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A Functional Link Network With Higher Order Statistics
for Signal Enhancement

Bor-Shyh Lin, Bor-Shing Lin, Fok-Ching Chong, and Feipei Lai

Abstract—A functional link network with higher order statistics is intro-
duced for signal enhancement. The proposed scheme uses the mean-square
error (MSE) between higher order statistics of desired signals and filtered
output as the learning criterion for training weights in the functional link
network. This is motivated by the fact that higher order statistics have a
natural tolerance to Gaussian and symmetrically distributed non-Gaussian
noises. Results show that the performance of functional link network with
higher order statistics is less sensitive to the selection of learning rates than
the conventional functional link network and adaptive line enhancement.
It is also demonstrated that it can enhance signal more effectively under
different noise levels for stationary and nonstationary Gaussian noises.

Index Terms—Functional link network, higher order statistics, signal
enhancement.

[. INTRODUCTION

Signal enhancement is an important technique of statistics signal
processing with direct application in many fields, such as engineering,
biomedical, and econometric models. Adaptive filtering techniques are
widely used in signal enhancement problem [1]-[3]. Signal enhance-
ment can be considered as a mapping from the noisy input space to the
noise-free output space. The original scheme of adaptive filtering for
signal enhancement was proposed by Widrow ez al. [1] in 1975. How-
ever, in many applications, the signal of interest (SOI) is nonlinear. It
is difficult to adapt to a nonlinear signal using a linear model. To over-
come this issue, nonlinear filters are developed. Neural networks are
considered as an alternative for nonlinear signal enhancement. Based
on multilayer perceptron (MLP) architecture, it needs far fewer filter
weights and a small amount of training data to perform an approxima-
tion of a nonlinear function [4]-[8]. Gandhi and Ramamurti employed
a three-layer neural network for signal detecting in non-Gaussian noise
[7]. However, it is just suitable for those problems that do not have time
restrictions because of the slow learning rate of MLP.

In 1989, Pao proposed the functional link network (FLN) [8]. The
FLN is a universal approximator [9], [10]. It has a similar structure
to the three-layer MLP, except that instead of employing enhancement
nodes in the hidden layer, the network between input space and en-
hancement nodes is referred to as functional links. The output of the
FLN is a linear sum of enhancement nodes. The mapping between the
input nodes and enhancement nodes in the FLN is fixed. Therefore, the
learning algorithm of the FLN only updates those weights that con-
tribute to the output. Thus, the amount of learning in the FLN is signif-
icantly reduced. However, the mean-square error (MSE) between de-
sired and filtered output signals is commonly employed as the learning
criterion of both the MLP and the FLN for training weights. Its learning
is directly influenced by additive noise in desired signals.

Recently higher order statistics (or cumulants) techniques were de-
signed for signal enhancement [11]-[14]. Higher order statistics can
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Fig. 1. Basic scheme for signal enhancement.

provide the nature of suppressing Gaussian noise process of unknown
spectral characteristics in deterministic signals [14]. In this study, we
make use of this advantage of higher order statistics in developing
learning algorithm of the FLN. In the proposed method, the MSE be-
tween higher order cumulants of desired signals and filtered outputs
is used as the learning criterion for training weights. By reducing the
influence of additive noises in desired signals on learning, the perfor-
mance of the FLN for signal enhancement can be effectively improved.

II. PROBLEM DEFINITION

The basic scheme of signal enhancement, shown in Fig. 1, was de-
rived by Widrow et al. in 1975 [1]-[3]. It is used to detect a periodic
signal buried in a broadband noise background. Let d(¢) denote the
measurement of the primary sensor, satisfying

d(t) = s(t) +v(t) (1)

where s(t) and v(t), respectively, denote SOI and additive Gaussian
uncorrelated noises at iteration ¢. In this scheme, an adaptive filter is
treated as a noise-free function. Here, the measured signal of the pri-
mary sensor is used as the desired signal. The delayed version of the
desired input d(t) is commonly used as reference signals (t), i.e.,

r(t) =d(t—A) @

where the delay A is named the prediction depth and has to be capable
to remove the correlation of the noises respectively in desired signals
and reference signals. The unit of sampling period is used as the pre-
diction depth A [2], [3]. Therefore, the estimate $(¢) of s(¢) can be
obtained by the filtered output y(?).

III. FUNCTIONAL LINK NETWORKS

The basic scheme of the FLN is shown in Fig. 2. Taking a perceptron
with Ny input nodes and Ny enhancement nodes as an example, the
output function calculated by this network is

y(t) =60 (1) w' (1) = 4(1) @

where w(") (1) = [wﬁ)(t), 'w%)(t), e 7”1(}\)71 (t)]” denotes the vector
of weights between enhancement nodes and the output of the FLN.
§W (1) = [551) (t), 6&1) (t)...., (5&11 ()] is the vector of enhancement
nodes and

/ No /
(5',(:)(t) = sigm <Z 71!,(;;)(550)(&) “4)

=1
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Fig. 2. Scheme of functional link networks.
where the sigmoidal function is given by
sigm(net) = _ 5)
sigm{ ~_1+67{5not'

Here, wgg) is the weight between the /th input node and the kth en-
hancement node and is randomly given. 6;0) (t) denotes the Ith input
node. In this study, the input nodes consist of the sequence of refer-
ence signals and its orthonormal basis functions. The orthonormal basis
functions of reference signals are used to enhance the representation of
input space.

The mean-square output error y(t) — d(t) is commonly defined as
the criterion of learning. Therefore, w (t) can be adapted by using
gradient method [3]

w(t+1) = wh (1)

_ It SO0 ot — d ]
(a+6(1)(t)1'6(1)(t)) () (y(t) ) ()

where p is the learning rate, and a is a small constant. Since d(t) con-
tains noises v (t), the system output noise () is also correlated to noise
v(t), as follows:

e(t) = d(t) — y(t) = s(t) + v(t) — 3(t). @)

From (6), we can find that (7) is affected directly by uncorrelated
noises.

IV. FUNCTIONAL LINK NETWORKS WITH HIGHER ORDER STATISTICS

A. Learning Algorithm With Higher Order Statistics

For a set of n real variables {x;(¢)},7 = 1,2,...,n, the nth-order
cross cumulant of {x;(¢)} is defined by

A
C:clrg...xn (Tlg T2s 00y Tn*l) = Cum [ivl(t)’

wo(t+ 7)), 23t +72), ... xn(t+7mo1)]. ()
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Fig. 3. Scheme of functional link networks with higher order statistics.

Here, Cumle] in (8) denotes the cumulant operator. Other properties
of cumulants are described in [14].

Under the assumption that there exists the nth-order cumulants of
the desired and reference signals and they are not identically zero, they
are given by

Carr.o(T1, T2y e ooy Tn—1) = Cum [d(¢), 7(t + 11),
r(t+72), ..., r(t+T2)]. 9)

Since s(t) and v(t) are independent, and the nth-order cumulants of
Gaussian noises are identically zero, (9) can be expressed by

Clarro(T1s T2y e vy Te1)
= Cum([s(t),s(t+11 — A),...,s(t+ Tn1 — A)]

S
:CSS,,,S(’H—A,TQ—A,...,T,I_l—A). (10)

Similarly, we have

Cyrru“r'(Tla T2, ..., Tn—l) = Cﬁs...s(Tl - A.

To— A, Taor — A) (11)

By the properties of (10) and (11), the basic idea behind the proposed
method, shown in Fig. 3, is that the higher order cross cumulants of the
desired signal and filtered output are used as the learning criterion for
training weights to reduce the influence of additive noises.

5 = ZZ . Z %[Cyrr...r(TlnT‘Za"' 7771'*1)

T1 T2 Tn—1
- Cdrr...r(Tl, T2y enny 'Tn,l)]2
(r1,72,0, 1) EL
1
Z 5 [Cfess..,s(Tle T2y eensy ‘—n—l) - Osssms(/rlg T2y eeey Tn—l)]2
(172,00, 7 1) €T
1 o
Z 5 Z “);1/ Cb(.wrr...r('l_l"l_z’ e Tnil)
j=1 7
2
_Cdrr...r(Tl-,TZ',\---anfl) (12)
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Fig. 4. (a) The waveform of SOI for simulation, and (b) its power spectrum; (c) the waveform and (d) power spectrum of additive Gaussian noises distributed in
[0.05, 0.075]; (e) the waveform (f) and power spectrum of additive noises distributed in [0.2, 0.225].

Equation (12) can be rewritten in a matrix form

1 2
§=3 [Cswmma® = Care..e] )

Here, Cg1,, ,,and Cayy...r are, respectively, an Mr x N matrix and
an Mp x 1 column vector, and Mt denotes the number of points in the

set I'.
In order to minimize ¢, the gradient descent method is used. The

gradient of & is given by

¢
ow((t)

=2][cj;

(Dyr..r

Ve (t) =

CS( w(l)_Cg(l)rr...rcd"“---r]' (14)

Dyr...r

Consequently, the adaptation formula in this algorithm becomes

wil (1) - K

Vo (t). (15)
fr (Cgl)rr...rc5(1)rr...r)

w(l)(t +1)=

From (12), it is straightforward that the influence of v(¢) on (15) is
reduced.

B. Implementation of Learning Algorithm With Third Order Statistics

In practice, the theoretical higher order cumulants need to be substi-
tuted by their estimations. The estimate of third-order cumulants can
be recursively computed by

éxﬂzre}(t; TlvT‘Z)

(z1 (D)o (t + 71 )as(t + 72))

= (x1(t)) (@2(t + m1)ws(t + 72)
- <;I?2(t+T1)> <.I‘1( )L3 t+T‘7)
— (@s(t + 72)) (wr(H)a2(t + 1))

=

+ 2 (a1 (1)) (w2 (t + 71)) (ws(t + 72)) . (16)
For zero-mean signals, it can be given by
Coyogus (i1, 72) = (w1 (Do (t+ 1) as(t+72)). (A7)
Here, the operation (e) is given by
(f@) = At =1) + (1= Nf() (18)

where X is a forgetting factor.
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Fig. 5. (a) Simulated trials with the SNR of —5 dB; (b) its power spectrum; the filtered outputs of (c) ALE, (e) FLN, and (g) FLN-TOS, and their power spectra
of (d) ALE, (f) FLN, and (h) FLN-TOS; solid line denotes filtered outputs, whereas dashed line denotes SOI.

Therefore, for third-order statistics, the learning criterion can be ex-
pressed as

mq mo Ny
1 Yo .
&= Z Z 3 ZTI/’E'l)(t)Cégl)N(t;7'1-,7'2)—Cdrr(fl,'71,7'2)
T1=—mq T2=1 J=1 ’

19)

V. RESULTS AND DISCUSSION

In some simulations, comparisons are conducted for the perfor-
mance of adaptive line enhancement (ALE) with normalized least
mean-square algorithm [3], the FLN, and the FLN with third-order
statistics (FLN-TOS) for nonlinear signal enhancement. These com-
parisons are mainly presented in terms of the MSE between the
SOI and the system output obtained by each above method. In this
study, we assume that the nonlinear SOI is the electrocardiogram
(ECQG) pattern in MIT/BIH database shown in Fig. 4(a), and its power

spectrum is shown in Fig. 4(b). The additive Gaussian noises and
their power spectrum are respectively shown in Fig. 4(c) and (e) and
Fig. 4(d) and (f).

Fig. 5 is the result for stationary Gaussian noises. The additive noise
in Fig. 4(c) is used to generate simulated trials, shown in Fig. 5(a) with
a signal-to-noise ratio (SNR) of —5 dB. Fig. 5(b) shows that the power
spectrum of additive noises heavily overlap that of the SOI. The FLN
(No = 32, Ny = 32, p = 0.05, 8 = 0.02), the FLN-TOS (Vg = 32,
Ny =32, 0 = 005,38 = 0.02, my = 30, ma = 5, A = 0.9),
and 32-taps ALE with the learning rate ¢ = 0.05 are used in this
simulation. The result shows that the filtered output of the ALE presents
heavy distortion, and both the FLN and the FLN-TOS can effectively
enhance the SOI in this case. The FLN provides about 5-dB reduction
for Gaussian noises, whereas the FLN-TOS can provide about 20-dB
reduction.

Fig. 6 is the result for nonstationary Gaussian noises. The varia-
tion of SNR and noise types of additive nonstationary Gaussian noises
is shown in Fig. 6(a). Here, NOISEI and NOISE2 denote Gaussian
noises in Fig. 4(c) and (e), respectively. The parameters of the FLN,
FLN-TOS, and ALE are set the same as above. Result shows that the
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Fig. 6. (a) Variation of SNR and noise types of additive nonstationary noises; (b) simulated trials with nonstationary noises; the filtered outputs of (c) ALE,
(e) FLN, and (g) FLN-TOS, and their error curves of (d) ALE, (f) FLN, and (h) FLN-TOS.

efficiency of the FLN for signal enhancement is sensitive to the varia-
tion of the SNR of additive noises. For the FLN-TOS, the influence of
variation of additive noises on the performance for signal enhancement
is negligible.

From above simulations, the FLN-TOS provides a good performance
for signal enhancement under stationary and nonstationary Gaussian
noises. To investigate the stability of performance of the FLN-TOS, the
simulations of the FLN-TOS under different learning rates and noise
levels are carried out. Fig. 7 is the comparison of performance of each
method with different learning rates. As we expected, the FLN-TOS
provides the best performance and its performance is more insensitive
to the choice of learning rates. The performances of both the ALN and
the FLN are easily influenced by selecting learning rates. In particular,
when the learning rate is large, the influence of additional noises on
the performance increases. Although smaller learning rates for the FLN
can provide better performance, they also cause slow convergence for
learning. This may cause the distortion of estimate of the SOI. There-
fore, the performance of the FLN becomes poor when the learning rate
is less than 0.05.

Fig. 8 is the comparison of performance of each method under dif-
ferent noise levels. The SNR of simulated trials are set from —2.5 dB

12 T

Adaptive line enhancement
10 | o
B —©~ FLN with third order statistics e 1
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107" 10°
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0
102

Fig. 7. Comparison of performances of each method with different learning
rates.

to —15 dB. The result shows that the performance of ALE rapidly be-
comes very poor when the SNR becomes poor. The FLN-TOS provides
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better performance under different noise levels. Although its perfor-
mance is also influenced by the variation of the SNR, it is more insen-
sitive than that of the FLN and ALE.

VI. CONCLUSION

The learning algorithm of the FLN with higher order statistics
was introduced in this study. By employing higher order statistics
techniques to suppress additive Gaussian noises before adapting
weights, it can provide a cleaner desired signal for learning. Simulated
results show that the FLN-TOS can effectively enhance nonlinear
under stationary or nonstationary Gaussian noises. The performance
of the FLN-TOS for signal enhancement is less sensitive to its learning
rates. An FLN can effectively track nonlinear signals, but its efficiency
for suppressing noises is limited. The performance of the FLN-TOS
over the FLN and the ALE has demonstrated under different noise
levels. Therefore, the FLN-TOS is an effective approach for signal
enhancement under additive Gaussian noisy environment.
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Comments on “CuBICA: Independent Component
Analysis by Simultaneous third- and Fourth-Order
Cumulant Diagonalization”

Eric Moreau, Member, IEEE

Abstract—Source separation based on joint diagonalization of cumulant
matrices or tensors has led now to classical algorithms. In a previous paper
by Blaschke and Wiskott, an algorithm based on the above principle is pro-
posed. It combines third- and fourth-order cumulants and it is claimed to
possess interesting properties. This comment has two objectives. We point
out imprecisions of statement and we give additional references of closely
related works, some of them presenting identical issues.

Index Terms—Blind source separation, contrast function, higher order
statistics, independent component analysis, matrices joint diagonalization.

I. INTRODUCTION

Among different approaches of the source separation problem, the
algebraical ones based on some diagonalization procedures have lead
to algorithms that became very well known because of their relative
simplicity and efficiency. Initially, the separation procedure is decom-
posed into two stages. The first one realizes a so-called whitening of
the observation signals by diagonalizing for example their covariance
matrix (correlation matrix at zero lag). The main goal of this first stage
is to constraint the matrix which one seeks to be a unitary one. The
goal of the second stage is then to restore a final unitary matrix to esti-
mate the source signals. This final stage has led to numerous interesting
solutions, see, e.g., [3], [5], [2], [7], [6], [10], which are based on Ja-
cobi-like procedures for diagonalization of some cumulant tensors.

In practice the above diagonalization procedures are considered
through the optimization of a quadratic criterion. More importantly,
the above (joint) diagonalization criteria are shown to be equivalent
to some contrast functions. In the field of source separation, contrast
functions are important in the sense that they constitute the basis of
identifiability conditions for effective separation and yield natural
separation criteria, see, e.g., [5].
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