., Automatic generation of digital system
schematic diagrams, IEEE Des. Test Comput. 2 (1986) 58-65.

[2] Kurdahi, F.J. and Parker, A.C., REAL: A Problem for REgister ALlocation, Proc. 24nd Design
Automation Conference (1987) 203-215.

[3] Chen, G.D. and Parng, T.M., A database management system for a VLSI design system, Proc.
25nd Design Automation Conference (1988) 257-262.

[4] Stok, L. and Koster, G.J.P., From network to artwork, Proc. 26nd Design Automation Con-
ference (1989) 686-689.

[5] Majewski, M.A., Krull, F.N., Fuhrman, T.E. and Ainslie, P.J., AUTODRAFT: automatic
synthesis of circuit schematics, Proc. ICCAD (1986) 435-438.

[6] Ahlstrom, M.L., Hadden, G.D. and Stroick, G.R., An expert system for the generation of
schematics, Proc. ICCAD (1984) 720-725.

[7] Chun, R.K., Chang, K.J. and McNamee, L.P., VISION: VHDL induced schematic imagine on
net-lists, Proc. 24nd Design Automation Conference (1987) 436-442.

