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SUMMARY Distributed shared memory (DSM) systems on
top of network of workstations are especially vulnerable to the
impact of false sharing because of their higher memory trans-
action overheads and thus higher false sharing penalties. In this
paper we develop a dynamic-granularity shared memory manage-
ment scheme that eliminates false sharing without sacrificing the
transparency to conventional shared-memory applications. Our
approach utilizes a special threaded splay tree (TST) for shared
memory information management, and a dynamic token-based
path-compression synchronization algorithm for data transfer-
ring. The combination of the TST and path compression is
quite efficient; asymptotically, in an n-processor system with
m shared memory segments, synchronizing at most s segments
takes O(s logm log n) amortized computation steps and gener-
ates O(s log n) communication messages, respectively. Based on
the proposed scheme we constructed an experimental DSM proto-
type which consists of several Ethernet-connected Pentium-based
computers running Linux. Preliminary benchmark results on our
prototype indicate that our scheme is quite efficient, significantly
outperforming traditional schemes and scaling up well.
key words: distributed shared memory, aggressive consistency,
distributed synchronization, threaded splay tree, false sharing

1. Introduction

Along with the rapid development of the networks
of workstations (NOW) in recent years, software dis-
tributed shared memory (DSM) [26], [28], [33], [35] be-
comes more and more important than before. A soft-
ware DSM typically uses the paging capability of mod-
ern CPUs to provide a virtual shared memory space on
the top of NOW, hiding the communication details and
offering a transparent programming environment. Such
a design is an economic alternative to dedicated multi-
processor systems, with additional benefits like flexibil-
ity and scalability. However, those traditional paging-
based designs inevitably induce false sharing [11], [17],
[36], a phenomenon arises when multiple hosts update
different parts of a large memory unit (a page) and thus
cause that unit unnecessarily thrashing among them.
The DSM/NOW performance is particularly vulnerable
to the impact of false sharing, because the network la-
tency (and the false sharing penalty) is generally much
higher than the access time of true hardware shared
memories. Previous solutions to this problem usually
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rely on extra false-sharing-avoiding mechanisms con-
trolled either manually [5]–[7], [18], [19], [27], [37] or au-
tomatically [11], [17], [30], [31], [36]. Unfortunately, the
manual approaches increase programming difficulty and
severely reduce the compatibility to existing applica-
tions, and the automatic ones cannot totally prevent
false sharing.

In fact, false sharing comes from the combination
of both caching and a fixed, large granularity (unit
size): When hosts are caching and competing for dif-
ferent pieces of information in one single page, false
sharing occurs. Since caching is very important to
performance, a dynamic granularity scheme thus be-
comes the choice to eliminate false sharing. Also, such
a scheme must retain high scalability, low commu-
nication overhead, and sufficient programming trans-
parency to be suitable for DSM/NOW environments.
To fulfill all these requirements, we propose a new
high-performance, dynamic-granularity shared memory
management scheme which, to the best of our memo-
ries, is the first one specifically designed for DSM/NOW
environments. The key mechanism of our scheme is
a dynamic token-based synchronization algorithm that
utilizes path-compression technique [9], [20]. In our al-
gorithm, one shared memory segment is treated as a
token passing from one host to another. To achieve
best scalability and performance, our algorithm does
not assign any central or fixedly distributed manager
hosts to control the token locations. Instead, each host
keeps its own guess about the probable “owners” of
the tokens; when one host wants to access a specific
token, it simply requests the token from the proba-
ble owner who either grants the token (if it actually
owns that token) or forwards the request to the next
probable owner (if not). All hosts along the forwarding
route will then “compress the path” by updating their
owner information to indicate the new token owner.
In addition, our algorithm is capable of dynamically
splitting/merging tokens at run-time to reflect the sta-
tus/ownership changes of address-adjacent segments,
and also to suppress external fragmentation of conven-
tional segmentation schemes. The status information is
controlled by a shared memory directory called threaded
splay tree (TST), which is a special data structure based
on splay trees [32] by linking neighboring leaf nodes
bi-directionally to trace the status change of adjacent
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memory segments. Moreover, the splaying property of
TST perfectly caches frequently accessed memory seg-
ments near the root, further improving the overall effi-
ciency of our algorithm. Analytically, our scheme, issu-
ing s accesses to an n-processor system with at most m
shared memory segments takes O(s logm logn) amor-
tized computation steps and generates O(s logn) com-
munication messages, respectively. Also note that our
scheme does not need any special hardware nor software
supports, meaning that our scheme is compatible to
both page- and segmentation-based memory manage-
ment systems and most CPU families, operating sys-
tems, compilers, and programming languages.

To investigate the real-world performance charac-
teristics of our scheme, we constructed an experimen-
tal DSM platform called ULTRA (for Universal Layer
for Transparent Remote Access), which is currently de-
veloped on several Ethernet-connected Pentium-based
computers running Linux. The DSM transparency in
ULTRA is retained by a flat, directly-accessible mem-
ory layout and critical-section style programming in-
terfaces, with only minimal syntax modifications that
locks data memory segments directly instead of an ex-
tra mutex (mutual exclusion) synchronization variable.
In addition, the ULTRAmemory consistency semantics
also incorporates other performance optimization fea-
tures, such as concurrent writes to the same location
and read-only locks. This new consistency semantics is
called the aggressive consistency (AC), to name after
its concurrent-write support. Preliminary benchmark-
ing results on this prototype (with concurrent-write and
other optimization features disabled to get the raw per-
formance) show that our memory management scheme
is very efficient, outperforming other traditional DSM
management schemes by up to 800% and delivering up
to 6X speedup on our 8-host NOW configuration for
computation intensive applications.

The rest of this paper is organized as follows. In
Sect. 2 we survey related works. In Sect. 3 we present
the TST data structure and the dynamic token-based
synchronization algorithm used in our scheme. Sec-
tion 4 demonstrates the ULTRA prototype system as
well as the preliminary benchmark results. Finally, con-
clusions and perspectives are given in Sect. 5.

2. Related Works

Conventional page-based DSM systems provide a trans-
parent, directly accessible shared memory space via
the paging capability in modern CPUs. To reduce the
virtual memory processing overhead, page-based DSM
systems often utilize some kind of relax consistency se-
mantics like the release consistency (RC) [16], [38] or
the lazy release consistency (LRC) [21], a more efficient
implementation of RC. TreadMarks [3], [4], [21] is one
representative of the LRC systems. Constructed as a li-
brary on top of Unix systems, TreadMarks takes advan-

tage of Unix virtual memory management system calls
mmap() and mprotect() to control access to shared
pages. Moreover, TreadMarks utilizes a mechanism
called diff that compares and collects modifications to
different parts of the same page to reduce false shar-
ing [4] and enhance performance. Another RC-based
example, Munin [5], [6], is constructed as an extension
of its underlying operating system. Performance of
Munin benefits from a access-pattern-specific synchro-
nization mechanism using various algorithms for differ-
ent access patterns such as producer-consumer, migra-
tory, etc.; however it is the responsibility and risk of
programmers to use the proper access pattern for each
data type, which also implies that conventional par-
allel applications need substantial modifications to be
ported to Munin. Another relax consistency semantics
used by Midway [7], [37] is the entry consistency (EC).
In EC shared data will be synchronized at a processor
when that processor locks a mutex that “guards” the
data; that is, the guarded data will be fetched together
with the associatedmutex. The association between the
“guard” mutex and shared data must be established ei-
ther explicitly by the programmer or automatically by
a more convenient but less precise run-time prediction
mechanism [30]. Some other researchers have reported
that EC and LRC are equipotential in terms of perfor-
mance [1]. In general, page-based DSM systems pro-
vides a more transparent and convenient programming
support than object-oriented designs, but they cannot
avoid false sharing because of page granularity.

In contrast to page-based ones, object-oriented
DSM systems represent the shared memory as a shared
container of language-level objects and hide remote ac-
cesses in the member functions associated with the
objects, meaning that the shared memory is not di-
rectly visible to applications but accessible through spe-
cial function calls. Some of them are built on top of
platform-independent communication facilities such as
the parallel virtual machine (PVM) [15], [34] for higher
interoperability. For example, in the C Region Library
(CRL) [18], [19] the consistency unit is a “region,” an
object-like entity with a unique ID and must be explic-
itly locked via system calls to translate the ID into a
temporary address for application use. A CRL incarna-
tion on the MIT Alewife machine is reported to achieve
speedups within 15% of those provided by Alewife’s na-
tive hardware [19]. Two other object-oriented exam-
ples, the Phosphorus [12] and the Adsmith [27], share
some common features such as lock/unlock and barrier
synchronization primitives, shared memory accesses via
system calls, and using PVM as the underlying commu-
nication environment. Phosphorus offers a debugging
facility to trace the underlying PVM messages. The
consistency semantics of Adsmith is a special varia-
tion of RC with synchronization primitives conform-
ing sequential consistency (SC), rather than processor
consistency (PC). Moreover, for false sharing control
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Adsmith employs a special multi-writer protocol which
acts like the diff mechanism in TreadMarks. Overall,
object-oriented DSM designs have intrinsically better
data migration and false sharing control, at the cost of
sacrificing programming simplicity.

Existing false sharing reduction mechanisms rely
on extra supports of compilers or other software tools.
One approach, known as padding, is to allocate indepen-
dent data into different pages to break the spatial rela-
tionship among the falsely shared data. This approach
is applicable to both the static [36] and the dynamic [25]
data, yet both require compiler/run-time library sup-
port. Another direction is to break temporal locality
(instead of spatial locality) by adjusting the execution
behaviors of programs, making processors access the
same coherence unit at different time. Loop reschedul-
ing [11], [31] is the representative of this category, Still,
if the run-time system is not capable of dynamically
rescheduling the execution flow, the compiler support is
indispensable. The other method is clustering the pro-
cessors by processor-data affinity [17], [30]. In contrast
to the previous two approaches, the affinity informa-
tion between processors and data is usually obtained
at run-time. However, this method can only reduce
rather than totally eliminate false sharing, because the
affinity-based prediction cannot be 100% precise and
the mis-clustered processors must access the remote
memory at a high cost. In summary, these approaches
require additional compiler or other software support,
and they cannot completely eliminate false sharing.

3. The Scheme

In this section we propose a new false-sharing-free
shared memory management scheme. Our goal is to in-
tegrate the advantages and avoid the drawbacks of pre-
vious page- and object-based DSM designs; that is, uti-
lizing dynamic granularity of the object paradigm while
preserving the transparency of page-based designs. We
first describe the syntax of synchronization primitives
from parallel applications’ viewpoints, followed by the
details and performance analyses of the special data
structure and the algorithm of our scheme.

3.1 Syntax of Synchronization Primitives

In previous relax consistency models like LRC and EC,
entering and leaving a critical section are represented by
acquiring (locking) and releasing (unlocking) a dummy
mutex (for mutual exclusive) variable, respectively. As
an example, if we want to access some shared variable
X in previous relax consistency models we must write
the code as follows:

// LOCK X is a dummy mutex variable
ACQUIRE LOCK X
// X is the shared data item

.....(access X)
RELEASE LOCK X

We notice that the dummy mutex variables are un-
necessary and potential sources of false sharing: Ob-
serve that conventional DSM systems have to keep
track of what data are used within a critical section
by trapping page faults, i.e. their consistency granular-
ity must be one page, inducing false sharing inevitably.
Furthermore, in many DSM designs themutex variables
are a kind of limited system resource competed by all
applications, and the management (allocating, releas-
ing, etc.) overhead of mutex use is a substantial over-
head to the system. The solution to these problems is
therefore to adopt a distinct syntax of synchronization
primitives: The operand of ACQUIRE/RELEASE should
be the target data item itself, rather than an extra mu-
tex. For example, in our scheme the previous code piece
may be transformed as:

ACQUIRE X
.....(access X)
RELEASE X

If existing high-level languages such as C/C++ are
used, programmers can explicitly ACQUIRE/RELEASE the
starting addresses with the lengths of the target vari-
ables, like this:

ACQUIRE(&X, sizeof(X));
.....(access X)
RELEASE(&X, sizeof(X));

Such an approach saves not only the mutex re-
source space but also the binding overhead of the mutex
and the very data it guards. A more crucial advantage
is that this syntax prevents false sharing, because the
runtime system can precisely (up to the resolution of
1 byte) identify the address ranges involved in the crit-
ical section without the restriction of fixed page size.
This also implies our new syntax does not depend on
any virtual memory mechanism; nevertheless, shared
data can still be directly manipulated within critical
sections, retaining better compatibility to existing par-
allel applications than most object-based synchroniza-
tion models. In addition, we add the following enhance-
ments to this new syntax for higher performance and
flexibility:

• Locking multiple shared data items at a time. Such
a feature ensures the atomicity of critical section
entrance and exit, eliminating potential race con-
ditions caused by a series of ACQUIRE operations.
In practice, the requested memory segments will
be handled in the order of their starting addresses
to prevent deadlocks.

• Read-only optimization. The ACQUIRE primitive
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can be optionally tagged as read-only, allow-
ing multiple read-only ACQUIRE operations to be
launched simultaneously on the same data. If a
read-only ACQUIRE operation is untagged, it can
be simply treated as the original ones, and the cor-
rectness of the program still remains intact.

• Backward compatibility. Our syntax can emulate
other relax consistency models, such as LRC, to
guarantee backward compatibility to existing par-
allel applications. This can be done via explicitly
declaring special mutex variables: When applica-
tions ACQUIRE such mutex variables, the associated
critical section is treated conventionally. Alterna-
tively, a compiler or the run-time system can de-
tect whether a variable is acquired but left unused
within a critical section; if so, obviously this vari-
able must be amutex, and the whole critical section
should be handled in the conventional manner.

• Supporting multi-writer concurrent writes. This
feature is designed to comply with the ideal Par-
allel Random-Access Machine (PRAM) computa-
tion model extensively studied in the literature.
Since concurrent writes are performed in parallel
and non-exclusively, they must be placed outside
critical sections and handled by a coherence-on-
demand strategy, in which the results of such op-
erations will keep private until being explicitly re-
quested by other processors. The temporary in-
consistency caused by conflict concurrent writes
will then be resolved by a new unary synchroniza-
tion primitive called SYNC: more specifically, differ-
ent values of a concurrently written data item will
be unified by the freshest one at the SYNC point.
In practice, a scalar or vector timestamp mecha-
nism [14], [24], [29] is sufficient to implement SYNC,
whose details are beyond the scope of this paper.

We call this new enhanced consistency model the
aggressive consistency (AC) for its support of concur-
rent writes. The complete AC definition is listed be-
low, in which the bound and free accesses represent the
memory operations inside and outside critical sections,
respectively. An axiomatic yet equivalent definition can
be found in our previous works [22], [23].

(AC-1) Before any bound memory access is performed
with respect to any other processor, the associated
ACQUIRE must be performed.

(AC-2) Before an ACQUIRE is allowed to be performed
with respect to any other processor, the most re-
cent RELEASE of the same shared object must be
performed with respect to the processor issuing the
acquire operation, if either ACQUIRE or RELEASE is
in read-write mode.

(AC-3) Before an exclusive RELEASE is allowed to be
performed with respect to any other processor, all
previous bound memory accesses after the asso-
ciated ACQUIRE in program context must be per-

formed.
(AC-4) Before an ordinary operation is performed, all

previous SYNC operations to the same object ac-
cessed must be performed.

(AC-5) All synchronization primitives follow the par-
tial causal order; that is, they either follow de-
pendency order, or they are in the same pro-
gram except that ACQUIRE-s can bypass outstand-
ing RELEASE-s if they are mutually independent.

3.2 The Shared Memory Directory

On the implementation side, a directory is necessary for
managing shared memory in distributed or hierarchical
memory systems like DSM/NOW. The memory direc-
tory keeps track of the information about each shared
memory piece, including the ownership (i.e. which host
processor has the freshest copy exclusively), locking sta-
tus (who is acquiring or waiting for the memory piece),
and so on. Moreover, if dynamic granularity is adopted
the shared memory directory must be able to split a
segment into two or more (if the application is access-
ing a small portion of that segment) and merge mul-
tiple adjacent segments into one (if the application is
simultaneously using those segments as a whole), in
contrast to object-oriented designs in which an object
is accessed as an entity and there is no need for split-
ting and merging memory pieces. Briefly speaking, this
directory must fulfill the following requirements:

• Keeping track of the locking and ownership status
of the segments;

• Supporting dynamic granularity and segment split-
ting / merging; and

• Achieving high operation efficiency.

The directory structure we devise is called the
Threaded Splay Tree (TST), which is an augmented
version of the original splay tree [32]. In a TST, each
node represents one shared memory segment with the
starting address, the length, a flag of locking status,
and other ownership-specific information to satisfy the
requirements stated above. The starting address acts
as the key value that determines the organization in
a TST. In addition, each node has two extra thread-
ing links respectively pointing to its in-order traversal
predecessor and successor (also the order of starting ad-
dresses) to support the segment splitting/merging func-
tionality; that is, the TST is a combination of the splay
tree and the doubly linked list. Such a configuration
can be adaptive to both temporal locality (via splaying
the most recently used shared memory segment to the
root) and spatial locality (via thread tracking, without
traversing the tree first), achieving better performance.
Also note that splaying the TST does not affect the
threads at all, as splaying never changes the in-order
traversal sequence of the TST. An example of a segmen-
tation mapping and its corresponding TST structure is
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Fig. 1 An example of a shared memory segmentation map and
its corresponding TST. The thick arrows are splay-tree edges and
dotted bi-directional arrows are thread links.

Fig. 2 When one ACQUIRE is applied to the TST in the previous
example (a), a new node is generated by merging the fragments
of the involved nodes and splayed to the root (b).

depicted in Fig. 1.
Looking up nodes in a TST is performed as fol-

lows. When one processor requests a memory range
spanning one or more segments, the node representing
the first segment (in terms of the starting address) will
be splayed to the root for access, followed by its succes-
sors (if any) which can be tracked via the thread links.
Merging and splitting segments are virtually look-up
operations with node replacement. Since the thread
links are not affected (as the address order of mem-
ory segments remains invariant), the amortized cost of
an operation involving at most s nodes in an m-node
TST is clearly O(s logm); if the s nodes correspond to
a contiguous address range of s memory segments, the
amortized cost can be further reduced to O(s+ logm).
Figure 2 depicts how an ACQUIRE operation manipulates
the TST directory shown in the previous example.

3.3 A TST-Based Dynamic Token-Chasing Synchro-
nization Algorithm

Now we present a dynamic token-chasing implementa-
tion of the kernel operations of AC, i.e. the ACQUIRE
and the RELEASE synchronization primitives. In this
scheme, there is no so-called “home” directory host
that manages all shared memory blocks; instead, each
shared memory segment is treated as a single, unique
token. The processor holding the memory “token” has
the exclusive right to access its contents. Like most

token-chasing algorithms, our approach requires that
the communication messages are processor consistent;
i.e., from the viewpoint of a processor (say) P, all mes-
sages involving P should be totally ordered, while the
ordering of other messages is irrelevant.

To get maximal performance, our approach is
based on a highly efficient algorithm utilizing the path
compression technique to accelerate the most time-
consuming token-searching phase. The one we choose
as the basis is that proposed by Chang, Singhal and
Liu [9], [10], [20] (abbreviated as the CSL algorithm),
which is generally the most efficient algorithm among
proposed path compression ones, to our best knowl-
edge. For a system of n processors, the CSL algorithm
generates O(logn) messages per request, and the ac-
tual number of messages is usually far fewer than that
upperbound due to the effectiveness of path compres-
sion.

The key idea of the original CSL algorithm is de-
scribed as follows. Each processor maintains a guess
(called dir) of the probable token owner. If a proces-
sor neither holding nor requesting the token receives a
request, it forwards this request to the processor indi-
cated by dir, and then sets dir to point to the new
requester because the new requester will eventually be
the true token holder. When a processor requests the
token, it sends a request message to the processor indi-
cated by dir. It then sets an additional pointer, next,
to NIL. If a processor holding or waiting for the to-
ken receives a request, and its next pointer is NIL, it
sets next to the new requester. Otherwise, it forwards
the request to the node indicated by dir, and “com-
presses the path” for further requests by setting dir to
the new requester. Among the processors that hold the
token or are requesting, their next pointers form a dis-
tributed queue of the pending requesters. If a processor
is waiting and its next pointer is NIL, this processor is
effectively at the end of the waiting queue. If next is
not NIL, the end of the waiting queue is at or beyond
the processor pointed to by dir. Since the requester
will become the one at the queue end, it is appropriate
to set the dir variable to that requester. When the
token holder releases the token, it sends the token to
the processor pointed to by next, if next is not NIL.
Otherwise, the current holder just keeps the token.

To enable the CSL algorithm in our dynamic-
granularity implementation, the first thing to do is
adding the two dir and next pointers into each node of
the TST directory of each processor so that the CSL al-
gorithm can use shared memory blocks as tokens. Still,
there remains one more challenge: In AC, the shared
memory blocks may be dynamically split or merged, im-
plying that the tokens will be generated or destroyed on
the fly. This could totally ruin the execution of the CSL
algorithm. Fortunately, such an obstacle can be over-
come by making the processor in-order traverse the dis-
tributed forest formed by the dir pointers. More pre-
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Fig. 3 An execution example of the token-based AC algorithm.
The solid thin arrows are the dir pointers. (a) Initially P1 sends
the request (the gray thick arrow) to P2; (b) P2 finds out that the
block is divided to 2 pieces, so it first forward the split request to
P3, the owner of the first half; (c) P3 acknowledges the forwarded
request (the dotted arrow), so P2 can forward the other split
request to P4, the owner of the second half; (d) P4 acknowledges
the forwarded request. Notice that data are asynchronously sent
to P1, the original requester.

cisely, when one processor splits a memory into several
smaller pieces, it will launch a new CSL operation per
each sub-segment, gather and merge the responses, and
return the collective result to the source requester (if
any). In practice, the acknowledgment and the actual
data of each memory sub-segment can be separated and
transferred asynchronously for better performance. We
show an execution example of our algorithm in Fig. 3.

The pseudo codes of our algorithm with enhance-
ment of separated acknowledgment and data transfer
are listed below. In the listing a memory segment in
the TST is represented by a range [s, s+ l] where s and
l is the starting address and the length of the very seg-
ment, respectively. Note that the following algorithm
can be easily extended to handle read-only ACQUIRE op-
erations, which is left to the reader.

Initial Settings

• All shared memory blocks are exclusively owned
by one processor and others set the dir pointers
to be the initial owner.

• All processors are idle; i.e. outside critical sections.

Upon Acquiring the Range [s, s+ l]

1. Look up the TST to transform the range [s, s + l]
into a list of memory blocks (LMB) {[s0, s0 + l0],
[s1, s1 + l1], [s2, s2 + l2], . . . } that are possibly
owned by processor P0, P1, P2, . . . , respectively.

2. Merge the nodes of LMB into a single node [s, s+l]
in the TST, with the lock flag set true, next= NIL,
dir = NIL, respectively.

3. Let i = 0 and repeat the following sub-steps until
the LMB is empty:
3.1 Check if Pi is the requester itself; if so, go to

step 3.4.
3.2 Send out an acquire-writing request [si,si +li]

to its probable owner Pi;
3.3 Wait until the acknowledgment of [si, si + li]

arrives.
3.4 Remove [si, si+li] from the LMB; set i = i+1.

4. Enter the critical section when all data within
[s, s+ l] arrives.

Upon Receiving an Acquire [s, s+ l] Request

1. Look up the TST to transform the range [s, s + l]
into a list of memory blocks (LMB) {[s0, s0 + l0],
[s1, s1 + l1], [s2, s2 + l2], . . . } that are possibly
owned by processor P0, P1, P2, . . . , respectively.

2. Merge the nodes of LMB into a single node [s, s+l]
in the TST, with dir = the initiator of the acquire
operation.

3. Let i = 0 and repeat the following sub-steps until
the LMB is empty:
3.1 If the receiver itself is neither Pi nor request-

ing the block [si, si + li], or the next pointer
of the block is not NIL, then forward the re-
quest to the node indicated by the dir pointer
of block and go to step 3.4.

3.2 If the receiver itself is currently requesting the
block [si, si + li] and next is NIL, set next =
the initiator of the acquire operation and go
to step 3.4.

3.3 Send an acknowledgment to the previous for-
warder and the contents of [si, si + li] to the
initiator of the acquire operation.

3.4 Remove [si, si+li] from the LMB; set i = i+1.

Upon Releasing the Range [s, s + l]

1. Look up the TST to transform the range [s, s + l]
into a list of memory blocks (LMB) {[s0, s0 + l0],
[s1, s1 + l1], [s2, s2 + l2], . . . } that are possibly
owned by processor P0, P1, P2, . . . , respectively.

2. Let i = 0 and repeat the following sub-steps until
the LMB is empty:
2.1 If the next pointer of the block [si, si + li] is

not NIL, send the data of the block to the
processor indicated by the next pointer and
reset the next to NIL; otherwise, let dir =
the releasing processor itself.

2.2 Reset the lock flag of the corresponding TST
node to be false.

2.3 Remove [si, si+li] from the LMB; set i = i+1.
3. Leave the critical section.
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3.4 Analysis

Theorem 1: The TST-based synchronization algo-
rithm guarantees mutual exclusion.

Proof (Sketch): Suppose two memory segments M1

and M2 are respectively requested by two host pro-
cessors P1 and P2 at the same time, and M1 ∩ M2

�= Φ. Let Mx = M1 ∩ M2 and call the previous Mx

owner Px. Since messages are processor-consistent,
Px must first receive and handle the ACQUIRE re-
quest from either P1 or P2, but not simultaneously.
However, if Px handles the request from P1 first,
it can never grant the request from P2 because
Px will no longer own Mx; or vice versa. Since
all shared memory segments are initially owned by
one processor, we conclude that M1 ∩M2 = Φ. ✷

Theorem 2: The TST-based synchronization algo-
rithm is deadlock-free.

Proof (Sketch): Since the ACQUIRE requests are prop-
agated in the direction pointed by the dir point-
ers. A deadlock occurs if and only if there exist
some host processors whose dir pointers form a cy-
cle; more specifically, a requesting host P0 is dead-
locked if and only if there exist n (n ≥ 0) host
processors, say P1, P2, P3, . . . , Pn, such that P0

⇒ P1 ⇒ P2 ⇒ . . . ⇒ Pn ⇒ P0 where ⇒ repre-
sents the dir pointer. Let M i (i = 1, 2, . . . , n) be
the memory segment held by Pi and being waited
for by Pi−1, and M0 be the memory segment held
by P0 and being waited for by Pn. Because in
our algorithm memory segments are requested in
the order of their starting addresses, the starting
address of block Mn must be larger than those of
Mn−1, Mn−2, . . . , M1 and M0, whileas the start-
ing address of M0 must be larger than that of Mn,
an obvious contradiction. Thus our algorithm is
guaranteed deadlock-free. ✷

The efficiency of our algorithm is highly depen-
dent on the communication network topology. Below
we show the analytical result for typical LAN-based
NOW systems and fully-connected multicomputers.

Theorem 3: In an n-processor system with at most
m shared memory segments, the TST-based syn-
chronization algorithm processes a synchronization
request involving at most s segments at the cost
of O(s logm logn) amortized computation steps and
O(s logn) communication messages, respectively.

Proof (Sketch): Immediately from the facts that (1) a
memory segment is virtually a token in the CSL
algorithm, yielding O(logn) messages per request;
and (2) each host processor along the searching
path takes O(logm) amortized computation steps
in querying its own TST. ✷

Corollary 4: In an n-processor system with at most
m shared memory segments, the TST-based synchro-
nization algorithm processes a synchronization request
involving at most s contiguous segments at the cost
of O(s logn+logm logn) amortized computation steps
and O(s logn) communication messages, respectively.

4. ULTRA: An Experimental DSM System

In order to examine the real-world performance of our
proposed scheme, we constructed a prototype software
DSM system called ULTRA (for Universal Layer for
Transparent Remote Access) that implements AC. The
primary design goal of ULTRA is to provide both a
testbed of our proposed AC scheme and an experimen-
tal development platform of DSM applications. The
first version of ULTRA is developed in C language on
several Ethernet-connected Intel Pentium-based com-
puters running Linux, a robust, freeware Unix clone.
We also conducted a benchmark test of several typi-
cal parallel applications on our prototype to measure
the performance. The preliminary results are quite en-
couraging, especially considering that we have not even
added any advanced performance optimization tech-
niques in this incarnation of ULTRA. Below we first
briefly describe the current ULTRA implementation,
then present and evaluate the benchmark results.

4.1 Overview

The first implementation of ULTRA is designed as
an intermediate layer between shared-memory applica-
tions and the underlying operating system. Programs
running on ULTRA consist of one or more parallel
threads or “light-weight processes,” which are embod-
ied by Unix processes that share a single DSM address
space controlled by the ULTRA runtime system. The
internal organization of the current ULTRA implemen-
tation, depicted in Fig. 4, consists of three main com-
ponents: the network listener (NL) that picks up from
the network the necessary packets, the Application Pro-
gramming Interface (API) library that bridges the run-

Fig. 4 The block diagram of the ULTRA system organization.
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Table 1 Highlights of ULTRA API calls.

Function Name Meaning

vm init( ) Initialize the ULTRA system
vm allocate( ) Allocating a segment
vm free( ) Freeing an allocated segment
vm close( ) Quit the ULTRA system
vm acquire( ) Lock shared memory segments
vm release( ) Unlock segments
vm sync( ) The SYNC operation
vm barrier( ) Blocking rendezvous
vm createthread( ) Create a new thread
vm threadexit( ) Terminate a thread
vm getthreadid( ) Get a unique thread ID

time system and application programs, and the shared
memory manager (SMM). These modules communicate
one another by an internal message buffer, which is im-
plemented by a combination of a standard Unix mes-
sage queue and a block of Unix shared memory for large
amount of data transfer.

The heart of the current ULTRA implementation
is the SMM, which is implemented as a daemon process
that continuously monitors the message buffer for in-
coming requests. It implements most of the data struc-
tures and algorithms presented in previous sections ex-
cept that we deactivate the asynchronous acknowledg-
ment and data transfer feature to measure the raw per-
formance of our algorithms.

We use remote procedure calls (RPC) as the under-
lying inter-process communication facility; the reasons
of adopting RPC are reliable message delivery, guaran-
tee of data packet ordering, and programming simplic-
ity. In fact, we implemented a single data transferring
routine to handle both remote read and write requests,
because the only difference of a read and a write is the
direction of data movement. The SYNC operation in
this version of ULTRA is also implemented by the sim-
plified approach. On the other hand, we incorporated
additional system management functions (see Table 1);
some of them are directly built into the API library
rather than integrated in the SMM.

4.2 Performance Evaluation

In this subsection we measure and compare the perfor-
mances of our ULTRA prototype with another software
DSM management scheme. The system we compare is
Adsmith [27], which is also a variable-granularity soft-
ware DSM system with multi-writer protocol for false
sharing control as well as other performance features.
A series of benchmark tests were conducted on both
systems to evaluate the performance improvements of
our new scheme over traditional approaches.

4.2.1 The Experimental Environment

Our testing platform consists of 8 Ethernet-connected
Pentium/100MHz machines running Linux kernel

Table 2 Mini-benchmark results (Units: milliseconds).

Action Dummy 1KB data 4MB data
System SysCall transfer transfer

ULTRA 6.15 10.18 5240.0
Adsmith 7.23 11.35 5877.7

2.0.36. Each node is equipped with 32MBytes of EDO-
RAM and a 3COM 3C509B Ethernet adapter. The
version of Adsmith is 1.8.0i running on PVM 3.4. All
executables including the OS kernel, the two DSM sys-
tems, and the benchmarking programs are made using
GNU C 2.7.2.3. During the benchmark process we also
enabled bulk transfer, in addition to the multi-writer
protocol, for Adsmith to maximize its network through-
put. Table 2 lists some “mini” benchmark results of the
two DSM systems on our testbed, which indicate that
ULTRA is substantially faster than Adsmith in terms
of basic operation and internal bookkeeping costs.

The benchmark suite we use consists of three paral-
lel applications that vary widely in their computation
and communication complexities. The first program,
MSort, is a parallel implementation of the merge sort
algorithm that consists of two phases. First, by the
number of processors MSort divides the original data
array (221 integer elements in this test) into roughly
equal-sized chunks, and assigns each processor to se-
quentially sort one chunk respectively. Next, MSort
pairwisely merges those intermediate sorted chunks in
parallel until the whole array is completely sorted. Such
a technique is frequently used for parallelizing other
divide-and-conquer algorithms.

The second application in the suite is Relax, a
parallel implementation of the 2-D successive over-
relaxation algorithm. The whole algorithm is an itera-
tive process on a matrix of 4K×1K elements, repeated
100 times. During each iteration, Relax replaces each
matrix element with the average of its neighboring ele-
ments. Such an algorithm is the key step in the finite
elements method in numerical and scientific computa-
tions. In this incarnation, we partition the whole ma-
trix into several horizontal strips and assign one strip to
exactly one processor; thus sharing only occurs across
the boundaries of neighboring strips.

The third benchmark program is MatMul, which
performs parallel matrix multiplication of two 768*768
square matrices. The computation of MatMul, based
upon the “classical” triple-loop approach, can be de-
scribed as follows. The product matrix is partitioned
into roughly equal-sized horizontal bands by the num-
ber of available processors, and each processor is re-
sponsible for computing one band. In the same style
the multiplicand and multiplier matrices are also parti-
tioned horizontally (along the row) and vertically (also
along the row if the target matrix has been transposed
in advance), respectively. Each processor then takes
and holds its corresponding multiplicand and product
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Table 3 Benchmark results of ULTRA (Units: seconds).

# of Processors MSort Relax MatMul

1 37.17 241.44 344.93
2 19.58 129.94 176.65
3 16.15 98.10 121.77
4 15.10 78.82 95.52
5 14.23 69.32 79.00
6 13.71 60.18 68.28
7 13.24 54.25 62.47
8 12.92 50.33 59.13

Table 4 Benchmark results of Adsmith (Units: seconds).

# of Processors MSort Relax MatMul

1 99.94 849.84 408.93
2 109.33 482.61 224.02
3 116.68 329.51 167.20
4 117.51 253.56 144.55
5 118.73 208.88 135.96
6 119.32 179.65 133.84
7 118.64 161.68 137.17
8 119.93 150.83 142.63

Fig. 5 Execution times of Msort (lower is better).

bands, and fetches one different multiplier band a time
in a round-robin ordering to compute the product.

4.2.2 Benchmark Results and Analyses

Tables 3 and 4 summarize the execution times of the
benchmark suite on ULTRA and Adsmith respectively.
Overall, we find that ULTRA consistently and signif-
icantly outperforms Adsmith in all three benchmarks
by a very large margin from some 20% (MatMul, 1 pro-
cessor) to over 800% (MSort, 8 processors). We also
discover that ULTRA scales up better than Adsmith
does, showing positive speedups for up to 8 processors
in all benchmarks while the other degenerates in 2 cases
out of 3. Performance characteristics of each individual
application are detailed as follows.

Fig. 6 Speedups of Msort (higher is better).

Fig. 7 Breakdown of 8-processor execution times of MSort.

MSort
Figures 5 and 6 summarize the elapsed execution times
and speedups of MSort respectively. From these fig-
ures we notice the unusually large performance lag of
Adsmith behind our ULTRA prototype. After exam-
ining the system and the benchmark programs we find
that, to our surprise, the direct reason of such a per-
formance difference is indeed false sharing. Due to the
object-oriented nature of Adsmith, an array can only
be refreshed and/or flushed as a whole, causing seri-
ous false sharing during the merging phase of MSort.
Worse, the multi-write protocol is unable to reduce this
kind of false sharing because the protocol has nothing to
do with the granularity. To measure and alleviate such
an impact on system speed, we manually restructured
MSort by substituting several small arrays for the pri-
mary data array and then re-executed the benchmark.
The outcomes are dramatic: the modified MSort runs
almost twice as fast as the original version, completing
the sorting task in 56.45 seconds on a single processor
and 63.72 seconds on 8 processors. Such a steep im-
provement not only explains the peculiar performance
characteristics, but also validates the effectiveness of
our false-sharing-free memory management scheme.

Another issue worthy to note is that the problem
size is too small for the testing configuration, thus the
communication time soon dominates the total execu-
tion time, as Fig. 7 shows. Observe that the through-
put of MSort soon saturates on both systems when the
number of processors increases, and the even degrades
on Adsmith regardless of whether the MSort program
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Fig. 8 Execution times of Relax (lower is better).

Fig. 9 Speedups of Relax (higher is better).

Fig. 10 Breakdown of 8-processor execution times of Relax.

has been restructured or not. Fortunately, the better
efficiency of basic operations (see Table 2) still keeps
ULTRA from the performance degradation that Ad-
smith undergoes. Although this implies that the raw
bandwidth of Ethernet is adequate for ULTRA on up
to 8 processors, a faster communication medium such
as the 100Mbps Fast Ethernet should undoubtedly en-
hance both systems’ speeds.

Relax
The scenario is different for Relax, whose execution
times on both DSM systems are depicted in Fig. 8.
Since the computation-to-communication ratio of this

Fig. 11 Execution times of MatMul (lower is better).

Fig. 12 Speedups of MatMul (higher is better).

Fig. 13 Breakdown of 8-processor execution times of MatMul.

application is high (refer to Fig. 10) and its shared ac-
cess patterns are regular, Relax is obviously far better
scalable than MSort—from Fig. 9 we observe about 5x
speedup on 8 processors for both DSM systems. In
fact, in this case Adsmith even exhibits slightly better
scalability than ULTRA, because the internal caching
management expense of Adsmith is proportional to (i.e.
scalable to) the amount of shared data held by each pro-
cessor, thus contributing to its scalability. Neverthe-
less, ULTRA still executes Relax 200% to 250% faster
than Adsmith in terms of raw speed.
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MatMul
In Figs. 11 and 12 we present respectively the exe-
cution times and speedups of MatMul. We observe
that at first, MatMul scales up well on both systems,
and the performance edge of ULTRA over Adsmith is
about 20%, not as large as in the previous two sce-
narios. When the number of processors grows, how-
ever, the performance on ULTRA continues to increase
steadily to finally reach 6x speedup on 8 processors, yet
the throughput on Adsmith quickly saturates and even
starts to degenerate after the fifth processor is added. A
closer inspection reveals that most network traffics are
generated when the multiplier matrix is accessed. Re-
call that in MatMul the multiplier matrix is partitioned
into vertical bands and each processor accesses one dif-
ferent band a time in a round-robin fashion. Since in
C language a multi-dimensional array is indeed a col-
lection of possibly noncontiguous subarrays, accessing a
band of the multiplier matrix will induce multiple small
synchronization transactions to that band’s constituent
subarrays, which are especially time-consuming on Ad-
smith due to its higher function invocation costs. In
contrast, the AC syntax of ULTRA supports acquir-
ing multiple noncontiguous memory blocks atomically,
greatly minimizing the run-time overheads and thus
leading to better computation-to-communication ratio
and higher scalability, as Fig. 13 shows.

5. Conclusions and Future Works

The key of eliminating false sharing is utilizing dynamic
granularity, without inducing side effects such as pro-
gramming difficulty and external memory fragmenta-
tion. In our proposed dynamic granularity scheme, we
define a new memory consistency model AC for mem-
ory usage transparency, and we adopt segment split-
ting/merging mechanism to suppress external fragmen-
tation. Performance analyses of our scheme show that
the combination of the splay-tree based TST directory
and the path-compressing token chasing algorithm is
very efficient, yielding synchronization complexity of
only a polynomial of logarithmic scale of system sizes.
Meanwhile, the benchmark results on our ULTRA pro-
totype indicate that our scheme also delivers good real-
world performances, surpassing other software DSM de-
signs significantly even with advanced speed optimiza-
tion features disabled. The high synchronization effi-
ciency also balances the computation/communication
ratio, meaning that our scheme scales up well along
with the growth of the NOW system size. Another
advantage of our scheme is platform-independency, in-
dicating that its implementations such as ULTRA will
enjoy high portability.

A second generation of ULTRA, the ULTRA-II,
is now under development to fully exploit the massive
power of NOW by utilizing performance enhancements
such as asynchronous data transfer, the diff mecha-

nism [3], [4], [21], and data prefetching [23] techniques.
In addition, we will incorporate more features such as
real-time and multimedia support into ULTRA-II.
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