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Abstract. In this paper a heuristic placement and routing method with a value propagation 
approach, the bubbling technique, is presented to do automatic schematic generation to 
match human esthetics. Algorithms embedded in the method are derived to link the 
schematic placement and routing in human habits. Meanwhile, the left edge algorithm is 
modified with channel routing aspect to achieve the compact channel size and regular channel 
routing. The primary considerations include circuit levelling, feedback loop detection, signal 
flow resolution, feedback and fanout signal routing, channel size estimation, and track 
assignment. The implemented system, automatic schematic generator (ASG), accepts the 
results of high level syntheses, schedules the schematic placement and routing, and finally, 
commits the browsing to the schematic editor to support friendly user interfaces. The tested 
examples show that the proposed system can really achieve good results which are near 
human design. 

Keywords. User interface, automatic schematic generation, value propagation, heuristic 
placement and routing. 

I. Introduction 

As the rapid progress of VLSI process techniques, the design circuit becomes 
more complex. It leads to more design data handled by CAD design automation 
systems and more graphic overheads to enhance their man-mach ine  interfaces. 
Since a schematic diagram is one of the most comprehensive design representa- 
tion for human designers, it is important  to have a tool which can automatically 
generate schematic diagrams to serve as a pipe for the communication between a 
design automation system and human designers. However, schematic drawing is 
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such an a r twork  that  everyone  may  have d i f ferent  views. There fore ,  schemat ic  
diagrams must  be  regular,  symmetr ica l ,  func t iona l ly  readable ,  genera l ly  under -  
s tandable  and  esthet ical ly pleasing to h u m a n  designers when  they are ut i l ized to 
browse  the p r imary  funct ions  in c i rcui t ry  such that  they can satisfy as m a n y  
circuit  designers as possible. 

To  meet  the above  requirements ,  the schemat ic  d rawing  with c o m p o n e n t  
p lacement  and  net  rout ing  mus t  be  cons idered  in h u m a n  aspects.  However ,  it is 
no t  easy to derive the schemat ic  p l acemen t  and rou t ing  a lgor i thms wi th  h u m a n  
esthetic  considerat ions .  The re  have been  m a n y  researches who  a t t e m p t e d  to 
p rov ide  this feature.  Ah l s t rom [6] suppor t ed  the Heur is t ica l ly  A u g m e n t e d  L a y o u t  
( H A L )  p ro to type  designed by  a rule-based exper t  system. This  serves as an 
intell igent in terface for  a f r o n t - e n d  digital  sys tem design tool  to p r o d u c e  a 
schematic  drawing f rom a ha rdware  descr ip t ion  file. But  the knowledge  in- 
ferences will slow down the overall  process ing  in a general  p u rp o se  compute r .  
K u m a r  [1] and Stok [4] descr ibed a mo d u le  ne twork ing  a lgor i thm and  emphas ized  
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on schematic placement and routing. The drawback is that it is not easy to blend 
heuristics into algorithms to recognize all of the circuit patterns. Majewski [5] 
took the advantage of an adjacency matrix to process constructive initial place- 
ment and routing to draft schematic diagrams. Chun [7] extracted net lists from 
VHDL and applied an incidence matrix to detect the feedback loops. However, 
the latter two systems which focused their processing on matrix operations may 
slow down the system speed when large circuits are processed. 

Based on the discussions mentioned above, the major problems in the previous 
researches can be summarized as follows: 
(1) Lack of global consideration of full circuit interconnection and distribution. 
(2) The emphases on routibility are similar to layout routing but lose the feeling 

of schematic esthetics. 
(3) Lack of considering the drawing habit of human designers. 
(4) The massive matrix operations may slow down the system speed when large 

amounts of data are processed. 
To solve the above problems, schematic placement must be considered to 

follow the signal flows of circuit and routing must be specially concerned for the 
feedback and fanout interconnections rather than just a blind search. There are 
several basic considerations described as follows: 
(1) For the purpose of reducing the complexity of the circuit, arbitrarily shaped 

functional modules with terminals all around can be used hierarchically. 
(2) In human habit, the signal flows of circuits are always scheduled to go from 

left to right. To match this habit, the placement should also be considered to 
follow the signal flows from left to right. 

(3) The feedback loops in circuits are always grouped together, especially for the 
latch loops in sequential circuits. These groups will be processed individually. 
It will expose the circuit functions to enhance the readability of circuits. 

(4) The fanout and feedback interconnections must be extracted to schedule 
them regularly, straightly, and evidently to express the characteristics in 
circuitry. 

(5) The pin assignment can exchange pins to reduce the number of interconnec- 
tion crossovers. In general, the feedback pins will be assigned to the boundary 
of the feedback side. 

(6) The regularity, symmetry, and tidiness are more important than the minimi- 
zation of crossovers, bends, and path length. 

(7) To speed up the processing and for the convenience of algorithm traversal, it 
is better to represent the circuit in dynamic data structure. 

Based on these considerations, we model the circuit as a directed graph in a 
generalized list representation and develop a heuristic placement and routing 
method with a value propagation approach called the bubbling technique. This 
method supports algorithms to link the schematic placement and routing in 
human aspects and emphasizes on the routing considerations especially for 
feedback and fanout signals, channel size estimation, and track assignment. 

In this paper, Section 2 describes the environment of the generator and the 
internal data structure which was used to model the circuit. Section 3 describes 
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the heuristic placement and routing method in detail, and the implementation 
and some tested examples are analyzed in Section 4. 

2. System description 

Figure 1 describes the environment of the generator - ASG. The VLSI chip 
design may begin by entering the hardware description languages which include 
the functional and structural definitions of designed circuits. The high level 
synthesis tools accept the languages and allocate components by selecting desig- 
ned modules in the design data base to generate the structural component 
(module) description form. Figure 2(a) illustrates the form corresponding to the 
example circuit shown in Fig. 2(b). It describes the modules to be used and the 
full interconnections between the modules. Also, it acts as a common entry of 
ASG and is portable between CAD systems to solve the incompatibility of design 
data bases. ASG is invoked by the schematic editor to accept the structural 
component description form and access information (graphic shape, pin count, 
etc.) about the components from design data base to detailedly schedule their 
placement and net routing. At last, ASG controls the schematic editor to browse 
the final arrangements of the circuit and the designer may interactively revise the 
circuit or commit the final design to the design data base. 

High Level 
Synthesis Tools [ Translator [ 

J ASG 
module ~ 

Des ign  information 

Data  browsin tivation 
Base 

commitment I 

J Schematic 
Editor 

module w 
information 

module design 
network ! modules 

I 

Fig. 1. The environment of the generator. 
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(a) 
m o d u l e  J K  M A S ' I E R _ S L A V E  F F (  i n  , o ) 

{ 
i n p u t  i n [ 3 ] ;  

output  o[2]; 
i n t e r n a l  h a t [ 7 ] ;  

g a t e n d  3 { n a i a d 3  } 

g a t e n d  2 { h a n d 2  } 

g a t e  i n v  { n o t  } 

i n s t a n c e  g a t e  n d  3 { n d l  , n d 2  } 

i n s t a n c e  g a t e  n d  2 { n d 3  , n d 4  . r i d 5  , r i d 6  , n d 7  , r i d 8  } 

i n s t a n c e  g a t ~  h a y  { i n v 9  } 

c o n n e c t  n d l  ( o [ 1 ]  , i n [ 0 ]  , i n [ 2 ]  , h a t [ 0 ]  ) ;  

c o n n e c t  n d 2  ( h a i l ]  , i n [ 2 ]  , o [ 0 ]  , h a t [ 3 ]  ) ;  

c o n n e c t  r i d 3  ( i n t [ 0 ]  , i n t [ 4 ]  , h a t [ l ]  ) ;  

c o n n e c t  n d 4  ( i n t [ 1 ]  , i n t [ 3 ]  , h a t [ 4 ]  ) ;  

c o n n e c t  n d 5  ( i n t [ 1 ]  , h a t [ 6 ]  , h a t [ 2 ]  ) ;  

c o n n e c t  n d 6  ( i n t [ 4 ]  , i n t [ 6 ]  , h a t [ 5 ]  ) ;  

c o n n e c t  r i d 7  ( i n t [ 2 ]  , o [ 1 ]  , o [ 0 ]  ) ;  

c o n n e c t  r i d 8  ( o [ 0 ]  , i n t [ 5 ]  , o [ 1 ]  ) ;  

e o r t n e e t  n d 9  ( h a [ 2 ]  , i n t [ 6 ]  ) ;  

(b) 

~'~ m ~ * ~ 1 1  S~=¢21 ". 

~'Pl I 

Fig. 2. Structural component description form: (a) structural component description form for the 
example circuit; (b) example circuit. 
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fanout 
list 

input pin list 

output pin list 

F ig .  3. I n t e r n a l  d a t a  s t r u c t u r e  - a g e n e r a l i z e d  l is t .  

In ASG processing, the circuit is modelled as a directed graph in a generalized 
list representation which is shown in Figure 3. For each input pin, output pin, 
and fanout of modules, there exists a list node to keep their relation between 
modules respectively. Therefore, all relations in circuitry can be constructed in 
the generalized list structure. It will both benefit the algorithm traversal either 
forward or backward and speed up the overall processing. In this paper, the 
signal flow of the circuit is always considered from left to right so the input and 
output ports are limited at the left and the right side of the circuit, respectively. 

3. Heuristic placement and routing method 

The heuristic placement and routing method can be divided into two phases. 
The first phase, called the logical phase, finds the relationships between modules 
to generate the initial placement. The second phase, called the physical phase, 
estimates the channel size around modules and assigns the routing signals to 
tracks in channels detailedly. To summarize the overall processing, the design 
flow is as follows: 
Logical phase: 
(1) extract the circuit connectivities from the structural component description 

form; 
(2) partition the circuit into levels from left to right with respect to its signal 

flows: 
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(3) for each level, resolute the vertical precedence of modules; 
(4) detect the fanout and feedback interconnections and make room for their 

routing in advance; 
(5) pin assignment for each module. 
Physical phase: 
(6) select the most heavily connected level L and fix it in coordinates; 
(7) include both of the adjacent levels into L and estimate their channel size 

around modules as well as exactly assign nets to tracks in channels; 
(8) repeat (7) to expand L until all levels are included; 
(9) follow the resultant schedule to do the physical placement and routing. 

3.1. Logical phase 

In this phase, the circuit will be considered first with respect to its signal flows 
in both the horizontal and vertical direction to construct the initial placement. 
Furthermore, the fanout and feedback interconnections can be extracted to make 
room for their routing. The purpose of considering this in advance is to render 
their routing more straight, regular, and evident without any obstacle. After the 
above processing, the pins of the module can be assigned by comparing the 

(a) module example( in, o ) 
[ 

input in[3]; 
output 0[2]; 
internal int[4]; 

instance A, B, C, D, E; 

connect A ( int[0], in[0], int[1] ); 
connect B ( in[2], "mt[2] ); 
connect C ( int[1 ].int[3] ); 
connect D ( in[l], int[2], o[1] ); 
connect E ( int[3], int[0], o[0] ); 

(b) 
decycle it to force the levelization 

backtrace to recognize the loop 

level 0 level 1 level 2 level 3 level 4 

Fig. 4. Example  for levelling algori thm: (a) example  for circuit  s t ructural  c o m p o n e n t  descr ip t ion 
form; (b) circuit  after  levelling. 
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precedence of the modules connected to it. It will reduce the crossovers for 
further routing. The detailed steps can be described as follows: 

(1) Levelling. Originally, the circuit may be described by using a structural 
component description form. An example is shown in Fig. 4(a). To begin with the 
processing, the connectivities must be firstly extracted from the description form 
and then the circuit can be modelled as a directed graph for the convenience of 
traversal. The levelling algorithm is derived to have the abilities of directed graph 
traversing, loop decycling, breadth first ordering, and module grouping for 
feedback loops. It unifies the signal flows of the circuit to go from left to right. By 
horizontally partitioning the circuit into sections, called the levels, with respect to 
its signal flows, the initial horizontal placement can be achieved. In the traversal, 
the feedback loops will be detected and decycled to continue the traversing, in the 
meantime, modules in feedback loops will be extracted and grouped together in 
the neighborhood. It will make the feedback loops more evident in the drawings. 
Figure 4(b) illustrates the circuit after levelling. There are two parts in the 
algorithm: PART I tries the best to accumulate the levels in the order of breadth 
first search. If there is no feedback in the directed graph, it need not execute 
PART II. Otherwise, whenever PART I can not continue traversing the directed 
graph because there is no zero-indegree module, PART II is executed to detect 
the feedback loop by backtracking and then return to continue the PART I 
processing. By interleaving the PART I and II processing, the circuit can be 
levelled to achieve the horizontal placement. The proposed algorithm can be 
described as: 

Part I: levelling and feedback detection 
(1) Insert the input ports IP into BFS-queue; 
(2) Empty the feedback-queue; 
(3) repeat 
(4) Remove element A from BFS-queue; 
(5) if (indegree of A = 0) 

then 
(6) for (each module P connected to A) 
(7) Set the level of P next to A if P was not 

behind A originally; 
(8) Decrement the indegree of P; 
(9) Union P to BFS-queue; 

end for 
(10) else insert A to feedback-queue; 
(11) until BFS-queue is empty; 
(12) Remove element in feedback-queue which has zero indegree; 
(13) if (feedback-queue is empty) 
(14) then exit with success; 
(15) else branch to part II; 
end part I. 
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Part 11." loop resolution and decycling 
(1) Select the one A with the smallest level in feedback-queue; 
(2) Backtrack from A to find a loop; 
(3) if (there exists a loop) 

then 
Resolute the loop and group them together; 

(5) Decrement the indegree of A; 
(6) Insert A to BFS-queue; 
(7) Remove A from feedback-queue if A has zero indegree; 
(8) Branch to part I (3); 

else 
(9) Remove A from feedback-queue; 

(10) Branch to part I (13); 
end part II. 

(2) Bubbfing resolution. After levelling, the input ports are weighted with 
decreasing values, called the bubble values, in accordance with the precedence 
predefined by the designer as illustrated in Fig. 5(a). To weight all of the 
modules, the bubble values will be propagated through the circuit. Figure 5(b) 
depicts the propagation. Each module averages the values which came from the 
modules attached to its input pins and propagates it to the modules attached to 
its output pins. The propagation continues until the output ports. After propa- 
gation, the modules with the same level can be sorted in decreasing order of their 
bubble values to obtain the vertical precedence in each level. To explain the 
phenomenon of bubbling resolution, the modules with larger bubble values will 
go up, while the smaller ones go down. That is why it is called the bubble value. 
To evaluate the bubble values, there are some decisions described as follows: 
(1) The values which came from the levels except for the immediate previous 

level will not be considered for evaluation; 
(2) The values which came from fanout signals will not be considered for 

evaluation; 
(3) If there is only one value to be considered, it is the bubble value. 

The reason to make the above decisions is to prevent the fanout, feedback, and 
long path interconnections from confusing the local resolution in order to obtain 
the objective bubble values. However, the fanout, feedback, and long path 
interconnections can not be ignored and will be specially concerned in later 
processing. As the examples illustrate in Fig. 5(c), the number of signal crossovers 
is reduced and makes a clear drawing. The bubbling technique not only benefits 
the vertical resolution but also the fanout, feedback signal scheduling, and pin 
assignment. The later discussions will describe the reasons. 

(3) Fanout and feedback detection. To generate a human like drawing, it is 
essential to control in detail the fanout and feedback routing in human style 
because both of them seriously reflect the human design characteristics in circuits. 
The general fanout and feedback routing style in human habits are depicted in 
Fig. 6. It can be viewed as a trunk with branches. In order to generate the human 
style routing, a trunk routing algorithm can be added to our bubbling technique. 
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(a) 

(b) (150) (250) 
(300) ~ 2 1 2 . 5 )  

( 5o) 

bubble values t.._d (2OO) 

(150) 
Fig. 5. Bubbling technique: (a) assign initial bubble values to input ports; (b) bubble value 

propagation; (c) sorting with bubble values in decreasing order for each level. 

The procedures are denoted as follows: 
(i) Regard output pin as the source and input as the destination. Their bubble 

values are inherited from their connected module respectively; 
(ii) The trunk is presented straight in the direction of the destinations; 

(iii) Each of the destinations projects perpendicularly to the trunk to create the 
branches; if many destinations project to the same perpendicular point on 
the trunk, they share the same branch; 

(iv) Adjust the branches and trunk into the channels and make room for their 
routing. 

To hold space for trunk routing, a so-called pseudo module can be inserted to 
occupy the holding space. The pseudo modules reserve space for trunk routing 
rather than for module placement. That is why it is called a pseudo module. As 
shown in Fig. 7(a), the fanout trunk goes through several levels. To make it go 
straight, the spaces which it passes must be reserved by pseudo modules. Thus, by 
comparing the bubble value of the trunk to those of the modules in each passed 
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(a) (b) (c) 

Fanout patterns 

"J Jk k 

7 7 

(a) (b) (c) 

Feedback patterns 

Fig. 6. General routing style for fanout and feedback. 

_1 

_1 

7 

7 

(a) (b) 

trunk 

insert pseudo module 
with bubble value 105 
to hold space 

Fig. 7. Feedback and fanout considerations: (a) fanout t nmk  routing and pseudo module insertion; 
(b) feedback t runk routing and pseudo module insertion. 
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(a) (b) 

400 

200 

Fig. 8. Example for pin sorting with respect to bubble values: (a) before pin sorting; (b) after pin 
sorting. 

level, the pseudo modules can be inserted to hold space for trunk routing 
appropriately. Figure 7(b) also illustrates the feedback trunk routing. The above 
processing will make the fanout and feedback routing more comprehensive and 
will expose the characteristics of human design in circuit to achieve a readable 
drawing. 

(4) Pin assignment. After initial placement, the precedence between modules 
can be obtained. However, since the initial relative ordering of pins to a module is 
irrelevant from the current scheduling of initial placement, the pin assignment 
must be reconsidered with respect to the current scheduling to attain the esthetic 
goals of reducing the crossover of signal paths and increasing the symmetry. To 
consider the modules with exchangeable pins, the pin assignment can be done by 
in decending order sorting the bubble values of modules attached to their pins. 
From the sorted order, the pins can be assigned accordingly. Besides, for those 
pins that are attached to feedback signals, they are assigned to the boundary of 
modules. As shown in Fig. 8, the number of crossovers is greatly reduced and the 
drawing becomes more symmetrical and clearer. 

From the above scheduling, the initial placement can be constructed, more- 
over, the fanout, feedback, and pin assignment can be considered in advance to 
profit the later routing. It is evident that the bubbling theory benefits most of the 
processing to achieve the heuristic placement and routing method. 

3.2. Physical phase 

The primary goal in this phase is to perform the detailed placement and 
routing. Often, the most heavily connected level plays an important role in a 
design and it can be viewed as the kernel of circuit. Thus, the most heavily 
connected level must first be selected and fixed to start the level expansion. 
Consequently, the other levels can easily be attached to it with little adjustment to 
achieve normal distribution in placement without the overhead of readjustment in 
levels. To begin with the expansion processing from the selected level, the 
adjacency levels will be included. Therefore, the channel size between them can 
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be estimated and the routing in channels can be assigned exactly to the tracks. 
The processing continues to the rest levels until the whole levels to be included. 
Thus, the overall scheduling of detailed placement and routing can be accom- 
plished. Finally, the schematic editor will follows the resultant scheduling to 
generate the whole schematic diagrams and the designer can revise it interactively 
to commit the overall design. In the following, the detailed method will be 
described. 

(1) Level expansion from the most heaviest connection. After the initial schedul- 
ing for placement and routing, the most heavily connected level will be selected to 
start the level expansion processing. The top module in the selected level will be 

(a) 

level x 
70 I 

5 

55 

vertical coordinate 

. /  

15 20 ~ ' - -  
5 

level x+l 

(b) 

level x 

net1 

85 ~ 8 0  

55 

net2 
- net3 

70 T net4 

40 ---=- net5 

level x+l 

track no. -~  
(cl 

level x 

3 2 1 

i5 netl 80 
70 net2 

net3 

55 An level x+l 
net4 

:25 [ net5 
1 I 20 f 

15 5 

Fig. 9. Example  for channel  est imation and track assignment: (a) initial nets; (b) sorted nets; 
(c) after channel  est imation and track assignment.  
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firstly fixed in coordinates. In the selected level, the size of intergaps between 
modules can be obtained by evaluating the space reserved by pseudo modules 
and the routing space for vertical pins. By continuously accumulating the inter- 
gaps, the other modules in the selected level can also be fixed in coordinates. 
Besides, if there exist latch loops in level, they must be grouped together to 
enhance the readability of drawings. After having fixed the selected level, the 
other levels can be attached to it accordingly with vertical adjustment to aim the 
output pin at the connected input pin in order to reduce the bended nets. By 
estimating the channel size between levels and assigning the nets to tracks in the 
channel, the expansion can be done level by level and the whole global scheduling 
is completed. The method to estimate channel size between levels and intergaps 
between vertical modules as well as the track assignment will be described later. 

(2) Channel size estimation and track assignment. The left edge algorithm [2] 
can be modified with channel routing aspect (Fig. 9). To start the processing, the 
vertical segments of bended nets in the channel must first be collected to be 
sorted in decreasing order with respect to the position of top edge. From the 
sorted order, the segment with a small vertical coordinate is tested if it can be 
filled to the same track occupied by the segment with a large vertical coordinate 
without range conflict. If yes, it is assigned to the track. Otherwise, it tries the 
descending track in the same manner. The algorithm can be described as follows: 
(1) Collect the vertical segments of bended nets; 
(2) Sort the segments with respect to the position of top edge in decreasing 

order; 
(3) From the sorted order, denote the nets to be NETi; 1 ~< i ~< N where N is the 

total net number; 
(4) Denote NET/ to be in track NETik; 1 ~< i~< N; 1 ~< k ~< T where T is the 

channel size; 
(5) NETik ~ 1; for 1 ~< i ~< N; 
(6) for (i from 2 to N) 
(7) 1: for ( j  from NET, k to i - 1) 
(8) if ((NETj/, = NET~k ) and (the top position of NET~ is 

within the range of NETj)) 
then 

NET~k ~ NET~ + 1; 
goto 1; 

end if 
end for j 

end for i 
(11) Channel size T ~  MAX{NET, k; 1 ~< i ~ N};  
(12) The NETik indicates the assigned track for NET,.; 1 ~< i ~< N. 
This algorithm not only finds the compact channel size but also assigns the nets 
to the exact tracks in decreasing order. The advantage of this application is that 
the scheduled circuit is tight enough and does not need the extra compaction 
process used in [1] and that the routing is tidy. This algorithm can not only be 
used for channel processing between levels but can also be used for the size 

(10) 
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estimation of the gaps between vertical modules in each level. By cooperating 
channel processing with level expansion, the overall scheduling is thus accom- 
plished. 

(3) Physical placement and routing. To do the real placement and routing, the 
schematic editor follows the final scheduling to browse the overall schematic 
diagrams and takes over the control to continue the interactive processing. 

4. Implementation and results 

The ASG is written in C and works on a SUN 3/110 workstation. This system 
is linked with a database management system [3] to support the ability of a 
user-friendly interface and high level synthesis browsing. Figures 10-12 show the 
schematic diagrams automatically generated by ASG. Table 1 shows the statisti- 
cal data and run time including the full graphic response time, number of 
modules, and connections. The characteristics of schematic diagrams generated 
by ASG can be analyzed as follows: 

(i) From Figure 10, two latch loops can be detected and grouped together 
respectively. Both of the fanout and feedback signal paths follow the trunk 
routing algorithm. Consequently, the final drawing can be immediately 
identified as J K master slave flip-flop. 

(ii) From Figure 11, the J K flip-flops with vertical pins can be processed and 
the feedback with fanout signal paths can be routed in human habits. The 
same as in (i), the final drawing is fully identical to that in databook. 

(iii) From Figure 12, the more complex fanout signal paths are included. It can 
be seen that the routing in channels is very regular in decreasing order. It is 
profited from the channel size estimation and track assignment. 

The experiments have shown that the drawings are very close to the human 
designs and have the characteristics of regularity, symmetry, functional readabil- 
ity, and artistry as expected. Moreover, the generation time is also endurable for 
the circuit designers. 

Fig. 10. J K master slave flip-flop circuit. 
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Fig. 11. Parallel load 4-bit binary counter. 
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Fig. 12. SN74181 arithmetic logic unit chip. 
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Test cases statistics and run time 
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Circuit name Number of Number of Run time * 
modules connections (s.) 

J K master slave F.F. 11 21 4.27 
Binary counter 28 69 14.37 
SN74181 32 126 19.86 

• Time unit: SUN 3/110 CPU SEC 

5. Conclusions 

In this paper, we have presented a systematic heuristic placement and routing 
method to consider the automatic schematic generation in detail. The features of 
the method are summarized as follows: 

(i) The levelling algorithm partitions the circuit from left to right and processes 
the feedback loops. 

(ii) The bubbling algorithm resolutes the circuit to benefit the initial placement, 
trunk routing, and pin assignment. 

(iii) The trunk routing algorithm controls the fanout and feedback routing in 
human style. 

(iv) The level expansion benefits the normal distribution in placement. 
(v) The channel size estimation and track assignment benefit the compact and 

regular routing. 
By combining the above features with heuristics, the ASG can efficiently 

generate schematic diagrams which are very close to the drawings of human 
designers. The examples show that the proposed system works perfectly. 
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