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Abstract—In this paper, radial basis functions based neural net-
works (RBF-NN) are applied to the scattering of finite and infi-
nite nonlinearly loaded antenna arrays including mutual coupling
effects. The nodes in the input layer represent the parameters of
antenna arrays or magnitudes of incident fields. There exist some
nodes in the hidden layer for nonlinear mapping. The nodes in the
output layer represent the magnitude of voltage at the input termi-
nals of antennas at different harmonic frequencies. Numerical ex-
amples show that the scattering responses predicted by the trained
RBF-NN models are very consistent with those calculated from the
harmonic balance techniques. The trained RBF-NN models for the
scattering of nonlinearly loaded antenna arrays are very efficient
and the array mutual coupling effects are included.

Index Terms—Loaded antenna, mutual coupling, neural net-
works (NN).

1. INTRODUCTION

ONLINEAR lumped loads are often attached to the input
terminals of antennas to yield the desired scattering
characteristics. There have been many studies [1]-[9] for the
analyses of a single nonlinearly loaded antenna element, in-
cluding the time domain and the frequency domain methods.
In [10]-[13], the analyses of a single nonlinearly loaded an-
tenna are extended to the case of nonlinearly loaded antenna
arrays. However, the treatments of nonlinearly loaded antenna
arrays in [10]-[13] are time consuming due to the nonlinear
characteristics of the lumped loads as well as the array mutual
coupling effects. In practical applications, it is inefficient to
directly apply the theoretical analyses of a single nonlinearly
loaded antenna to the case of nonlinearly loaded antenna arrays.
This motivates us to establish neural networks (NN) models for
the scattering of nonlinearly loaded antenna arrays including
mutual coupling effects. Although the training work of a neural
network model is usually time consuming, it can be completed
in advance.
Neural networks [14] have widespread applications in elec-
tromagnetics [15], [16]. According to [16], there are four main
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situations in which NN are good candidates for use in electro-
magnetics: 1) when the closed-form solution does not exist, and
trial-and-error methods are the main approaches to tackling the
problem at hand; 2) when an application requires real-time per-
formance; 3) when faster convergence rates are required in the
optimization of large systems; and 4) when enough measured
data exist to train a neural network for prediction purpose, espe-
cially when no analytical tools exist. Obviously, the analysis of
a nonlinearly loaded antenna array meets the above situations.
However, there is still no research involving applications of NN
in nonlinearly loaded antenna arrays. To our knowledge, this
paper is the first study to apply NN to the scattering of nonlin-
early loaded antenna arrays including mutual coupling effects.

In this paper, the radial basis functions based NN (RBF-NN)
[14], [16] are applied to the scattering of finite and infinite non-
linearly loaded antenna arrays including mutual coupling ef-
fects. Currently, there is no closed-form solution for the scat-
tering response of a nonlinearly loaded antenna array. Since
NN are inherently nonlinear mapping models between input and
output vectors, they can then be trained to predict the scattering
responses of nonlinearly loaded antenna arrays. In our RBF-NN
models, the nodes in the input layer represent the parameters
of antenna arrays or magnitudes of incident fields. There exist
some nodes in the hidden layer for nonlinear mapping. The
nodes in the output layer represent the magnitude of voltage at
the input terminals of antennas at different harmonic frequen-
cies. Numerical examples show that the results predicted by the
trained NN are in good agreement with those using the harmonic
balance (HB) technique. Neural networks are very powerful.
With the use of NN, the prediction for the scattering response of
a nonlinearly loaded antenna array becomes very efficient and
accurate, and the array mutual coupling effect is included.

In Section II, the HB analyses for nonlinearly loaded antenna
arrays are investigated. In Section III, the RBF-NN models for
nonlinearly loaded antenna arrays including mutual coupling ef-
fects are given. Numerical examples are shown in Section IV.
Finally, the conclusion is given in Section V.

II. HB TECHNIQUES FOR NONLINEARLY LOADED
ANTENNA ARRAYS

The HB techniques for the analyses of a single nonlinearly
loaded antenna have been investigated in [7], and are extended
to the case of nonlinearly loaded antenna arrays in this section.

Consider an N-element nonlinearly loaded antenna array il-
luminated by a plane wave FE;, as shown in Fig. 1(a). Similar to
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Fig. 1. (a) Schematic diagram of a finite nonlinearly loaded antenna array and
(b) its equivalent microwave circuit.

the treatment in [10]-[13], the equivalent circuit of Fig. 1(a) can
be expressed as an N -port network circuit, as shown in Fig. 1(b).
In Fig. 1(b), see (1) shown at the bottom of the page, are voltages
at the input terminals of the [V antenna elements at different P
harmonic frequencies, see (2) shown at the bottom of the page,
are the short-circuit currents at antenna terminals due to the in-
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cident wave, see (3) shown at the bottom of the page, are the
currents of the nonlinear load, and

Y=|: - “
7Nl 7NN

is the matrix of antenna input admittances at different harmonic
frequencies. The Yij in (4) denotes the mutual admittances be-
tween the ith and the jth antenna elements at different har-
monics. The circuit parameters of Y and I, in Fig. 1(b) can
be obtained from the moment methods [17]. It should be noted
that the mutual coupling effects of antenna arrays have been in-
cluded in Y [10]-[13].
The circuit equation is given as

YV, =T+ Df(TV,) =0 ®)

where the f(-) is the I-V characteristics of the nonlinear load.
The D and T in (5) are the transformation matrix between time
domain and frequency domain which are defined as

() =TV, ©
TsN = ESN(t)

The HB technique [18] is then applied to find solution of V,
in (5). The resulting scattering responses can then be obtained
from V.

As a two-dimensional (2-D) infinite nonlinearly loaded an-
tenna array illuminated by a plane wave E; is considered, the
analysis is similar to that given in [11]-[13]. The equivalent cir-
cuit and the analysis are just the same as the single element case
except that the Green’s function G of a single antenna element
is replaced by the 2-D infinite structure Green’s function G, in
calculating the equivalent circuit parameters. The formulations
of G are given in [11]-[13] in detail. Note that the array mu-
tual coupling effects are included in G ..

In the above formulations, analyses of nonlinearly loaded
antenna arrays are transformed into problems of microwave
circuits that can be easily solved by the HB techniques and
the array mutual coupling effects are included. In general, the

VS = [VSI.O ‘/;1.1 ‘/YSI.Q VSI_')P71 Vsl 2P gttt b VSN.O VSN.I ‘/vSN.Z ‘/SN.QPfl ‘/vSN )P]T (1)
Tog=1[0 Ieq,, —Ieq- 0 0 ;-oveveens 00 Jeqe, —lequos 0 0T )

7SN
= vy Liny, ILng, LNy py Lsnynp 3oeeeeeees i Iinyoe Isnas  ILshas IiNyapr Lonyap]®
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Fig. 2. Schematic diagram of a RBF-NN model.

numerical computations are complex since the parameters of
the equivalent microwave circuit are obtained from moment
methods. Due to the fast prediction characteristics of NN after
they are trained in advance, the RBF-NN models are applied to
this problem in the following section.

III. RBF-NN MODELS FOR NONLINEARLY LOADED
ANTENNA ARRAYS

In general, the HB technique is efficient for the analyses of
simple microwave circuits. However, in practical applications, it
is not efficient to directly apply the HB technique to the analyses
of nonlinearly loaded antenna arrays due to the nonlinear char-
acteristics of the lumped loads as well as the array mutual cou-
pling effects. This motivates us to apply NN to the scattering
of nonlinearly loaded antenna arrays including mutual coupling
effects. Although the training work of a neural network model
is usually time consuming, it can be completed in advance. The
trained neural network models for the scattering of nonlinear
loaded antenna arrays are very efficient and the array mutual
coupling effects are included.

The models used in this study are the RBF-NN [14], [16]. As
shown in Fig. 2, the output of the RBF-NN in the pth iteration
loop can be expressed as

Yi(p) = wio + wi191(T(p)) + wizg2(Z(p))
ERREEE +wiz97(T(p)) (7)

fori =1,2,......,I. The functions g;(-), j = 1,2,......,J
in (7) represent the nonlinear transformations of input variables.
In general, they are multivariate Gaussian functions defined as

5@ =en{-3@-u% -} ®

where U is the mean vector and Ej is the autocovariance matrix
of the multivariate Gaussian function corresponding to hidden
node j.

In this paper, the nodes in the input layer represent the param-
eters of antenna arrays or magnitudes of incident fields. There
exist some nodes in the hidden layer for nonlinear mapping. The
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nodes in the output layer represent the magnitude of voltage
at the input terminals of antennas at different harmonic fre-
quencies. Initially, the RBF-NN model is trained by data sets
obtained from the HB technique described in Section II. The
learning strategy is given in detail in [14], [16]. After neural
network models are trained, they can predict the scattering re-
sponses of nonlinearly loaded antenna arrays including mutual
coupling effects.

IV. NUMERICAL EXAMPLES

In this section, four numerical examples are given to verify
the RBF-NN models described above. Without loss of gener-
ality, the dipole antennas are considered for simplicity since
there is no limitation on the types of antennas. The incident
wave has strength F/; = 1.0 V/m and propagates normally to
the dipole antenna array. In all the four examples, the -V char-
acteristics of the lumped load at the input terminal of each dipole
is described as

i= L 3
1= 75’0 + 4v°. )

In the first example, a single element of nonlinearly loaded
dipole antenna is considered. The dipole has a length-to-diam-
eter ratio 74.2. The number of nodes in the input layer of the
RBF-NN in Fig. 2 is set to be K = 1 which represents the ratio
of dipole length to wavelength (I /). The number of nodes in
the hidden layer of the RBF-NN in Fig. 2 is settobe J = 6
which is for the use of nonlinear mapping. The number of nodes
in the output layer of the RBF-NN in Fig. 2 is settobe I = 3
which represents the magnitude of voltage at the antenna input
terminal at harmonic frequencies w, 2w, and 3w, where w is the
angular frequency of the incident wave. In the learning phase,
101 training data sets calculated from the HB technique, as de-
scribed in Section II, are used to train the RBF-NN model. The
ratios of L/ for the training data sets are randomly selected
in the interval of [0.3, 1.3]. After the RBF-NN is trained, it can
predict the magnitude of voltage at the antenna input terminal
at harmonic frequencies w, 2w, and 3w, for different values of
L/\. In the predicting phase, there are also another 101 pre-
diction points (different from the training points) with the ra-
tios of L/ uniformly distributed in the interval of [0.3, 1.3].
Fig. 3 shows the magnitude of voltage at the input terminal of
a single nonlinearly loaded antenna for different dipole lengths
at harmonic frequencies w, 2w, and 3w predicted by the neural
network model. For comparison, the results calculated from the
HB techniques are also given in Fig. 3. It shows that they are in
good agreement. In addition, as we convert the antenna terminal
voltages in Fig. 3 into RCS (radar cross section), the results are
found to be consistent with those given in [13] (genetic algo-
rithm based analyses).

In the second example of finite antenna array, a two-element
parallel nonlinearly loaded dipoles array is considered. Each el-
ement is the same as that given in the first example. The dipole
length is chosen as 0.467 \. Due to the symmetry of the two
array elements, the induced voltage and the current distribu-
tion of each dipole are the same. The neural network model
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Fig. 3.
and 3w. (NN models; HB techniques).

is then the same as that given in the first example except that
the input node represents the spacing of array elements. The
RBF-NN is trained by 101 data sets calculated from the har-
monic balance technique, as described in Section II. The ele-
ment spacing of these training data sets is randomly selected
in the interval of [0.3)\, 1.3\]. After the neural network model
is trained, it can predict the scattering responses for different
values of array element spacing. In the predicting phase, there
are also 101 prediction points (different from the training points)
with the element spacing uniformly distributed in the interval
of [0.3A,1.3)\]. Fig. 4 shows the magnitude of voltage at the
input terminal of each dipole antenna for different array element
spacing at harmonic frequencies w, 2w, and 3w predicted by the
neural network model. For comparison, the results calculated
from the harmonic balance techniques are also given in Fig. 4.
It shows that they are in good agreement. These results are also
consistent with those given in [13] which exploits the genetic
algorithm to compute the same problem with element spacing
of 0.75 A.

In the third example of infinite antenna array, a 2-D rectan-
gular infinite array structure lying in the z-y plane is considered.
Each antenna element is the same as that given in the second
example. As described in [11]-[13], the induced voltage and
the current distribution of each dipole in an infinite array struc-
ture are the same. For simplicity, the array element spacing in
the z-direction and in the g-direction are assumed to be equal.
Therefore, the neural network model is the same as that given
in the second example. The RBF-NN is trained by 101 data sets
calculated from harmonic balance techniques of a single non-
linearly loaded antenna element by using the infinite periodic
structure Green’s function, in which Poisson sum technique is

----+---- 1o (HB)
———— 1o (NN)
----3%---- 20 (HB)
——a—— 26 (NN)
----3¢---- 3¢ (HB)
———o—— 30/(NN)

0.8 0.9 1 1.1 1.2 1.3

Magnitude of voltage at the input terminal of a single nonlinearly loaded antenna for different dipole length at different harmonic frequencies of 1w, 2w,

applied and the mutual coupling effects are included in the re-
sulting Green’s function, as those given in [11]-[13]. The gen-
eration of the training data sets and the prediction points is sim-
ilar to that given in the previous examples. Fig. 5 shows the
magnitude of voltage at the input terminal of each dipole an-
tenna for different array element spacing at harmonic frequen-
cies w, 2w, and 3w predicted by the neural network model. For
comparison, the results calculated from the harmonic balance
techniques together with the infinite periodic structure Green’s
functions are also given in Fig. 5. It shows that they are in good
agreement. These results are also consistent with those given in
[13] which exploits the genetic algorithm to compute the same
problem with element spacing of 0.75 A.

It is very well known that nonlinear problems are very
sensitive to the signal level. As different magnitudes of incident
fields in the first example (a single element of nonlinearly
loaded dipole antenna) are considered, an additional node in
the input layer is required to account for field magnitudes. In
the learning phase, 101 x 91 = 9191 training data sets, i.e.,
101 sets of L/ randomly selected in the interval of [0.3, 1.3]
and 91 sets of E; randomly selected in the interval of [0.1, 1.0],
calculated from the harmonic balance techniques are used to
train the RBF-NN model. In the predicting phase, there are also
101 x 91 = 9191 prediction points (different from the training
points) with uniformly distributed dipole lengths and uniformly
distributed incident field strengths. Fig. 6 shows the magnitude
of voltage at the input terminal of a single nonlinearly loaded
antenna for different dipole lengths and different magnitudes of
incident fields at the fundamental frequency using NN models
and the harmonic balance techniques. It shows that they are in
good agreement.
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Fig. 4. Magnitude of voltage at each input terminal of a nonlinearly loaded antenna array with two parallel dipoles for different array element spacing at different
harmonic frequencies of 1w, 2w, and 3w. (NN models; HB techniques).

0.18
4 ----4+---- 10 (HB) L
016 ——— lo (NN) .
-===%---- 20 (HB)
1T —=— 200N
014 4 ----%---- 30 (HB)

——S—— 3o (NN)

0.12

0.1

0.08

0.06

magnitude of voltage at antenna terminal (volt)

0.04

0.02

0.6 0.7 0.8 0.9 1 1.1 12 1.3 14 1.5 1.6
element spacing of antenna array (1)

Fig. 5. Magnitude of voltage at each input terminal of a nonlinearly loaded antenna array with a 2-D rectangular infinite array structure lying in the -y plane for
different array element spacing at different harmonic frequencies of 1w, 2w, and 3w. (NN models; HB techniques).

The above numerical computations in this study are per-
formed using a PC with Intel Pentium 2 GHz CPU. The time
required to producing a training data set using the formulations
of Section Il is about 1.5 s. It should be noted that these training
data sets can also be obtained from measurement in practical

engineering applications. In dealing with the RBF-NN, the
learning rate is set to be 0.1 and the maximum learning loops
are set to be 40000. All the input and output variables are nor-
malized into values in the range of [0.0, 1.0] during the neural
computing. The time required to train the neural network is
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Fig. 6. Magnitude of voltage at the input terminal of a single nonlinearly loaded antenna for different dipole lengths (L /A = 0.3 to 1.3) and different magnitudes
of incident fields (E; = 0.1 to 1.0 V/m) at the fundamental harmonic frequency. (NN models; HB techniques).

about 20 s for the first, the second and the third examples, and is
about 34 min for the fourth example. Although the training time
increases with the size of NN, it can be completed in advance.
In fact, the main advantage of using NN in electromagnetics
is the rapidity in the prediction phase. It is almost real-time in
the prediction phase of NN. In addition, the prediction error for
every numerical example given above is within 1% which is
accurate from the engineering point of view.

The nonlinear phenomena of scattering responses are shown
in Figs. 3-5. As described in [13], due to the linear term of f(-)
in (9), the voltage component at fundamental frequency w is
much greater than those of the higher order mixing frequen-
cies. In addition, the voltage component at mixing frequency
3w is slightly greater than that at mixing frequencies 2w. This
is due to the effect of the cubic term of f(-) in (9). It should be
noted that there exist no limitation on the /-V characteristics for
nonlinear lumped loads of each antenna element. In this study,
the nonlinear characteristics for each lumped load is assumed to
have the form as (9) which is the same as that used in [13] so
that the results of [13] can be used for comparison.

In order to show the performance of the RBF-NN models
in this study, different neural network architectures trained
by various learning algorithms are compared in this section.
For simplicity, the first numerical example described above
is considered. Fig. 7 shows the average prediction errors
of prediction data sets at different harmonic frequencies by
using RBF-NN, and multilayered perceptron neural network
(MLP-NN) architectures trained by the Levenberg—Marquardt
method, the resilient back-propagation method, and the gra-
dient descent method. It should be noted that the prediction
error in Fig. 7 is defined as the absolute value of the difference

LE-04

Hlo B20 O30

LE-05

Average prediction errors

LE-06

LE-07

RBF MLP-LM MLP-RP MLP-GD

NN architectures or training algorithms

Fig. 7. Average prediction errors of prediction data sets at different harmonic
frequencies by using RBF-NN (denoted as “RBF”), and MLP-NN architectures
trained by the Levenberg—Marquardt method (denoted as “MLP-LM”), the
resilient back-propagation method (denoted as “MLP-RP”), and the gradient
descent method (denoted as “MLP-GD”).

between the predicted output and the desired output. All the
MLP-NN architectures are with the same size, learning rate,
and maximum training loops as those given for the RBF-NN
model described above. From Fig. 7, it shows that the results
predicted by RBF-NN are with smaller average errors than
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other neural network models. This convinces us that the use
of RBF-NN architecture is suitable in problems of nonlinearly
loaded antennas.

V. CONCLUSION

In this paper, the RBF-NN models are applied to predict the
scattering responses of finite and infinite nonlinearly loaded
antenna arrays at different harmonic frequencies. Since the
RBF-NN model is inherently one type of the general regres-
sion [19], it can predict new results nonlinearly from some
training data sets. With the use of NN, the complex numerical
computation for the analysis of a nonlinearly loaded antenna
array can be replaced by a very simple algebraic operation as
the NN are well trained. Numerical examples show that the
results predicted by the RBF-NN models are consistent with
those calculated from the harmonic balance techniques in [7]
and genetic algorithms based analyses in [13]. Although the
training work of a RBF-NN model is usually time consuming,
it can be completed in advance. The trained RBF-NN models
for predicting the scattering responses of nonlinearly loaded
antenna arrays including mutual coupling effects are very
efficient and thus useful in the applications of antenna design,
remote sensing, and wireless communication.
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