
Design Automation for Embedded Systems, 4 ,329–351 (1999)
c© 1998 Kluwer Academic Publishers, Boston. Manufactured in TheNetherlands.

FACE: Fine-tuned ArchitectureCodesign
Environment for ASIP Development

I-HORNG JENG paul@cc.ee.ntu.edu.tw
Dept. of Electrical Engineering, National Taiwan University, Taipei 106, Taiwan, R.O.C.

FEIPEI LAI paul@cc.ee.ntu.edu.tw
Dept. of Information Engineering, National Taiwan University, Taipei 106, Taiwan, R.O.C.

YUH-DAR TSENG ydtseng@via.com.tw
VIA Technologies, INC., Taipei 106, Taiwan, R.O.C.

Abstract. High-performance, reliable, and robust productswith ashort development schedulearegeneral design
aims. FACE wasdeveloped to achievethesegoals, including theorganization of a design flow, afrequency-driven
information analyzer, compiler techniques(codegenerator and instruction optimization), and ahierarchical object
design library. This paper explores the design space of a retargetable compiler and a reconfigurable hardware,
which combine both software and hardware reprogrammability. The environment, FACE, we have developed
allowsusto quickly movethefunctionsbetween softwareand hardware in astateof flux. Finally, it generates the
application specific integrated processor (ASIP) and acompiler for thenew ASIP architecture. Thecasestudy is
considered which demonstrates theefficiency in ASIP design of FACE.

Keywords: CodeGenerator, RetargetableCompiler, HardwareLibrary

1. Int roduction

Historically, the evolution of hardware-design entries in terms of paradigm shifts: First
there was polygons (physical layout), then netlist (gate-level), then HDL code (behavioral
synthesis). In thesamematter, thedevelopmental processof softwareisalso from low-level
tohigh-level. It goeswithout sayingthat thesedevelopmentshavebrought about arevolution
in computer. This track explicitly points out that the developments of more complex
structures urgently need a higher-level design hierarchy. However, the developments of
softwarenot only seldom regard the impact on hardwarearchitecturebut also often neglect
many potential factors, and viceversa. As aresult, thedesired consequenceisnot obtained.
Hence, it isquiteclear that performanceisstrongly interdependent onhardwareandsoftware
because acomputer designwouldhavemany aspectstobeconsidered, including instruction
set architecture, code optimization, hardware organization and technology, and physical
implementation.

Firstly, J. Sato et al. [1] propose an integrated design framework for application-specific
instruction set processors. The top-down framework customizes an instruction set from
a super set, decides the hardware architecture derived from the GNU CC’s [2] abstract

330 JENG, LAI AND TSENG

Figure 1. Overview of FACE.

machine model. Based on the similar design environment, I.-J. Huang et al. [3] use bottom-
up method and synthesize the instruction sets directly in order to find new instructions.

These two work focus on smaller application benchmarks, only according to their char-
acteristics, to select their instructions. Both are lack of large benchmark’s behavior infor-
mation because larger ones (e.g. SPEC) call many system functions that is in object-code
format and can’t be loaded into the simulator. Moreover, their simulators are not compiled
by mature CAD tools and seem not accurate in hardware cost (e.g. area, power) estimation.

The above have given us a direct stimulus to construct a high-level design environ-
ment, hardware/software codesign, called FACE (Fine-tuned Architecture Codesign En-
vironment). Besides I.-J. Huang et al.’s annealing method, we create new instructions
according to larger benchmark’s characteristics and peephole optimizations. And through
a three-step decision-making process, we make balancing tradeoffs for customized ASIP
design. The brief overview of FACE is shown in Figure 1. A system specification in FACE
consists of the following four major parts:

1. Information analyzer: The analyzer extracts various kinds of information from applica-
tion programs and requirements, especially with respect to the high-frequency fractions.
These data are valuable for the partition and optimization of hardware and software.

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 331

2. Retargetable compiler: We use a machine independent front-end, a code generator
and simple machine description to facilitate users constructing a desired compiler.
Moreover, this compiler can generate better code according to the characteristics of
applications.

3. Hardware library: We use object-oriented concept for codesigning and implementing
systems. This paradigm increases design extendibility and decreases the cost and
complexity of maintenance.

4. System integration: The design follows the steps of our design procedure to integrate
the hardware and software in the same development process. FACE finally outputs the
ASIP architecture and the corresponding compiler.

The remainder of this paper is organized as follows: In section 2, we introduce the
framework of FACE and describe the flow of development processes step by step. It begins
by transferring requirement specification to objective function and has a global view of the
entire codesign life cycle. The next two sections discuss what concepts and methods we
use to implement the retargetable compiler and hardware library, respectively. In section 5,
we describe the interface between hardware and software, tuning box. It combines the
compiler and hardware library to guide designers in making decisions. Then, we illustrate
a multimedia example of using FACE in an ASIP design and show our experimental results.
Last of all, we make some conclusions and future work for FACE.

2. FACE Design Flow

System development process is a very sluggish and reticular activity. In order to quickly
design a complex and well-done architecture, a systematic development method must be
adopted. So the design procedure is developed to incorporate into the FACE environment.

2.1. Design Methodology

Before dealing with the design procedure and detailed framework of FACE, the combination
of top-down and bottom-up approaches is first investigated. Our design methodology
employs both top-down design and bottom-up design to control the complexity and cost
of hardware maintenance, respectively. As in a project, the top-down work first progresses
according to the analysis and requirements. We decompose a system into functional blocks,
instead of keeping on breaking this process down. The benefits of starting with top-down
design are:

• System is directly modeled for the application, so quality and performance tradeoffs
can be made at the earlier stage.

• System is more resilient to modify and extend.

• Large designs are easier to manage.

332 JENG, LAI AND TSENG

Figure 2. The design methodology in FACE.

• Different parts of the design can work at the same time.

• Strong connection among blocks.

After a desired functional view is complete, these blocks are made up from our hardware
library, we then connect them to entire system. If there is no desired function in the library,
we refine it at the lower levels of abstraction, then build for later use. The major benefit
of bottom-up design is that the reuse of blocks reduces development effort, such as re-
implementation, testing, and maintenance time. To sum up, the design methodology in
which we construct the system at a very high level of abstraction using top-down approach,
then each block is modeled by hardware library using bottom-up approach. The design
methodology is presented in Figure 2. By the complementary relationship of these two
approaches, all the advantages are both utilized and the effectiveness of design is further
enhanced.

2.2. Framework of FACE

In FACE, VHDL [4] is used to describe the hardware architecture and the software descrip-
tion is represented in C. Our intention is to take these two parts together, simplify them
for the developer. The advantage of this integration is that it is easy to move functions

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 333

Figure 3. Detailed view of FACE.

between hardware and software. The overall structure of FACE is shown in Figure 3. We
use Ackermann example program to illustrate the seven steps of the environment:

acker(n,m) { if(n==0) return m+1;
else if(m==0) return acker(n-1,1);
else return acker(n-1, acker(n,m-1)); }

1. Requirements: The requirements step transfers application attributes, from known in-
formation given by user, to general rules. User can provide larger benchmark’s behavior
information here such as multimedia characteristics [5]. Then it determines design goals
and objective functions. Finally, gathers all resources necessary for the project. For
example, Ackermann is a recursive function growing fast with small values. So, it

334 JENG, LAI AND TSENG

Figure 4. The instruction execution counts and distribution for Ackermann.

needs fast procedure call and enough stack space. Its objective function may be

OBJ = MIN(ti) + MAX(As)
ti : speed of procedure-call i
As: area of stack s

2. Analysis: The analysis step analyzes the behavior of application programs, and mea-
sures the instruction usage distributions and instruction patterns for peephole optimiza-
tion. Ackermann’s instruction counts and distribution statistics is illustrated in Figure 4.
If not satisfied, users can add their new instruction templates into the existing instruction
description file and thus tuning the instruction distribution results.

3. Partition: Based on the information gathered in steps 1, 2, and replacement rules, we
evaluate an optimal instruction set and make out a draft of the computer structure. For
example, the rules of load/store instruction in Ackermann are denoted in linear algebra:

Load+ = (1,0) · Add
⊕

(0,1) · Load
Store+ = (1,0) · Add

⊕
(0,1) · Store

+: index mode of⊕
: linear combination

Originally, there exist lots rules of instruction combinations in experience. Then through
friendly GUI (Graphic User Interface), users can combine their replacement rules to
make a better and customized partition.

4. Implementation: First, we find the desired functions in hardware library and concur-
rently modify the instruction description file. Then we develop compiler optimization
techniques. If there is no off-the-shelf component for those functions, we implement
and store them in library. In addition, we develop a tuning box to trigger the instruction
replacement options then do an actual replacement job. The instruction descriptions of
index-mode load/store in Ackermann are described as

Load: (set (r SI 0) (mem: SI (plus: SI (r SI 1) (r SI 2))))
Store: (set (mem: SI (plus: SI (r SI 0) (r SI 1))) (r SI 2))

SI: Single Integer mode

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 335

Figure 5. The Waveform simulation snapshot for Ackermann.

After a three-step decision-making process (steps 1, 2, and 3), we make balancing trade-
offs here for customized hardware/software design and guide users to select. However,
this time-consuming step is consumed mainly on testing not synthesizing. Thus, we
develop objects sharing software and hardware codesign information to reduce errors
and automate the hardware-module editing as much as possible.

5. System synthesis: To verify the correctness of whole implementations, we execute some
benchmarks with the hardware synthesized by the SYNOPSYS tool. The simulation
result snapshot for Ackermann is shown in Figure 5.

6. New design decisions: If the design goals are not matched exactly, we go back to step 2.
Some changes, such as adding new instructions or decreasing register number or tuning
the addressing space, will dramatically affect the execution frequencies of instructions.
It is therefore necessary to repeat step 2 after revision either in instruction set or in
hardware architecture. For example, FACE finds and suggests user to substitute new
instruction for adjacent compare-jump instruction patterns:

Compare: (set (cc0) (compare (r SI 0) (r SI 1)))
Jump: (set (pc) (if then else (ne (cc0) (const int 1)) (label ref 2) (pc)))
New instruction: (set (pc)

((cc0) (compare (r SI 0) (r SI 1)))
(if then else (ne (cc0) (const int 1)) (label ref

2) (pc)))

The design procedure for us is incremental type of design methodology. The next cycle
will be initiated under the following two issues:

• Enhance the current version.

• Port to new applications.

336 JENG, LAI AND TSENG

7. System integration: Finally, FACE generates a compiler and the ASIP architecture.

As described above, generating our compiler back-ends automatically needs two com-
ponents: machine description file and instruction description file. Specially, machine de-
scription file contains some information like register layout (name, number, fixed, call-used,
etc.), stack layout (offset, pointer, etc.), and storage layout, which is similar with GNU CC’s
md.h and can be decided in advance. Then, the instruction description file is done by user
or by default. Next, automatically selecting modifications to instruction sets is processed
during pattern matching. We use Replacement1 to ReplacementN options to do the real
replacement job but firstly tuning box’s rule engine to make a selection decision. Besides
the tuning box of step 4, we provide a manual tuning GUI for each decision-making step
(1, 2, and 3) manually as shown in Figure 3 to make a better and customized optimization.

3. Compiler

In the traditional system design, compiler is not developed until the hardware has been
built. This causes software a great deal of constraints, so we concurrently develop compiler
and hardware. Our compiler implementation is based on ARDEN [6] [7] which we have
developed. In this paper, we briefly describe the components and process flow of the
compiler, details of actual algorithms for the whole compiler procedure can be found in [6]
[7].

3.1. Prototype of Compiler

Figure 6 shows the flow of compiler generation in FACE. There are four critical components
in this compiler:

1. Front-end processor: The front-end processor is adapted from GNU CC [2]. The task
of this component is translating C language into intermediate representation language
(RTL), a parenthesized expression form.

2. Code generator: A code generator recognizes the architecture description file and out-
puts the object code. This architecture description file combines instruction description
file described by user and machine description file contains constant definitions of
register, storage, and stack layout. Specially, the machine description file shares the
same information with hardware library. This is the key feature to make the com-
piler retargetable. Furthermore, the instruction selection is accomplished by searching
through instruction description based on a pattern match routine [6] [7]. The syntax of
instruction description is as follows:

%define insn
@Macro expression@
{ Template }

@Replacement 1@

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 337

Figure 6. The prototype of compiler in FACE.

{ Action 1 }
@Replacement 2@
{ Action 2 }
•
•

@Replacement N@
{ Action N }

@Statistical Data@
%

The macro expression defines the functions that will be expanded in other entries, thus
shrinking the redundancy. The replacement option is used to satisfy the design goal
as accurately as possible and triggered by tuning box’s rule engine to make a suitable
decision. Actions are the output object code for this rule. If one of the replacement
rules is selected, the corresponding action will be output. The statistical data is for
partitioning hardware and software.

338 JENG, LAI AND TSENG

Figure 7. The six stages in our compiler.

3. Postprocessor: In order to improve performance of a new architecture, we use a popular
technique, peephole optimization [7], for retargetable compiler. In addition, we also
develop other approaches [8] to increasing performance, such as instruction scheduling
and register allocation. The results of these techniques will be described in case study.

4. Translator: The translator translates assembly code to the target machine code, then
generates the memory map of VHDL behavioral description. It combines functions
of assembler and loader. That is, not only it translates assembly codes into embedded
machine codes, but further translates them into VHDL memory codes (as shown in
Figure 7). Memory codes mean machine codes that have been loaded into VHDL
behavioral memory variables and ready to execute. The memory code can be input to
the ASIP for simulation execution.

We believe that plenty of instruction templates built in GNU CC can cover most of ASIP.
Even if we don’t have one-to-one mapping between every RTL template and assembly code
(under 2%), we can still include them by our peephole optimizer [7].

As depicted in Figure 6, the integrating four parts have been implemented in a prototype
C compiler generator. First, the front-end processor translates C programs into RTL. Then
the code generator maps the RTL into assembly code according to the patterns in machine

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 339

description file. After generating assembly code, some optimization schemes are performed
to improve execution speed. Last, the optimized code is translated into VHDL code.

To see an example of a quick use of the compiler, a simple program in Figure 7 is
sequentially translated into different intermediate languages from C to VHDL, in other
words, the input of the compiler is C programs and the output is VHDL based memory
code. Note that in Figure 7, the numbers, 1, 2, 3, 4, in the circles represent the four
parts in the compiler, a front-end processor, a code generator, a postprocessor, a translator,
respectively.

3.2. Partition

In FACE codesign environment, we concurrently develop compiler and hardware. Ar-
chitecture description file shares information in-between to make partition. Codesign is
concerned with providing support, which is generally automated, for the identification of
hardware and software components [9]. The goal is to optimize an implementation in terms
of factor such as speed, cost and etc., and to satisfy the design constraints.

More commonly, the specification of hardware system uses an implementation language
such as VHDL [10] and migrates part of the functionality from this into software source
code, where as in others software parts are translated into a hardware description language.
In our VHDL behavioral descriptions, which are based on identification of DLX in advance.

There are three general ways to decide how to partition. They are with regard to FACE’s
analysis, partition, and tuning respectively.

• Performance experiments on prototype system (e.g. Srivastava and Brodersen 1992).

• The analysis of system cost factors and the optimization of these through mathematical
techniques (e.g. Kumar et al. 1993).

• The analysis of system cost factors and the optimization of these through guided user
selection (e.g. D’Ambrosio and Hu 1994).

It will normally be the case that, if the time to complete operation is tightly constrained, a
hardware solution will be the preferred choice. Alternatively, if the availability of hardware
that can be configured for special actions is limited, then a software solution might be
the best choice. However, modern signal processors, coupled with the use of parallelism,
can achieve very high performance rates with software algorithms and, similarly, hardware
synthesized from high-level specifications can perform very complex functions. Thus,
we exploit linear algebra concept to solve the partition decision tradeoffs accurately and
efficiently. Stated very simply, there exist many basic set of instruction that can extend to
any instruction set. Taking this view, we can use linear transformation technique to compute
the balancing tradeoff point and make a best partition.

340 JENG, LAI AND TSENG

Figure 8. Hierarchical hardware design library.

4. Hierarchical Object Design Library

A large system can be divided into functional blocks with several levels of details from
design specifications (Figure 8). Thus, this demands a hierarchical design approach to
speeding the partitioning and reducing development effort through reuse. P. Darche et al.
[11] has proposed a very similar data structure but totally different behavioral mechanism
from us. They are dynamic run-time entity and ours is static compile-time. In FACE, we
have been developing a hardware design library to efficiently produce a system prototype
with object oriented concept.

4.1. Object-Based Design

Object concept is not a new method for designing software. Over the past two decades,
a number of excellent ideas and issues have been proposed in this field. It provides a
useful platform for fast prototyping. But the basic concepts are not applied in the hardware
development until recently [12].

FACE’s hardware library is constructed in objects. For instance, datapath can be com-
posed of the ALU, register file, special functional unit, some registers and latches. After
the decomposition, a system is partitioned into classes and objects from these classes in
hierarchies, then the different modules can be designed concurrently. It is therefore easy
to add new functions in the architecture. This composition depends on what functions
of a model the designers want, such as shown in Figure 9. It makes the system easy to
understand, reuse, verify and extend.

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 341

Figure 9. The composition of datapath.

4.2. Object-Oriented Design

Most of data-processing instructions can be in the unit ofByte, Subwordor Word. Not only
ALU and instruction set are to be designed simultaneously, but also the control units are
under consideration concurrently. Because instruction can bind toByte, SubwordandWord
type dynamically, which satisfies the polymorphism characteristics.

Additionally,SubwordandWorddata type can inherit the attributes and behaviors ofByte
class. Then just extend the width and tune a little bit statements to inherit it. Not only
the homogeneous instructions are inheritable, heterogeneous ones apply the characteristics.
For example, jump instruction belonging to control unit may inherit Add instruction class
because program counter may be increased by the ALU unit.

5. Tuning

The most stubborn and sophisticated phase throughout design processes is making tradeoffs.
Even tuning small portions of a system needs momentous efforts on the exploration of

342 JENG, LAI AND TSENG

hardware and software tradeoffs. And a number of alternatives need to be evaluated for
a function. To simplify this process, we establish a tuning box to store replacement rules
between hardware/software as a knowledge base.

5.1. Tuning Box

A complete system consists of numerous functions to be performed. It is hard to make
suitable decisions under several constraints. A function performs in hardware, it means the
execution speed, cost, and area will be rising. On the contrary, if a function performs in
software, it seems that most factors will be going down. To reach the highest performance
under predefined conditions, we make tradeoffs in two levels: global functional view, and
local processors. The primary principle of making higher level decisions, including creating
instruction set and partitioning hardware, is based on three-step decision-making mecha-
nism: requiring, analyzing, and partitioning. The corresponding representation methods
are objective functions [13], peephole optimization patterns [7], and replacement rules, re-
spectively. They are, however, not enough to approach a required ASIP architecture, there
are still many shortcomings to address somewhere in the whole processor. So, two issues
are considered in tuning the local processor:

• Reduce the hardware overhead: If a function is not in the timing critical path, it is
replaced by a sequence of instructions.

• Optimize the execution speed: To meet timing requirements, reasonable amounts of
extra hardware are employed.

Figure 10 shows the closely interactive relationships among the tuning box, hardware and
software, and also presents the items which move between hardware and software.

5.2. Glue Logic Tuning

We choose DLX [14] as our base architecture. Figure 11 shows the modified DLX processor
diagram. The paths for control are in dotted lines and the paths for data transfer are in solid
lines.

Glue logic means the connection circuits among all the major hardware modules. The
simulation results show that pipeline hazards slowed down the speed. So, we add a glue
logic, the bypassing unit, to improve the performance (refer to Figure 11). Besides, we
recompiled the programs using the new version of compiler, and reanalyzed programs to
tune the local processor and re-measure frequencies of instruction patterns for the peephole
optimization [7]. To eliminate the pipeline stall, we developed new instruction scheduling
schemes [8] for resolving the issue.

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 343

Figure 10.The bridge between hardware and software.

Figure 11.The block diagram for the modified DLX.

344 JENG, LAI AND TSENG

Figure 12.The replacement between hardware/software for logical operators,and, nand.

5.3. Instruction Set Tuning

The instruction set architecture plays an important role [9] in computer architecture, it can
be treated as the communicating interface between hardware and software. So the primary
part in tuning box is instruction set replacement rules.

For example, the logical operators containxor, and, nand, or, nor, and so on. These
operations are all implemented both in hardware and software, that is, if one operation
maps a mnemonic code in the instruction set, there is a corresponding hardware component
which is stored in design library to perform it, or this operation will be performed by the
combination of other operations which modify the machine description file, as illustrated
in Figure 12. This device allows us to choose the most appropriate processor platform with
a minimal effort.

5.4. Addressing Space Tuning

One of the multimedia applications, file compression, contains a high proportional “High
Load” instruction. This special-purpose data moving operation, called LHI in DLX or
SETHI in SPARC, co-works with general move operation to accomplish a long-datum
load. It appears almost all in loading “label address” to register, because the address needs
a full 32-bit word to represent. For example,

lhi r4,(LC0>>16)&0xffff
addui r4,r4,(LC0&0xffff)

Figure 13 shows the pie chart of execution cycles of a typical compression program
SPECint92’s Compress.c. If we reduce the two-instruction combination to one, then we

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 345

Figure 13.The pie chart of Compress’s execution cycle time.

can save nearly 8% execution time. All we have to do is to sacrifice half addressing-space
for it. That is, we force the leftmost significant bit of instruction to 1 and call it LHI. As a
result, the addressing-space will decrease to 231 but be able to load the address one time.
Of course, if the opcode originally has 14 bit to represent, now it loses one bit. These are
tradeoffs between speed and space.

6. Case Study

6.1. A Graph Example

Let’s focus on a typical multimedia application: line-drawing algorithm. Bresenham [15]
developed a more efficient one to determine pixel positions using only integer arithmetic.
The program codes are very suitable to execute in subword versions of arithmetic operations
such as subword add and shift-add [5].

Thomas M. Conte et al. [5] propose some features that generally characterize multimedia
applications:

• Small native data types (8 or 16 bits)

• Large data set sizes

• Computationally intensive features, but with highly predictable branches

• Large amounts of inherent data parallelism

We illustrate these attributes one by one through Bresenham’s line-drawing example (refer
to Figure 14). Firstly, the total twelve parameters are all in 16-bitint type and satisfy the

346 JENG, LAI AND TSENG

Figure 14.Bresenham’s line-drawing algorithm in C.

first two attributes. Worthy to be mentioned, the Huffman code used for file compression
[16] seems more suitable to show this because of its 26-character-code tree. Next, in the
only while-loop, the critical region, we even can predict the branching probability (|x2 -
x1| - |y2 - y1|) : |y2 - y1| accurately. Thus, we concentrate on theelse-block optimization:

• The C source codes
y++;
p+=const2;

• The corresponding DLX assembly codes

lw r3,68(r30) ;; load y word
add r3,r3,#1 ;; y++
sw -68(r30),r3 ;; store y word
lw r3,-84(r30) ;; load p word
lw r4,-100(r30) ;; load const2 word

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 347

add r3,r3,r4 ;; p+=const2
sw -84(r30),r3 ;; store p word

But |P| and |const2| are far smaller than 215(32,768) if |x|, |y| are not determined in
resolution as high as 214(16,384). This shows the above fourth attribute.

• The code reduction from inherent data parallelism

ld r3,-68(r30),-84(r30) ;; load y, p subword
ld r4,#1,-100(r30) ;; load 1,const2 subword
add r3,r3,r4 ;; y++, p+=const2
st r3,-68(r30),-84(r30) ;; store y,p subword

Assume that thewhile-block in Figure 14 loops N times, the transformation result is
optimized in 2N times. Exploiting Intel’s MMX [17] methodology, we combine these
new multimedia instructions into floating-point module so modify DLX into MMX
version.

Similar situation appears in other application. For instance, calculation of the coefficients
for the Newton formula [18], whose critical region is a double-loop matrix processing. The
region iterates 444 times and contains twelve additions that could be reduced to six. Thus
it totally can reduce 2664 cycles.

6.2. Experimental Results

The benchmark set we choose is multimedia orientation, except Ackermann.

• Huffman [16]: Construction and computation of the Huffman code. The input sequence
is “A SIMPLE STRING TO BE ENCODED USING A MINIMAL NUMBER OF
BITS.”

• Newton [18]: Calculation of the coefficients for the Newton formula. The input is
f (x) = (1+ x2)−1.

• Bresenhamline and circle [15]: Two improved quick drawing algorithms. The pa-
rameters are all under 100.

The result shows that Newton and Ackermann is great optimized by PO (Peephole Op-
timization) option. As for RR (Replacement Rules) option, Newton and Bresenhamline
benefit much. Table 1 and Figure 15 indicate the amount of reduced dynamic instruction
execution from information analyzer and instruction optimization. The values denote the
total number of instructions executed. The performance improvement is shown at Table 2
and Figure 16 for our ASIP codesign environment from system specification to prod-
uct. The speedup is calculated based on the execution cycles of the cosynthesis software
(benchmarks) and hardware architecture (ASIP) on CAD tool, SYNOPSYS.

348 JENG, LAI AND TSENG

Table 1.Percentage of reduced number of executed instructions.

Program Original with PO RatioP O(%) with PO+RR RatioP O+RR(%)

Huffman 200292 192056 95.9 187028 93.4

Newton 33768 12705 37.6 9834 29.1

Ackermann 42818 20754 48.4 20177 47.1

Bresenhamline 54083 53052 98.1 51598 95.4

Bresenhamcircle 239132 237275 99.2 232137 97.1

PO: Peephole Optimization; RR: Replacement Rules

Figure 15.Percentage diagram of reduced number of executed instructions.

7. Conclusions and Future Work

A Fine-tuned Architecture Codesign Environment (FACE) has been developed. FACE
allows us to implement an ASIP and make critical decisions early in the design processes.

We presented the environment which employs the design procedure to integrate a compiler

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 349

Table 2.Speedups for our design environment.

Program Original with PO SpeedupP O with PO+RR SpeedupP O+RR

Huffman 314794 302410 1.04 296890 1.06

Newton 56154 20127 2.79 17256 3.25

Ackermann 68338 32934 2.08 32357 2.11

Bresenhamline 82179 79812 1.03 78317 1.05

Bresenhamcircle 361318 356866 1.01 352532 1.03

PO: Peephole Optimization; RR: Replacement Rules

Figure 16.Speedups diagram for our design environment.

generator and a hardware design library to reduce the complexity. The accomplished
features and benefits of the study is described in the following:

• Higher-level specification and lower-level simulation
We adopt a mature CAD tool, SYNOPSYS, to be the experimental platform. And

350 JENG, LAI AND TSENG

exploit lots of application-oriented attributes to be objective function base. These two
highest and lowest end-points make the whole environment more efficient and more
reliable.

• Three-step decision-making mechanism
Requiring, analyzing, and partitioning is our proposed strategy. Requirement stage
takes a macro-view of special-purpose application behavior. Analysis stage then goes
through the program to analyze the instruction patterns in a micro-view. Finally, by
applying replacement rules, partition stage can make a best tradeoff.

• Object-oriented tuning box
The mechanism does an actual replacement job and provides a user-interface to guide
designers in making decisions. By the object-oriented instruction description model,
we can make the migration between hardware/software quick and change the instruction
set easily.

The empirical results show that applying both our environment and design procedure on
system level design can generate better results with respect to the proposed metric. The
future work should be improving the whole codesign environment, involving operating
system and CAD tools, for larger benchmarks.

References

1. J. Sato et al. PEAS-I: A hardware/software codesign system for ASIP development.IEICE Trans. Funda-
mentals of Electronics, Communications and Computer SciencesE77-A(3): 483–491, Mar. 1994.

2. R. M. Stallman. Using and porting GNU CC.Free Software Foundation, Version 2.7, 1996.
3. I. J. Huang et al. Synthesis of application specific instruction sets.IEEE Trans. Computer-Aided Design

14(6): 663–675, June 1995.
4. W. Stephen.VHDL Analysis and Modeling of Digital Systems. McGRAW-HILL, 1993.
5. T. M. Conte et al. Challenges to combining general-purpose and multimedia processors.IEEE Computer

33–37, Dec. 1997.
6. F. Lai, S. L. Hwang, and T. S. Chen. ARDEN - ARchitecture Development ENvironment.IEEE TENCON’93,

Oct. 1993.
7. T. S. Chen, F. Lai et al. Peephole optimizer in retargetable compilers.IEICE Trans. Information and Systems

E79-D(9): 1248–1256, Sept. 1996.
8. F. Lai and Y. K. Chao. The complementary relationship of interprocedure register allocation and inlining.

International Conference on Computer Languages, Toulouse, France, pp. 253–264, May 1994.
9. D. Morris et al.Object Oriented Computer Systems Engineering. Springer-Verlag, 1996.

10. S. Kumar et al., A framework for hardware/software codesign. University of Virginia, Technical Report No.
920525.0, 1992.

11. P. Darche et al. ActNet: the actor model applied to mobile robitic environments.Object-Based Parallel and
Distributed Computation, selected papers of OBPDC’95, LNCS N. DG 1107, Springer-Verlag, 273–289,
1996.

12. S. Kumar et al. Object-oriented techniques in hardware design.IEEE Computer64–70, June 1994.
13. N. N. Binh et al. A hardware/software partitioning algorithm for pipelined instruction set processor.Proc.

of Euro-DAC’95176–181, 1995.
14. D. A. Patterson and J. L. Hennessy.Computer Architecture: A Quantitative Approach, Morgan Kaufmann

Publishers, 1996.
15. D. Hearn and M. P. Baker.Computer Graphics. Prentice-Hall, 1986.
16. R. Sedgewick.Algorithms in C. Addison-Wesley, 1990.

FINE-TUNED ARCHITECTURE CODESIGN ENVIRONMENT 351

17. D. Bistry et al.The Complete Guide to MMX Technology. McGraw-Hill, 1997.
18. S. D. Conte and Carl de Boor.Elementary Numerical Analysis: An Algorithmic Approach. McGraw-Hill,

1980.

