
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 18, 47-58 (2002)

47

Short Paper_________________________________________________

A User Efficient Fair Blind Signature Scheme for
Untraceable Electronic Cash

CHUN-I FAN AND CHIN-LAUNG LEI
*

Telecommunication Laboratories
Chunghwa Telecom Co., Ltd.

Taoyuan, 326 Taiwan
E-mail: chunifan@ms35.hinet.net

*Department of Electrical Engineering
National Taiwan University

Taipei, 107 Taiwan
E-mail: lei@cc.ee.ntu.edu.tw

Blind signatures have been widely adopted to construct untraceable electronic cash
systems since they are both unlinkable and unforgeable. Although unlinkability protects
the privacy of customers and users, it may be abused by criminals for such purposes as
to launder money or to safely get a ransom. The techniques of fair blind signatures are
developed to deal with the abuse of unlinkability. In this paper we propose a user effi-
cient fair blind signature scheme which makes it possible for a government or a judge to
recover the link between a signature and the instance of the signing protocol which pro-
duces that signature when the unlinkability property is abused. Only two integers are re-
quired to form a signature in the proposed fair blind signature scheme. Furthermore, it
only takes several modular multiplications for a user to obtain and verify a signature. It
turns out that the scheme is suitable for situations where computation capability of users
or customers is limited, such as smart cards and mobile units. Compared with existing
blind signature schemes proposed in the literatures, our method reduces the computation
required of users by more than 99%.
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1. INTRODUCTION

Due to the fast pace of computer and network technologies, many advanced com-
munication services have been proposed to take advantage of ever-growing networking
capabilities. Among these services, electronic cash is popular since the technique makes
it possible for a customer to electronically transmit cash (e-cash) through communication
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networks. Owing to their ability to protect the privacy of customers, blind signature tech-
niques are usually taken as the underlying foundations.

A typical blind signature scheme consists of two kinds of participants, a signer and a
group of users. A user requests signatures from the signer, and the signer issues blind
signatures to the users. There are two sets of messages known to the signer: the messages
received from users for signatures, and the signatures shown by the users for later verifi-
cation. The key point is that the actual correspondence between these two sets of mes-
sages is unknown to the signer. This is usually referred to as the unlinkability property.
Due to the unlinkability property, blind signatures have been widely used in untraceable
electronic cash systems [1-7] and in anonymous electronic voting systems [8-11].

Since blind signatures provide perfect unlinkability, it is computationally infeasible
for anyone but the user himself to link a signature to the instance of the signing protocol
which produces that signature. In electronic cash systems, the unlinkability property
might be abused by criminals, e.g., to launder money or to safely get a ransom [12, 13].
Hence, robust blind signatures should possess the following properties to withstand the
possible abuse of unlinkability:

(1) If users or customers are engaged in legal commercial transactions or payments, the
unlinkability is preserved against the signer or the bank; on the other hand, if they
abuse the unlinkability property, then a government or a judge will have enough in-
formation to link the signatures shown by the users or customers for verification to
the instances of the signing protocols which produce those signatures. This property
is the fairness property.

(2) The addition of the fairness property to blind signatures cannot significantly increase
the computation load on users or customers since their computation capability is lim-
ited, such as smart-card users and mobile clients.

In this paper, we propose a user-efficient fair blind signature scheme for untraceable
electronic cash to meet the above two requirements. In our scheme, with the help from
the judge, the government, or a trusted party, it is possible to link a signature to its corre-
sponding instance of the signing protocol when the unlinkability is abused. The proposed
scheme only takes several modular multiplications for a user to obtain and verify a sig-
nature. Compared with existing schemes, our method greatly reduces users’ computa-
tional load.

2. PRELIMINARY

Typically, a blind signature protocol consists of four phases: initializing, blinding,
signing, and unblinding [6, 14-16]. In the initializing phase, the signer publishes some
necessary information. To request the signer’s signature on a message, a user blinds the
message via an encryption-like process, and then submits the blinded message to the
signer in the blinding phase. In the signing phase, the signer computes the signature on
the blinded message, and then sends the signing result called the blind signature to the
user. Finally, in the unblinding phase, the user unblinds the blind signature to obtain the
exact signature on the message he had chosen. In a secure blind signature scheme, it is
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computationally infeasible for the signer to derive the link between the blind signature
and the exact signature on the same message. This is the unlinkability property.

To cope with the possible abuse of the unlinkability property, Stadler, Piveteau, and
Camenisch proposed three fair blind signature schemes [13]. The first scheme of [13] is
based on Chaum’s blind signatures and the cut-and-choose method [4, 15]. The second
one is based on a variation of the Fiat-Shamir signature scheme and the concept of
one-out-of-two oblivious transfers [22, 23]. The main idea of the third scheme in [13] is
that the user has two pseudonyms registered with the judge. One of the pseudonyms is
used during the signing protocol, while the other one is part of the signature. Thus, the
judge, who knows the two corresponding pseudonyms, can link a view of the signing
protocol and the corresponding signature.

In the fair blind signature scheme using the cut-and-choose method of [13], a large
amount of data is exchanged during the signing protocol, and the resulting signature is
quite large. Although the resulting signature produced by the fair blind signature scheme
using oblivious transfer in [13] is short, it is necessary for a user to perform a large
amount of modular computations. Considering the fair blind signature scheme with reg-
istration of [13], a large amount of computation is still required of users.

3. A USER EFFICIENT FAIR BLIND SIGNATURE SCHEME

In this section we propose a user efficient fair blind signature scheme for untrace-
able electronic cash. The proposed scheme is based on the theory of quadratic residues
[24-27]. Under a modulus n, an integer x is a quadratic residue (QR) in *

nZ if and only if
there exists an integer y in *

nZ such that y2 ≡ x (mod n) where *
nZ is the set of all positive

integers which are less than and relatively prime to n. Given x and n, it is computation-
ally infeasible to derive y if n contains large prime factors and the factorization of n is
unknown [26]. The details of the scheme are described as follows.

3.1 Initializing

The signer randomly selects two distinct large primes p1 and p2 such that p1 ≡ p2 ≡ 3
(mod 4). The signer computes n = p1p2 and then publishes n. Since p1 ≡ p2 ≡ 3 (mod 4),
given a QR in *

nZ , there are four different square roots (or 2nd roots) of the QR in *
nZ ,

and one of these square roots is a QR in *
nZ , too [27]. Hence, in addition to the 2nd roots

of a QR in *
nZ , we can derive the 4th roots, 8th roots, and (2i)th roots of the QR in *

nZ
where i is an integer greater than 1. Such a special form of primes p1 and p2 does not af-
fect the difficulty of factoring n [28]. Also, let F and H be two public one-way hash func-
tions where the range (or image) of F contains all of the positive integers less than n [27,
29, 30].

The judge randomly chooses two distinct large primes p3 and p4 such that p3 ≡ p4 ≡ 3
(mod 4) and p3p4 > n, and then computes 43ˆ ppn = . The judge publishes n̂ and a string
ϖ selected by itself.
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3.2 Blinding

A user randomly chooses three integers y1, y2, and y3 such that for every i with 1 ≤ i
≤ 3,
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Then, the user computes 2( ii yq = mod )n̂ and submits qi to the judge for i = 1, 2, and 3.
After receiving all (qi)’s, the judge derives the square roots of qi in *

n̂Z for i = 1, 2,
and 3 [25, 26]. For i = 1, 2, and 3, there exists one square root with the prefix ϖ of qi in

*
n̂Z . This enables the judge to obtain y1, y2, and y3, respectively, by finding the square

roots with the prefix ϖ of q1, q2, and q3, respectively, in *
n̂Z .

The judge randomly selects two integers β and γ, and forms u = F(β) and v = F(γ)
such that ((u2 + v2) mod n) is in *

nZ . Let z be an integer to uniquely identify this instance
of the protocol, where z is chosen by the judge such that F(z) is a QR in *

n̂Z .1 The integer
z is referred to as the identifier of this instance of the protocol. The judge derives a
square root z

)

of F(z) in *
n̂Z such that 2)(z

) ≡ F(z) (mod )n̂ . The judge randomly selects an
integer b in ,*

nZ and then computes
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The judge sends the 5-tuple ),ˆ,ˆ,ˆ,ˆ( zzvub to the user, and stores the 4-tuple (β, γ, b, z) in its
database.

The user can obtain b, u, and v by computing
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The user chooses a message m such that H(m) is in ,*
nZ and computes α = (H(m)(u2

+ v2) mod n). Then, he submits the triple )ˆ,,( zzα to the signer.
After verifying that 2)(z

) ≡ F(z) (mod ),n̂ the signer randomly selects an integer δ
and computes x = F(δ) such that (α(x2+1) mod n) is a QR in ,*

nZ and then sends (x, z, )ẑ
to the judge.

1 Since n̂ = p3p4 and p3 ≡ p4 ≡ 3 (mod 4), (p3 − 1)(p4 − 1)/4 elements are QR’s in *
n̂Z [27]. The

probability that a randomly-chosen integer is a QR in *
n̂Z is about 1/4.
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After verifying that 2)(z
) ≡ F(z) (mod )n̂ and that z has not been received from the

signer in previous instances of the protocol, the judge retrieves the stored (β, γ, b, z)
through the identifier z. The judge computes c = ((ux + v)(u − vx) -1 mod n), where u =
F(β) and v = F(γ), and checks if the integer c is different from all the other c’s which are
recorded by the judge in the previous instances of the protocol. If true, the judge com-
putes λ = (b2(u − vx) mod n) and sends λ to the signer.2 Then, the judge records the
5-tuple (β, γ, b, c, z).

3.3 Signing

After receiving λ, the signer computes e = (λ-1 mod n) and derives an integer t in
*
nZ [25, 26] such that

224 )1( ext +α≡ (mod n) (3)

The signer sends the triple (e, t, x) to the user, and stores (δ, z).

3. 4 Unblinding

After receiving the triple (e, t, x), the user computes
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(4)

Thus, (c, s) is a valid signature on the message m. To verify the signature (c, s) on m, one
can check that

s4 ≡ H(m)(c2 + 1) (mod n). (5)

4. DISCUSSIONS

In this section we examine the security and performance of the fair blind signature
protocol proposed in section 3.

4.1 Correctness

The following theorem ensures that a signature (c, s) on m produced by the pro-
posed blind signature scheme satisfies formula (5).

2
If ((u − vx)-1 mod n) does not exist in *

nZ or the integer c is not unique among all the recorded c′s, the judge
requests the signer to choose another integer x and repeat this protocol. However, the modulus n is about 1024
or more bits in a practical implementation and the integers u, v, x are randomly chosen by the judge and the
signer, so that the probability that ((u − vx)-1 mod n) does not exist in *

nZ or the integer c is not unique is usu-
ally slight.
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Theorem 1 If (c, s) is a signature on m produced by the fair blind signature scheme in
section 3 under the modulus n, then formula (5) is true.

Proof. The proof of theorem 1 is shown in the appendix.

4.2 Unlinkability

In the blinding phase of the protocol, the signer receives two integers α and λ from
the user and the judge for requesting a signature on a message m. Then in the unblinding
phase of the protocol, the user obtains a signature (c, s) on the message m.

For every instance, i, of the signing protocol in the proposed scheme of section 3,
the signer can record the parameters (αi, λi) received from the user. The triple (αi, λi, xi)
is said to be the view of the signer to the instance i of the signing protocol. Thus, we have
the following theorem.

Theorem 2 Given a triple (c, m, s) produced by the protocol in section 3, the signer can
derive ''' and,, iii vub for every view (αi, λi, xi) such that
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Proof. The proof of theorem 2 is shown in the appendix.

Hence, given a triple (c, m, s) produced by the protocol in section 3, the signer can
always derive three blinding factors ''' and,, iii vub for every recorded (αi, λi, xi). It turns
out that all of the signatures produced by the proposed protocol are indistinguishable
from the signer’s point of view. Therefore, it is computationally infeasible for the signer
to derive the link between an instance i of the signing protocol and the signature pro-
duced by that instance of the protocol. This is the unlinkability property.

In our scheme, the signer does not perform any signing operation without receiving
a valid tuple ).ˆ,( zz To request a valid signature on a message m, it is necessary for a user
to submit to the signer a tuple )ˆ,( zz obtained from the judge with 2)(z

) ≡ F(z) (mod )n̂
The tuple )ˆ,( zz cannot be used twice by users or the signer. If )ˆ,( zz is reused, it can be
detected by the judge in the blinding phase of the protocol.

4.3 Linkage Recovery

Consider the linkage recovery in the proposed scheme. Given a signature )~,~( sc on a
message m~ produced by some instance of the protocol, the judge can retrieve the unique
5-tuple (β, γ, b, c, z) with cc ~= from its database. Hence, the signature )~,~( sc on m~ is
produced by the instance with identifier z of the protocol. If the judge reveals the 4-tuple
(β, γ, c, z) to the signer, then the signer can retrieve the tuple (δ, z) through z from his
database, where c ≡ (F(β)F(δ) + F(γ))(F(β) − F(γ)F(δ))-1 (mod n). Thus, the signer can
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verify that the instance with identifier z of the protocol produces the signature )~,~( sc on
m~ . Therefore, if the judge reveals appropriate information to the signer, the link between
an instance of the signing protocol and the corresponding signature can be established by
the signer. On the other hand, given the signature )~,~( sc on m~ , the signer cannot find the
instance of the protocol which produces that signature without the help from the judge.
This is the fairness property.

4.4 Unforgeability

In the proposed scheme, the signer perturbs the message received from every user
before he signs it by using a random integer x. This is usually referred to as the ran-
domization property [6]. A randomized blind signature scheme can withstand chosen-text
attacks [32]. Our scheme and the blind signature schemes of [6, 13, 14, 16, 21] possess
the randomization property, while the blind signature scheme of [15] does not.

The underlying foundation of the proposed protocol in section 3 is Fan-Lei’s blind
signature scheme which was first presented in [9] and improved in [31]. Given a tuple (c,
m), the difficulty of deriving an integer s in *

nZ such that formula (5) is true depends on
the security of [31].

The comparisons of the properties between our scheme and the existing schemes of
[6, 13-16, 21] are summarized in Table 1. The mathematical foundation of our scheme
and [21] is QR [26]. The security of the schemes of [6, 13, 15, 16] depends on the RSA
assumption [17], while the schemes of [13, 14, 16] are based on discrete logarithms
(DL).

Table 1. Property comparisons.

Ours [6] [13]1 [14]2 [15] [16]2 [21]2

Foundation QR RSA RSA/DL/DL DL/DL RSA RSA/DL QR/QR
Randomization Yes Yes No/Yes/Yes Yes/Yes No Yes/Yes Yes/Yes
Unlinkability Yes Yes Yes/Yes/Yes Yes/Yes Yes Yes/Yes Yes/Yes

Fairness Yes No Yes/Yes/Yes No/No No No/No No/No

4.5 Performance

In the typical square-multiply algorithm [27] under a modulus n, the computation
time for a modular exponentiation operation is about 1.5|n| times that of a modular mul-
tiplication, where |n| denotes the bit length of n. In addition, an inverse computation takes
about the same amount of time as that of a modular exponentiation computation under a
common modulus [27]. Compared with the fair blind signature schemes of [13], if we
take a 1024-bit modulus n, our scheme reduces the computations for users by more than
99%. Table 2 summarizes the numbers of modular computations performed by a user of
our scheme and of the fair blind signature schemes of [13]. The comparisons of the stor-
age of signatures between our scheme and the schemes of [13] are also summarized in
Table 2.

In the proposed scheme, the signer is required to record (δ, z) for every instance of
the signing protocol and to perform one inverse, four QR tests, and one 4th root compu-
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tation to produce a signature. The signer performs complicated computations in the pro-
posed scheme and in each of the schemes in [13]. However, the signer usually pos-
sesses much more computation and storage capability than the user in most of the appli-
cations that are based on blind signatures, such as electronic cash and voting protocols.
Hence, to guarantee the quality of these ever-growing popular communication services, it
is more urgent to reduce the load for users than that for the signer.

Table 2. Performance comparisons for users.

Our scheme [13]1 [13]2 [13]3

Modular exponentiation computations 0 40 240 10
Inverse computations 0 1 0 1
Hashing computations 2 60 2 2
Modular multiplication computations 18 60 160 6
Computations reduced by: 99% 99% 99%
Number of integers in a signature 2 40 2 6
Signature size reduced by: 95% 0% 67%
1

The first scheme of [13].
2

The second scheme of [13].
3

The third scheme of [13].

5. CONCLUSIONS

In this paper we have proposed a user-efficient blind signature scheme. Our
scheme not only possesses the fairness property, but also minimizes the computation re-
quired of users. The proposed scheme is suitable for situations where hardware and
computation capability of users or customers is limited. With the help from a judge or a
government, it is possible to recover the link between a signature and the instance of the
signing protocol which produces that signature when the unlinkability property is abused.

Nevertheless, the proposed scheme requires an on-line judge which may cause a
bottleneck, and the judge must maintain a database for storing related information.
Therefore, in the future it also is necessary to design a user-efficient fair blind signature
protocol with an efficient judge.
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APPENDIX

Proof of theorem 1. By the Chinese remainder theorem [27], every integer w in *
nZ can

be represented by <w1, w2> where w1 = (w mod p1) and w2 = (w mod p2). For conven-
ience, sometimes <w1, w2> is denoted by <w>. For every <k> = <k1, k2> and <w> = <w1,
w2> in *

nZ , <kw mod n> = <k1w1 mod p1, k2w2 mod p2>, and <k-1 mod n> = 1
1
−< k mod p1,

.mod 2
1

2 >− pk For every <k1, k2> and <w1, w2> in *
nZ , <k1, k2> = <w1, w2> if and only if

k1 ≡ w1 (mod p1) and k2 ≡ w2 (mod p2). In addition, if w and k are QR’s in *
nZ , then the

integer (wk mod n) is also a QR in *
nZ [27].

Since both (α(x2 + 1) mod n) and (e2 mod n) are QR’s in *
nZ , we have

α(x2 + 1)e2

≡ α(x2 + 1)λ-2

≡ H(m)(u2 + v2)(x2 + 1)(b2(u − vx))-2

≡ b-4H(m)(u2 + v2)(x2 + 1)(u − vx)-2

≡ b-4H(m)((ux + v)2 + (u − vx)2)(u − vx)-2



USER EFFICIENT FAIR BLIND SIGNATURE SCHEME 57

≡ b-4H(m)((ux + v)2(u − vx)-2 + 1)
≡ b-4H(m)(((ux + v)(u − vx)-1)2 + 1)
≡ b-4H(m) ((b2b-2(u − vx)-1(ux + v))2 + 1)
≡ b-4H(m) ((b2e(ux + v))2 + 1)
≡ b-4H(m) (c2 + 1) (mod n)

is a QR in .*
nZ Since (b4 mod n) is a QR in *

nZ , the integer (H(m)(c2 + 1) mod n) is also a
QR in *

nZ . Let <d1, d2> be one of the 4th roots of the integer (H(m)(c2 + 1) mod n) in .*
nZ

Then the four 4th roots of (H(m)(c2 + 1) mod n) in *
nZ are ., 21 >±±< dd Thus, the four

4th roots of (b-4H(m)(c2 + 1) mod n) in *
nZ are ., 2

1
21

1
1 >±±< −− dbdb Since t4 ≡ b-4H(m)(c2

+ 1) (mod n), t belongs to },{ 2
1

21
1

1 >±±< −− dbdb and since s = (bt mod n), s is an element
in }.,{},{ 212

1
221

1
11 >±±<=>±±< −− dddbbdbb It follows that s is a 4th root of the inte-

ger (H(m)(c2 + 1) mod n) in .*
nZ Hence, formula (5) holds. �

Proof of theorem 2. If 1'''' ))(( −−+≡ iiiiii xvuvxuc (mod n) we have )1('' +≡ iii cxvu
(c − xi)

-1 (mod n). For every quadratic residue r in ,*
nZ we define 2

1

(r mod n) to be a square
root of r in ,*

nZ where 2
1

(r mod n) has four possible values in *
nZ because n is the product

of two distinct primes [26, 27]. By theorem 1, s4 ≡ H(m)(c2 + 1) (mod n).
If ))())((( 2'2'

iii vumH +≡α (mod n), then we have the following derivation:

).(mod)()1())1((

)(mod)()1)(1()(

)(mod)()1()(

)(mod))(1()(

)(mod))(1)(1())((

)(mod))()()1(())((

)(mod)1)()1(())((

)(mod))()()1())(((

)(mod))())(((

1222'

222242'

21242'

2242'

2222'

2222'

222'

2'222'

2'2'

2
1

nxcxxsv

nxcxxsv

nxcxsv

nxcxsv

nxcxcvmH

nxcxccxvmH

nxccxvmH

nvxccxvmH

nvumH

iiiii

iiiii

iiii

iiii

iiii

iiiii

iiii

iiiii

iii

−++α≡

−++α≡
−+α≡

−+≡α
−++≡α

−−++≡α
+−+≡α
+−+≡α

+≡α

−−

−−

−−

−

−

−

−

−

The integer )mod)1(( 2 nxii +α is a quadratic residues in ,*
nZ so that

2
1

))1((( 2 +α ii x mod n)
exists in ,*

nZ and both '' and ii vu have four different values in .*
nZ Thus, if 2' )( ii b≡λ

)( ''
iii xvu − (mod n), we have

).(mod))1(()(

)(mod))1(()(

)(mod)1()1())1(()(

)(mod))()1(()1())1(()(

)))(1)((()1())1(()(

)(mod)))(1(()(

2
1

2
1

2
1

2
1

2
1

222'

222'

212222'

12222'

112222'

'1'2'

nxsb

nxsb

nxxxsb

nxxccxxxsb

xxccxxcxxsb

nxvxccxvb

iiii

iiii

iiiiii

iiiiiiii

iiiiiiiii

iiiiiii

−

−

−−

−−

−−−

−

+αλ≡

+α≡λ

+++α≡λ

−−+++α≡λ

−−+−++α≡λ

−−+≡λ

(7)
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Since there must exist exactly one value among the four different values of +2((( ii xα
2
1

))1
−

mod n) such that ( 2
1

))1(( 22 −+αλ iii xs mod n) is a quadratic residue in *
nZ [27],

we can also derive four different values of *' in ni Zb from equation (7).���������������
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