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Two Trellis Coding Schemes for Large Free Distances

Mao-Chao Lin Member, IEEEYeong-Luh Ueng, and Jia-Yin Wang

Abstract—Atrellis code encoded by using the encoder of aconvo- is a signal point of a signal constellation (such @PSK,
lutional code C with a short constraint length followed by an addi- A/ = 2™), then the resultant trellis code is a TCM. The in-
tional processing unitis equivalent to a trellis code with alarge con- rgduction of the multilevel delay processor increases the con-
straint length. In 1993, Hellstern proposed a trellis coding scheme straint length of the trellis code. By properly designing the delay
for which the processing unit consists of a delay processor and a . : .
sighal mapper. With Hellstern’s scheme, trellis codes with large free progessor and the S'gn.al mapper, a Iqrge free distance for the
distances can be constructed. In this paper, we propose two trellis trellis code can be achieved. The trellis code can be subopti-
coding schemes. For the first scheme, the processing unit is com-mally decoded by using the trellis &f and some previously
posed of multiple pairs of delay processors and signal mappers. For recovered information. In this way, good error performance can
the second scheme, the processing unit is composed of a convolupe achieved with moderate decoding complexity.
tional processor and a signal mapper, where a convolutional pro- Hellstern's scheme was generalized in [3] by using a more

cessor is a rate 1 convolutional code. The trellis code constructed ) L
from each of the proposed schemes can be suboptimally decode eneral delay processor. With the generalization in [3], we have

by using the trellis of the convolutional codeC' with some feedback More flexibility of controlling the decoding delay and some-
information. Either of the proposed schemes can produce a trellis times have better error performance for low signal-to-noise ratio
code that has a larger bound on free distance and better error per- conditions.
formance as compared to the trellis code constructed from Hell- In this paper, we propose two trellis coding schemes. Using
stern’s scheme based on the same convolutional code the proposed schemes, codes with very large free distances can
Index Terms—Convolutional codes, trellis-coded modulation, be constructed. In Section II, we briefly review the trellis coding
trellis codes. scheme proposed in [1] and [3]. In Section I, we propose the
first coding scheme, for which the encoder of a convolutional
codeC is followed by multiple pairs of delay processors and
signal mappers. In Section 1V, we propose the second trellis
N 1993, Hellstern [1] proposed a coding scheme to coBoding scheme, for which the encoder of a convolutional code
struct trellis-coded modulation (TCM) with large free dis¢ is followed by a convolutional processor and a signal mapper,
tances. The encoding of Hellstern’s scheme is implemented Riere a convolutional processor is a rate 1 convolutional code.
inserting a multilevel delay processor between the convolutiorgéth the proposed schemes can be suboptimally decoded by
encodefC’ and the signal mapper required by the encoding feising the trellis ofC. Simulation for various trellis codes has
Ungerboeck’s TCM [2]. Hellstern’s scheme can also be usedfigen implemented without using interleaving and iterative
construct binary convolutional codes with large free distancefecoding. The superiority of the proposed schemes over Hell-
In this paper, we classify both binary convolutional codes argern’s scheme can be observed from the calculated lower
TCMastrellis codes. Suppose thaft), va(t), . .., vm(t) form  pounds on free distance for examples provided in Sections ll—IV
the m-bit output of the convolutional encoder at tfth time  and simulation results presented in Section V. Comparison of
unit. Then, the bib;(¢) (the code bit for theth coding level), the proposed trellis codes with the conventional binary convolu-
1 < j < m, is delayed byr; = (m — j)A time units before tional code, Ungerboeck’s TCM, and turbo code will be given in

it is fed into the signal mapper, whereis a delay constant. Section V. Finally, concluding remarks are given in Section VI.
If for each time unit the output of the signal mapper is a bi-

narym-tuple, then the resultant trellis code is a binary convolu-
tional code. If for each time unit the output of the signal mapper

I. INTRODUCTION

. TRELLIS CODING USING A DELAY PROCESSOR AND A
SIGNAL MAPPER

) . . e In this section, we briefly review the design of trellis codes
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Fig. 1. Encoding structure of trellis codes in [1] and [3].

wherer; Z;’;j Xiv Ay, = 0,and); > 0forl <4 < m—

Example 1: Letr = 2, m = 3 andf2 be the 8-PSK signal set

1. The sequenceg is then fed into the signal mapper to yield2] with {A;, Az, Az} = {0.586, 2, 4}. The resultant code

an output symbol sequenge= {..., 2(0), z(1), ...}, where
z(t) = w(s(t)) € N andQ is a signal space consisting &t
signal points. The signal spa€ecan be a signal constellation
such as MPSKA{ = 2™), or a collection of binaryn-tuples,
such as{0, 1}™.

In [1], constant delays are used in the delay processor
in [3] delays of various values are used. For simplification

is a TCM for which its coding rate is 2 bits per 8-PSK signal
point. Letr be the number of memory bits in the encodetof
;Consider the following two cases: a)= 2 and b)r = 4. The
generator matrices are, respectively, given by

11 1 47 3
<,70> and GE_<034

5 >

and Gg =
of

presentation, we only consider constant delays here. Hence,if@m (4), we can calculate the squared free distabigg, of

havel; = Aforl < j < m—1landr = (m— j)A
for1 < j < m. We can construct am-level partition chain
Qo/Q/Qa/ - - /8, such that every signal pointin 2 = Qg
corresponds to a unique binamy-tuple s = (s1, s2, ..., $m),
i.e.,z = w(8), wherez € Q ands;, 1 < ¢ < m, is the coset

this TCM. D3.__is atleast 6.34 ik > 11 for case a) and at least

8.93 if A > 23 for case b). O
Example 2:Letr = 2, m = 4, andQ = {1, 0}* with

the mapping described in (2) anfiA;, As, Az, Ay}

{1, 2, 2, 4}. The resultant code is a rate 1/2 convolutional

label of ;1 /Q; [1], [4]. Let A(z, 2') denote a distance mea-code. Consider the following two caseszeg- 2 and b)r = 4.

sure between signal points 2’ € . If Q is a signal constella-

tion, thenA(z, 2') is the squared Euclidean distance between
andz’. If @ = {0, 1}, thenA(z, »") is the Hamming distance

between the binary representationg @fndz’. We defineA; to
be the least one of all the possitidw($), w(§)), wherew(s)
andw(8’) are in an arbitrary coset 6f;_,, w(5) is in a coset of

Q; labeled bys; = 1 andw(§’) is in a coset of2, labeled by

s = 0. If Qis the 8-PSK signal constellation as given in [2]

then{A1, Ay, Az} = {0.586, 2, 4}. If @ = {0, 1}"* and the
mappingw: @ — Q is linear, thenv can be represented by a
mxm matrix K. Thatmeans = w(38) = $K. Itcan be checked
that{Aq, Ao, Az, Ay} = {1, 2, 2, 4},if @ = {0, 1}* and

0 0 0 1

01 01
K= 0 011 (2)
1 1 11

The generator matrices are, respectively, given by

03 3 2 02 7 7
GE_<3321> and GE_<7F72>'

o]
The free distancédy,.. is at least 12 if\ > 5 for case a) and at
least 16 ifA > 9 for case b). O
A suboptimum decoding which only needs the trelli€ofan

be designed [1], [3]. Lej(¢) be the received symbol which is the
possibly error-corrupted form af(¢). For thetth time unit, we
rcalculate the bit metric fos; () based on the receivedt + )
and the previously recovered code hit(t — (j — i)A), 1 <

¢ < j. Then, the bit metrics fov,(¢), ..., v, (¢) are summed
up to form the branch metric far(¢). With the branch metrics
for all the possibléi(t — ¢), ¢ > 0, the Viterbi decoder of® can
recoveri(t — A+ 1) andé(t — A + 1), where) is also used as
the truncation length of decoding. The decoding delay.ls- 1
time units.

Let z andz’ be the output symbol sequences associated with

~7

v ={...,90), o(1), ...} and? = {..., ¥(0), o'(1), ...},
respectively. Assume(t) = ¢'(¢) for t < 0 ands(0) # '(0).
The pairwise distance measure between sequenaes?’ is
lower bounded [3] by
m A—1
Arp((@, El)v A Q) =

(v; () ®v5(0)A;. (3)

j=1t=0

Define Ay as the free distance of the trellis code (binary corg
volutional code) ifQ = {1, 0}, and as the squared free dis-

tance of the trellis code (TCM) if2 is a signal constellation.
Then, we have the following theorem [3].
Theorem 1: For the trellis code shown in Fig. 1 wity = A,
1 <7< m—1,its Agee iS lower bounded by
m A—1

D> uih)A,

j=1t=0

ALB(C(v )‘7 AJ) = (4)

min
TEC, ©(0)#£0

where0 is the zeran-tuple. O

Authorized licensed use limited to: National Taiwan University. Downloaded on January

IIl. TRELLIS CODING USING MULTIPLE PAIRS OF DELAY
PROCESSORS ANISIGNAL MAPPERS

As indicated in [1] and [3], we observe that a delay processor
and a signal mapper following the encoder of a convolutional
codeC can result in a convolutional cod®’ of a large free
distance. It is natural to consider once again applying a delay
rocessor and a signal mapper to the output of the convolutional
‘odeC”’ to achieve a possibly larger free distance.

Consider a trellis code with its encoder given in Fig. 2. The
input message sequenaés first converted to a sequenc€”
through an encoder of a convolutional ca@le The sequence
71 is then repeatedly processed Bypairs of delay proces-
sors (denoted a@V, ..., Q1) respectively, in Fig. 2) and
signal mappers with mapping functionswf?, ..., W™ re-
spectively, to produce the output symbol sequendeet7¢9 =
(..., #9(0), ¥9(1), ...) be the input sequence f@* and
50 = (..., 39(0), 59(1), ...) be the output sequence for

22,2009 at 01:03 from IEEE Xplore. Restrictions apply.
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Fig. 2. Encoding of a trellis code using multiple pairs of delay processors and signal mappers.

Q©, wherel < ¢ < L. The/th signal mapper maps the binary

Theorem 2: If A+ > mA© for 1 < ¢ < L, thenAge. Of

m-tuple 30 (¢) = (s19(8), ..., s (#) to the trellis code shown in Fig. 2 is lower bounded by
S 1y — (O (50 AL -1
PT() =wV(8(¢), forl<i< L. (5) Arp (C,Ml),&](.l)) = i > d<1>( W ¢ )
T e, sW(0)£0 <=
Forl < ¢ < L, 901 = (091), ..., v¥(#)) is a binary - ((ijﬁ =0
m-tuple, Whilev(L"'l)() = 2(t) = w(L)(s(L)( t) € Qis _ At (1) (1)
the output symbol which may be a binamy-tuple or a signal = E(UCCI%I(I})(O#(A) Z Z“j o, (11)
’ t=0 j=1

point of a signal constellation. The relation betweééﬁ(t
ol )( t) is given by

) and

Sg@) () :U]@ (t —(m—j) A(z))
:vEZ)(t—T;Z)), forl<j<m;1<f<L
(6)
wherer( ) = (m — /)A\®. Suppose that the mapping function

WO is Imear and invertible fot < ¢ < L — 1. Thenw(® can
be represented by an x m nonsingular matrix<‘©, That is

()

The mapping function(™) can also be represented by a non-
singular matrixk‘© if Q@ = {0, 1} andw!™ is linear and
invertible.

Let C™) be the collection of") resultant from all the pos-
siblew. By Theorem 1Ay of the trellis code shown in Fig. 2
is lower bounded by

D () = 5O (KO, forl</<L—-1.

ALB(O(L)a )\(L)7 AJ)

m A1
_ (T)
= min 8
B eC) i <L>(o)¢oz:1 fz% ®

It is difficult to calculate the lower bound of th&;,.. based

on (8). Hence, we will resort to another approach to calculate the

lower bound. In the following, we will assumé® > m (1
for2<¢< L. LetéﬁL) =A;, 1< j < m. Define

a9 (59) = z": A9,
j=1

forl1</¢< L 9)

and

6](»[) = min AV (w(é) (§(Z))) , forl</<L-1
(10)
where the minimization is over all the possibié” with

59 # 0ands{” = 0fori < j. With the initially given

{65"), ey 6,(,’)} we can recurswelycalcula{é“) .. 6“)}
fore=L-1,.
theorem.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22,

O
For arbitrarily chosen nonsingular matric&$9, 1 < ¢ <

L — 1, itis not necessarily true théﬁl) > Aj forall 5. In this
paper, we use the following design procedure to chdose.

Step 1) Letl = {1, 2, ..., m} be the index set. Suppose

(L) _ L) _ (L) (L) _
that 5 = §8), = ... = 6B, < 6B =
sHo == sH < s = 5@ = ..
12 13—

L L L L L
= 5§P21 < 6§p> =5, == 5 )< 5 =
655](1 =...= 68 whereJ = {Ll, o L,I} c1I

andl =4 < iy < --- < iy < m. For a nonzero
m-tuple, v = (v1, ..., vm), define R(¢) to be the
largest index such that,; # 0. Let C](fnjl) be the
code generated by the last & j+ 1) rows of a non-
singular matrixK(“~1), We choosek (“*~1) such
thata) fori, < j <i,y1,p=1,2,..., ¢

min
pectmY 220

whered,, € J andigy; =m + 1; b) there is at least
onej such that the minimum Hamming distance of

CJ(Lm Y is at least 2. Note that (9) and (210) imply
(L-1) _ o, (D)
6; 60(1511{1)7 ) ; v 6, (12)

From condition 1), we havel“ Y > 5 for 1 <
j<mands® P < 6857 < 685D with the
additional condition 2), we further ha\/i§L_1) >
6]@) for at least ong.

Step 2) Choos& (), ¢ = L — 2, ..., 1, in a way similar
to Step 1). Then we havéy) > 6](”1) for £ =
L—-2,...,1,andl < j < m. Hences{" > A;
fori1<j<m and6§1) > A; for at least ong.

Step 3) Foragiver, we compute the lower bound ¥, .

according to (11). This can be done in a way similar

to the computation of the free distance@fexcept
that the weighting factoré(l) R 6,(,11)_1 andsS
must be considered.

, 1. From Appendix A, we have the followmg Using the above procedure, we can construct trellis codes with
large free distances.

2009 at 01:03 from IEEE Xplore. Restrictions apply.
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Example 3: Let C be a rate 2/3 binary convolutional code] > A and1 < ¢ < L. The suboptimum decoding can be

L = 2 and$2 be the 8-PSK signal set [2] withA{, Ao, Az} =
{0.586, 2, 4}. Choose

100
KO=1[11 0].
11 1

The resultant code is a TCM for which its coding rate is 2

bits per 8-PSK signal point. We haves'?, 62, 6}
{0.586, 2, 4}. From (12), we have{éf‘), 651), 6§1)}

{0.586, 2.586, 6.586}. We consider the following two cases:
2 and b)r = 4. The associated generator matrices
are the same as those used in Example 1. From (11), we can

a)r =
calculate the squared free distardeg_. of this TCM. For case
a), D2 __is at least 7.52 i) > 12 andA(® > 36. For case

[ree
b), D?__is atleast 10.69 iA™") > 25 and\® > 75. O

free

Example 4: Let C be a rate 2/4 binary convolutional code,

L =2andQ = {0, 1}*. Let K® be the same as the mati
givenin (2). Then{Ay, As, Az, Ay} ={1, 2, 2, 4}. Choose

KO —

==

0 0
0 0
1 0
1 1

= O = O

1

implemented as follows.
Stepl) Fo¥ =1L, ..., 1, weuse (13) to calculaue](»é)(t +
7Oy for vi7(t + (). Note that forl < p < 4,
s (47 +0©) = o (t— (j—p)AO +4(O) has
already been recovered singe— p)A(© > X1 4+
.
Step 2) Usingugl)(t) = u§1)(t +9W), 5 =1,..., m, we
calculate the branch metrics for all the possi#e),
which are fed to the Viterbi decoder 6fto recover
a(t — AV +1) ando® (£ — XD +1), where® is
used as the truncation length of the Viterbi decoder
of C.
Step 3) The recoveretf)(t — AV + 1) is used to recover
(¢t — AL + 1) which is then used to recover
2O — AU 4 1) and 8Ot — A 4 1) for £ =
2, ..., L. Then we increaseby 1 and go to step 1.
The error performance of the suboptimum decoding can be
further improved by using SOVA [5], since the assumption
of correct recovery of“(t — 1) is not always true. Let the
log-likelihood-ratio obtained by SOVA fosJ@ (t) be denoted

by A(sEé)(t)). Then, the parametqn(é)(t) given in (13) is

J

The resultant code is a rate 1/2 bhinary convolutional codeodified to be (14), shown at the bottom of the next page,

We have{s\?, s, 62, 6P} = {1, 2, 2, 4}. From (12),

we have{s"), 6V s, sV = {1, 3, 3, 9}. Consider the

whereB; = {w(z)(sgé)(t + T](é)), ceey sjé_)l(t + T](é)), i, Tiq1,

cam)|s i) €0, 1) for 1 < g < jz, € {0, 1}

following two cases: ay = 2 and b)r = 4. The associated for j < ¢ < m} for i = 0, 1. The total decoding delay is
generator matrices are the same as those used in Examplg(®2. + »(E+1) _ 1 time units. IfA© = mA¢=D for ¢ > 2,
The free distancéy.. of the constructed binary trellis code isthen A\(V) + 5E+D) — 1 = ppLA® — 1,

at least 17 iV > 5 and\® > 20 for case a) and is at least

24 if X > 10 and\(® > 40 for case b). O

A suboptimum decoding for the trellis code can be imple-
mented as follows. Ldty—||? represent the squared Euclidean

distance between symbgland symbolz. If % or z is a binary
m-tuple, then a bit “0” must be replaced by1” and a bit “1”

remains to be “1.” Leg(t) = *(L+1(¢) be the received symbol

that is the possibly error-corrupted form gft) = o(Z+D(¢).
For{=1,...,1,1< j < m, define the log-likelihood-ratio
[1] for bit v (t) by

B P (ﬁ*(é-i—l) (t 1 T]@> ‘U§Z) (t) = 1)

() =
J o ¢ ¢
p (0@ (47 [oi ) = 0)
2
e+ (t—i—T]@) _ w(z)(x)H
~ min
rCAg No
2
D (b4 70) - wO)|
T aei Ny (13)
where o**V(p) = (W), ... u V() for
¢ = L-1...,1ad4 = {06 ¢+ ),
. s](»é_)l(t + T]@), & Tjqls -, Tm) |xg € {0, 1} for

j<q<m)fori =01 Lety = 0,7 = Ef;i Tfi)
and\© > mAD for £ > 2. Note that\(® > X 4 5@,
SinceA® > A® 4 7 implies that\(+1) > A© 4 ) >
AW 40 47 = XU 4 D) thenx® > AD 45O for

IV. TRELLIS CODING USING A CONVOLUTIONAL PROCESSOR
AND A SIGNAL MAPPER

The trellis coding shown in Fig. 2 can be described in a dif-
ferent way. LetD represent the operator of one unit time delay.
Define anm x m diagonal matringé) forl < ¢ < L, for
which the entry at theth row and theith column isD™ .
The function of the delay process@f? can be represented by
50() = 5O1)Q\Y for 1 < £ < L. Then, we have

D) =P (1)l
=K EDQL

=0 (0Q KDQ - KDy
=P (15)

whereP = QVKMQY) ... KE-DQL We may regard
as the transfer function matrix for a rate 1 convolutional code
with input sequence®) and output sequencg®. This sug-
gests a new class of trellis coding with encoding configuration
shown in Fig. 3, in which an input message sequends
fed into the encoder of a convolutional codefollowed by
a convolutional processor and a signal mapper to produce the
output symbol sequenceg The convolutional processor is the
encoder of a rate 1 convolutional code with transfer function
matrix P.

In the following, we will propose a special design of the con-

£ > 2. Assume that“)(t — 1) has been correctly recovered fowvolutional processaP such that thé; +1)th level input bit will

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 01:03 from IEEE Xplore. Restrictions apply.
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ui(t) vi(t) s1(t)
— | Convolu- R Convolu- . Signal w(8(t)) = 2(t)
° tional . tional . ———
_—* Code C b Processor hd Mapper
ur(t) U (t) sm(t)

Fig. 3. Encoding structure of a trellis code with a convolutional processor.

§(t) LI .§(t+,3]+1)\) oo 0 0 .§(t+(ﬂ,—€]+1)/\) LRI I ) .§(t+ﬂ1)\) s o
3] 0 e e a o o 0 0 e o 0 O 'Uj+1(t) o o o 0 ’Uj+1(t) ’U](t)
Si41 0 eeeee  vt)
A RS o e
o f g } }
Sm | Um(?) t+ Bin t+(Bi—bin)=t+a; t+B;

Fig. 4. Relation between sequenaeand? = (..., 0, 0, #(¢), 0, 0, ...) described by (19), whete; = 3; — ;1.

affect both thej + 1)th and thejth level output bits. Thed®; ;,  desired that the pairwise distance measure between seqaences
the entry at théth row and thejth column of then x m matrix andz’ is lower bounded by
P, will be zero except for the diagonal elements ad ;, A 7. 7). A (A
; P 27AY
wherej =1,2, ..., m—1.Forj =1,2, ..., m,set o (( ) (&) +64,-1))

m A—1
P, ; =D (16) =3 D) B GO, +45851) (20)
j=1 t=0
andforj =1,2,...,m— 1, set we require thap3,, = Oand forj = m —1, ..., 1
Pip ’:{ G (5—1)A (Bt )N if i1 =0 Bi=Biri=Lis1+ G +1 (21)
LT (DA DGR i L > 00 e (;+1 > 0 is an integer for which the constraint

(17) will be given in Theorem 3. The relation betweenand
v=1(0,...,0,%(¢),0, ..., 0)isillustrated in Fig. 4.

Th h
en, we have Example 5:Letfy = 0,y = 1,45 = 0, (s = 0, (s = 1,

() = Um(t — B\ (18) and¢; = 0. It follows from (21) that3; = 0, 5> = 1, 51 = 4.
" " " Hence, by (16) and (17), we have
andforj =1,2,...,m—1 D¥™ 0 0

— 3A A
Uj(t—ﬁj)\), if £j+1 =0 P= DO % (;
si(t) = q vi(t=BiA) @ v (t— (B —1)A)
G - @vjp(t—(Bj—Li1)N),  if Ly >0, Wehaves (f) = vi(t - 4A) @ ot — 3X), so(F) = va(t — A),
(19) and s3(t) = ws(t) by (18) and (19). The relation between

s and v is shown in Fig. 5. Suppose thaft) = ¢'(¢) for
To insure that;41(¢), j < m, can affect{;, + 1 different ¢ < 0 and¢(0) # ¢/(0). We see thatA(z(0), 2/ (0)) >
output symbols, we must hayg — 5,41 > €41 + L Ifitis  (v3(0) & 25(0))As, A(z(N), 2/ (X)) > (v2(0) &

- Y _ H2 L
0 g (O i ) )

i=1

~%(L+1) 9] () ? i
MG (t—i—’rj )—w (a:)H 1 izt

min N = [235@ (t n T]@) _ 1} A (SZ@ (t n T]@)) (14)

— min
i=1

Authorized licensed use limited to: National Taiwan University. Downloaded on January 22, 2009 at 01:03 from IEEE Xplore. Restrictions apply.



LIN etal: TWO TRELLIS CODING SCHEMES FOR LARGE FREE DISTANCES 1291

3(t) o o o S(EHIN) e s e B(t4+2)) e o o 343N ¢ o o 3{t+4))

v (£ — 42) it - 3)) ot — 2)) ot - 1)) v (t)
al @ e @ i @ i @ .. @
’Uz(t - 3A) ’Uz(t - 2)\) Uz(t - 1)\) ’Uz(t) Ug(t + 1/\)

Fig. 5. Relation between sequengeand© for Example 5.

UIQ(O))AQ, A(Z(3)\) (3)\)) > (UQ(O) ¥ UIQ(O))Al, and {1, 2, 2, 4} Letly, = 0,43 = 1,4, = 1,4 =0, C4 = 0,
Al2(20), 2(20) + Al2(4X), Z(4N) > (01(0) @ 4 (0)AL (s = 2, ¢ = 1, (o = 0. We have

if Ay > A;. Hence (20) is satisfied. O D3 0 0 0
From Appendix B, we have the following theorem. D™ D3 0 0
Theorem 3:Let; < |A;/A;_1]. If { > (1 + £, for P= 0 D* D* o
£, > 0 (and(, = 0 for £, = 0), thenAp.. of the proposed 0 0 0 1
trellis code is lower bounded by Then, we have a rate 1/2 binary trellis code with free distance
diree = Millge e g0)20) 191 A1+ d2 - (A2 + A1) +d3-(Az+
Arp(C, A (A +4,8,_1)) Az) + dy - Ay}, Consider the following two cases &)= 2
m A1 and b)r = 4. The associated generator matrices are the same
min YY" v (H(A; + 44, 1) (22) asthose used in Example 2. Then, we hédve > 14if A > 5
wec 8(0)#05 150 for case a) andg... > 20 if A > 7 for case b). O
With the special design a?, the proposed trellis code can be
whereAy = 0 and4, = 0. O suboptimally decoded by using the trelligofAs anillustration,
For this scheme, we use the following design procedure Y describe the decoding procedure for Example 6 as follows.
construct trellis codes. We assume that(¢t — ) has been correctly recovered for A.

Step 1) Forj € {0, 1}, we calculate the bit metric for
v1(t) = j. From Fig. 5, we see that (t + 4)\) =
v1(t) ® v2(t + A) contains the information af; (¢).
The bitws(t + \) is not yet recovered and also ap-
pears ins(t + 2X), wheres (¢t + 2)\) = v (¢t —
2X) @ v2(t — A) is already recovered at earlier time
units. Henceyp1 (¢) can be estimated from the re-
ceived symbolsg;(t + 4)\) andy(¢ + 2)). The bit
metric forv, () = j is calculated to be

{lly(t +4X) — w(s(t +4N)]?

Step 1) Selecty, ..., ¢,, and(y, ..., {, which are sub-
ject to the constraint given in Theorem 3. Calculate
B, -- -, B by (21). Then we haveé”® with entries
described by (16) and (17).

Step 2) For agive, we compute the lower bound &,
according to (22). This can be done in a way sim-
ilar to the computation of free distance 6f ex-
cept that the weighting factor&A; + £1Aq) =
Ay, oo, (Ap + £ A1) must be considered.

min

For this scheme, increasifg may result in increasef . 3(t+4X), 8(t42)
as indicated in (22). However, increasifjgnay not necessarily Hu(t 4 20) — w(s(t+22)]1°}
yield improved error performance. This may result from the in- . AN — 9
creased error coefficient. Moreover, decoding delay is also in- V_Vh?:}eft(t_z)\;‘)@_v ((t ® il)’ ZP” 24; a(rfdt: )‘_)
creased. Hence, a larggis not necessarily desired. U_ v Ji Ve 101} ; ol +12,)\)2€ % 1}1 x_

Example 6: Letr = 2, m = 3, and2 be the 8-PSK signal set -z oalt 1 3>\)'€7 {O' 13r ;4 2 ot 4 4)\)'6’ {O’ 1?
[2] Wlt.h {A1, 29, As} = {0.586, 2;,41}' Let b,e the matrix (sinceva (t+A), vs(t+2X), v2(t43X) andus (t+4))
used in Example 5. Let; denote) ;" v;(t) fori =1, 2, 3. are not yet recovered)
The squared free distance of the constructed TCMD@ge. > Step2) Forj € {0, 1}, we calculate the bit metric for
InlnEEc, f,(O);éﬁ {dl'Al + dQ-(AQ + Al) + dg'Ag}. COI’]SIder UQ(t) _ J We see thatQQ(t + )\) _ UQ(t) and
the following two cases: a) = 2 and b)r = 4. The associated s1(F43\) = v (£ — \) @ va(#) contain the informa-
generator matrices are the same as those used in Example 1. We tii)n of va(t), V\;herevl(t _2 )\) is already recovered

2 =9 i
haveD,, > 7.17if A > 11 for case a) and),, > 9.52 if Hence,u,(t) can be estimated by received symbols

free free
A 2 23 for case b). = y(t 4+ A) andy(t 4+ 3X). The bit metric forva(t) = j
is calculated to be

We can modify Example 6 by usingy = 1 instead off; =
0. In this way, a larger lower bound on free distance can be )
achieved. However, the error performance remains similar. gl?}rn {llyE+A) —w(sE+ )7}

Example 7:Letr = 2, m = 4, and = {1, 0}* with 5
the mapping described in (2) anfiA;, Ay, Ag, Ay} = + (Itnln ly(t +3X) —w(3(t+32)[°}
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Bit Err Rate

1e-05
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Eb/No : dB Eb/No : dB
Fig. 6. Simulation results for Examples 1 and 3. (A): 3a, without SO¥A;  Fig. 8. Simulation results for Examples 1 and 6. (A): 6a, without SQVA;
2, A0 =30, A = 90. (B): 3a, with SOVA» = 2, AV = 30, A = 90. 2, = 40.(B): 6a, with SOVAr = 2, X = 40. (C): 6b, without SOVAy = 4,
(C): 3b, without SOVAy = 4, A(Y) = 60, A(® = 180. (D): 3b, with SOVA, X = 80. (D): 6b, with SOVA,v = 4, A = 80. (E): 1a, without SOVAp = 2,
v =4,A1 =60, A = 180. (E): 1a, without SOVAy = 2, A = 20. (F): A = 20. (F): 1a, with SOVAr = 2, A = 20. (G): 1b, without SOVAy = 4,
1a, with SOVA,» = 2, A = 20. (G): 1b, without SOVAy = 4, A = 40. (H): X = 40. (H): 1b, with SOVA,» = 4, A = 40. (1): Ungerboeck’'s TCMy = 4,
1b, with SOVA,v = 4, A = 40. (I): Ungerboeck's TCMy = 4, A = 24. A= 24.
0.01 . . T T T T : T 001 — . ) . . . . . .
0001 F 0.001
g 00001 £ o 00001 [
5 5
2 te0s t B eos
le-06 1e-06 |
1e-07 . . : . : = - : : Le07 . . . W . . . .
3032 34 36 38 4 42 44 46 48 5 3 a2 a4 a6 84 43 44 46 43 S
Fig.7.  Simulationresults for Examples 2 and 4.(A): 4a, without SOVA; 2, Fig 9. Simulation results for Examples 2 and 7.(A): 7a, without SQVA;

A =20, A3 = §0. (B): 4a, with SOVA Y = 2, A1) = 20,A® =80.
(C): 4b, without SOVAp = 4, A1) = 40, (2 = 160. (D): 4b, with SOVA,
v =4,A" =40,A® = 160. (E): 2a, without SOVAy = 2,A = 20.(F): }, — 2 \ = 20.(F): 2a, with SOVAp = 2, A = 20.(G): 2b, without SOVA,

2a, with SOVA, = 2, A = 20. (G): 2b, without SOVAy = 4, A = 40. (H):  , — 4 A = 40.(H): 2b, with SOVA,v = 4, A = 40.(l): rate 1/2 conventional
2b, with SOVA,v = 4, A = 40. (I): rate 1/2 conventional convolutional code, convolutional codey = 6, A = 36.

= 20.(B): 7a, with SOVA,»r = 2, A = 20.(C): 7b, without SOVA,
4, A = 40.(D): 7b, with SOVA,v = 4, /\ = 40.(E): 2a, without SOVA,

(Il] II > €

v =26, =36
wheres(t 4+ \) — £ 3 F_ o)), i , ceived symbol(t + ¢A) needs to be used in the estimation of
5t + ;(}\)—i-: )(1118}1£ ) @)j$£§($3) a)ﬁd];:jjl)z v;(¢). If ¢/ > 0, ands,(t 4 " X) contains the information of

vy (t +14'A), then the received symbg(t + ¢ A) also needs to

be used in the estimation of (¢). If s, (t +4"X) is the sum of

v (E+4'A), vy (8 447" X) and some other bits, whei® > 0,

then more received symbols need to be used in the estimation
of v;(¢). The bit metrics used in the above mentioned decoding
can be modified by introducing log-likelihood ratios obtained
by SOVA in a way similar to that described in Section Il

vg(t + A) € {0, 1}, zo = wa(t + 2X) € {0, 1},
T3 = Ug(t + 3)\) c {0, 1}

Step 3) Forj € {0, 1}, the bit metric forvs(t) = j is
calculated to bening ) {||y(t) —w(5(¢))||*}, where
3(t) = (v1(t — 4N) B vt — 3N), w2t — A), 7).

Step 4) Calculate the metric fof¢) as the sum of bit metrics
for v1 (%), va(t), anduvs(t).

Step 5) With the branch metric fart — ¢), ¢ > 0, we use
the Viterbi decoder with truncation lengghfor the
convolutional code” to recoverii(t — A + 1) and Using the proposed coding schemes, we can construct trellis
o(t — A+ 1). Then, we increaseby 1 and proceed codes with large free distances. However, the suboptimum
to step 1). The decoding delayds — 1 time units. decoding for each scheme may yield a large error coefficient.

In the general case, the decoding is similar to that of EXherefore, simulation is needed to verify the error performance.

ample 6. Suppose that for a nonnegative integey(t + ¢A) In[1], interleaving is used. However, we do not use interleaving
contains the information af;(¢). That means,(t +¢)) isthe here, since large interleaving size requires large decoding delay.
sum ofv,(t), vy (t + ¢'A) and some other bits. Then, the reSimulation results over the AWGN channel for Examples 3,

V. PERFORMANCEEVALUATION
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TABLE |
DATA OF THE TRELLIS CODES GIVEN IN EXAMPLES 1-4, 6,AND 7

Ey/Ny for BER=10"°

Example| Q| % |v| Ars (w(iiﬁg&:%lg}\)f)A) (tin(jzljzits) (MAI)) (mesgiéiybits) gg{i:l(tdB) gg{} A(E)
1a 8PSK | 2|2 6.34 (32, 20) 33 -1 20 118 7.2 | 7.15
3a 8PSK | 2 | 2| 7.52 (48, 28) oA 1 30 538 6.95 | 6.8
6a 8PSK | 2 |2| 717 (38, 30) 51— 1 40 398 6.9 | 6.75
1b 8PSK | 2|4 893 (80, 36) 3 -1 40 238 6.75 | 6.6
3b 8PSK | 2 |4 |10.69 (96, 64) oA —1 60 1078 6.6 | 6.2
6b 8PSK | 2 14| 9.52 (86, 66) 53— 1 80 798 6.4 | 6.25
2a 0,1} 2 |2 12 (64, 34) 4r—1 20 158 5.0 | 4.9
da {0,134 2|2 | 17 (112, 56) 1620 —1 20 638 4.65 | 4.35
Ta {0,13*| 2|2 14 (78, 70) 9 -1 20 358 4.35 | 4.2
2b {0,134 2 |4 16 (112, 70) 4r -1 40 318 4.2 | 4.1
4b {o,1}* | 2 14| 24 (160, 92) 1620 —1 40 1278 4.1 | 3.85
7b {0,132 |4/ 20 (126, 106) 9) —1 40 718 3.75 | 3.5

4, 6, and 7 using the suboptimum decoding (with and withouéntional binary convolutional code. Hence, we can conclude
SOVA) are given in Figs. 6-9, respectively. Simulation resulthat either of the proposed schemes has better error performance
for trellis codes constructed from Hellstern's scheme (Exarand lower decoding complexity as compared to the conventional
ples 1 and 2) and the 64-state conventional binary convolutiomadllis code. According to Table I, we see that the decoding delay
code and the 16-state Ungerboeck TCM are also given in theseeither of the proposed schemes is longer than that of Hell-
figures. The data related to the simulation for Examples 1-4,4ern’s scheme.
and 7 are listed in Table I. It is interesting to compare the proposed scheme with the
The numbers of additions and comparisons per symbol (adigkbo code [7]. A rate 1/2 turbo code using SOVA decoding with
comp) can be used as one measure of decoding complexityirterleaving size of 900 message bits and= 2 can achieve
Table I, (add, comp) are computed based on the suboptimal @R = 10~° at E, /N, ~ 4 dB after six iterations. Example
coding using hard feedback, i.e., without SOVA. If SOVA iga can achiev8ER = 10~° at £, /N, ~ 4.2 dB, which is
used, the sum of add and comp will be about twice of that efightly worse than that obtained from the turbo code. However,
not using SOVA. From Fig. 8 and Table I, we see that Exampiexample 7a requires significantly less decoding delay than the
6b has similar complexity and better error performance as cotarbo code.
pared to Example 1b. In addition to (add, comp), the numberFinally, by comparing Examples 6 and 7 with Examples 3
of trellis states can serve as another measure of decoding camd 4, we see that if the sandg is used, using the second
plexity. For a high-speed Viterbi decoder using many parallstheme we can achieve similar error performance with less
processors, the number of trellis states will be a dominant factf#coding delay as compared to using the first scheme, even
of complexity [6]. In this case, either Example 3b or 6b haskough using the first scheme can achieve a larger lower bound
similar complexity and better error performance as compared free distance.
to Example 1b. Similar comparison can be made between other
examples such as Examples 3a and la, Examples 2a and 4a,
..., etc. We can conclude that either of the proposed schemes
yields error performance better than Hellstern’s scheme basedn this paper, we concentrate on constructing trellis codes
onthe samé’ (or similar decoding complexity). We note that eiwith large constraint lengths and hence large free distances. Two
ther the four-state Example 3a or four-state Example 6a requisefiemes for constructing such trellis codes are proposed. A sub-
lower E;, /N, (to achieveBER = 10~°) than that required by optimum decoding with moderate complexity is proposed for
the 16-state Ungerboeck’s TCM. Moreover, the four-state Egach coding scheme. With the suboptimum decoding, the error
ample 4a or four-state Example 7a requires loigf N, (to coefficient is expected to be very large which may reduce the
achieveBER = 10~9) than that required by the 64-state coneoding gain achieved by the large free distance. In contrast, for

VI. CONCLUDING REMARKS
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the well-known turbo code, the mechanism of reduced BER ma- Proof of Theorem 3

jorly comes from its very low error coefficient [8], [9]. Hence, cqnsider the sequenaewith 4(0) # 0 and B(t) = 0 for

the proposed schemes can achieve good error performance at e may divide the sequenaeinto X disjoint sub-
moderate to higt¥, /N, while turbo codes can achieve goo%equencesv(o), w(1), ..., 5\ — 1), wherew(h) = {...,
error performance at low to high;/N,. Even though the de- H(=A+ h), d(h), 56X+ h), ..}, h = 0,1,..., A — 1. Let
coding delay of each of the proposed schemes is longer thagngz pe the corresponding sequences#ole then divide
that of the conventional TCM or convolutional codes, itis mucBach ofs andz into \ subsequences similarly. The subsequence

shorter than that of the turbo codes. . z(h) will only depend onz(k) among all the\ subsequences
Error performance of the proposed schemes can be improvgd; Now we will consider the distance property related to

by using interleaving and iterative decoding. Such a design V\gldjbsequenceﬁ(o), 5(0) andz(0). Let zg = w(0) andz, =
significantly increase the decoding delay and complexity, aqq_ ., %0, %0, --.}. We will prove thatA(z(0), Z), which is
hence is not considered in this paper. the distance measure betweg() andzo, is lower bounded
by 3771, v (0)(A; + £;A,-1). Then, we can similarly show
that the distance measure betw&éh) andz, is lower bounded
by >70L, vi(R)(A; + £;A;-1). Then, itis easy to see that the
bound given in (22) is true. In the following, we first assume
A. Proof of Theorem 2 £; > 0for2 < j < m. The case fof; = 0 will be considered
later. Leta; = B, — £y forl < 5 <m—1, a0 = B+ 1
Consider the righthand side of (8). The conditioméf) —  andq,, = 0. It can be checked that;_; = 3; + ¢; + 1 for

APPENDIX
PROOFS OFTHEOREMS2 AND 3

1 > mAE~Y — 1 implies that 1 < j < m. Itis evident that
A1 om AEY 1 B1
Z Z U](rl)(t)Aj _ Z dL) (@(L)(t)) A(Z(0), Zo) > Z A(z(tA), 20)
=0 j=1 t=0 =0
Qp—1—1 Qo2 —1
mAL -~ 1 N
> > dPEP@). (A = D AGEN )+ YL AR, )
— t=a,, ) t=a,, 1
+ot > AR(EN), 20). (B1)

Lett = T;L_l) +p = (m—j)AE=D 4 p. Then the summation
indext for 0 < + < mA{"~1 — 1 can be replaced bp, j) for
0<p<AE=D 1< j<m.Fori < j,wehavet — 7“1 = Considera; < t < a1 for2 < j < m. Sincet < a; 1,
p— (G —)AED < 0. Sinced TN (p) = O forp < 0, then thent—g; <t—(8i—1) < - <t—(Bi—Lig1) =t— <0

v — 77Dy = 0. Hences!" "V (¢) = 0. It follows from  for i < j. Sincew(p) = 0 for p < 0, from (19), we have
(10) that si(tA) = vi((t=B)A)Bvipa ((E—(Bi—1)A) & - - - B ((F-
a;)A) =0for 1 < ¢ < j. HenceA(z(t)), zo) > s;(tA)A; for
0 ) - () e )

S S(rl—1)(t)6§n—1)

t=a

aj_1—1

=l D (pysth . (A2) Yi= > si(tha;,  for1<j<m. (B2)
t=a;
Then
Then, (B1) impliesA(Z(0), Zo) > Yy + Y1 + -+ + Y1.
A1 m AE=D_1 Forp € {0, 1}, andql, G2, ..., QK € {0, 1}, if k& < Ej, the
(L) (L—1) (L—1) condition of A; > £;A;_; impliespA; +¢1A; 1 + g1+
V(DA > vt st J sy J J J
; ;::1 ;08 ,;J ;::1 ;e o@D 2 (pB @)A1+ -+ (pDar) A1 Moreover,
A=y it can be checked that for, ¢; € {0, 1}, if & < h, then
_ Z dL-D) ({}(Lfl)(t)) ' . .
t=0
(A3) ; piAj + ; QiAj—l
k
L
We can similarly derive thagf;;_l S U](»L)(t)Aj z 2 Z(Qi ®pi®pi-1 P Dp)d;1 (BI)
f:;‘l dO@®O@) for £ = L —2....1. Then, =t
L L :
Afre;e;) > App(CPNB Ay 2 SO o (020 wherel = max{i — (£; — 1), 1}. Note that each; appears in
S AP W), [0 the summation of the right-hand side of (B3) at méstimes.
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LetW, = Y7 Y; andY] = 35, v;(iA)A, for1 < j <
m. From (18) and3,,, = 0, we have

Qpp—1—1 Com
Wo =Yoo= Y sm(t)An =Y vm(tA)A,
t=a,, t=0

=vn (A, + Y. (B4)
Thenvwrn—l = an +an—l = Unl(O)Anz +Yr§l +an—l- From
(83) and the condition Ofrn > Crn—l +4p, = Crn—l +/37n—1 -
AUmp—1 = (anl—Q - 1) — Qp—1, WE have

Yr;l + anfl
Cm Qm_z—1
=D on(ENAn+ > Smo1(B) A
t=1 t=Qpm_1
Gm
= $m-1(Am-1 ) A1 + Y Um(EN) A,
t=1
Cm—1+Lm

+ Z Srn,—l((arn—l +t))\)Arn—1
t=1

2 hoAmot + 1D+ he ¢, Am—1 (B5)
where
ho = s$m—1(tm_1A) (B6)
andforl <i¢ <4, + (1
hi = 8m—1((tm—1 +DA) B v, (IA)
B Un((i = DA @ - D (1) (B7)

wherel = max{i — (¢,,, — 1), 1}. It follows from (19) that

Sm—1((m—1 + DA) =vm-1((am-1 + % — Bn-1)A)
B Um((m—1 47 = (Bn-1 — 1))A)
@B B U ((Ame1 + 1 — A1) N)
=Um(iA) & - B vm((t — (b — 1))A)
B Um—1((i — €)N). (B8)

Since®(p) = 0 for p < 0, from (B6)—(B8), we have

o Um(0)
hi= {Um—l((i - Em))\)7

fori=0,1,..., 4, —1,

A grn + Crn—l-
(B9)

fori=2¢,, ..

Therefore

Y,;l + an—l 2 (Ernrurn(o) + Unl—l(o))Arn—l
Cm—1
+ Z Unl—l(t)‘)Anl—l
t=1

= (grnvrn(o) + Urnfl(o))Arnfl + Yr;lfy
(B10)

1295

In general, we can replaee in (B5)—(B9) by for 2 < 5 <
m to yield

Y]+ Y1 > (4v;(0) +v;—1(0)A; 1 + Y/, (B11)
Thus
W, =Y,+Yn 1+ --+1

>Un(0)A, + Y, + Y1+ + 1]

2> U (0)An, + (v (0) + v —1(0) A1
+Y, 4+ YotV

> Um(O)Am + (gmvm(o) + Umfl(o))Amfl
+ -+ (L2w2(0) + v1(0)) A

=0 (0) (A, + A1) + -+
+v2(0)(Az2 + £2A1) +v1(0)A;. (B12)

Note that in the above proof, we assumye> 0 for 2 <
j £ m If ¢; = 0forsomey,2 < j < m,then(; = 0 and
Sj_l(t) = Uj_l(t—ﬁj_l)\). We have:xj_l = /3j_1—£j = /3j_1
andaj_s = Bj_2 —{;_1 = B;_1 + {j_1 + 1. Hence

¢j B 1+¢—1
Y/ +Y =) wliNA + Y
i=1 i=8;_1
Ci—1
=0+ Z Ujfl(i)\)Ajfl
i=0
=v;_1(0)A; 1 +Y,_;.

5j-1(1A) A1

(B13)

Hence (B11) and (B12) still hold. Therefor&(z(0), zo) is
lower bounded b)Z:;":l v;(0) - (A +4;A,_1). Then,Agee is
lower bounded by (22). O
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