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Abstract—In this paper, the algorithms for calculating the eigen-
values, the eigenvectors, and the singular value decompositions
(SVD) of a reduced biquaternion (RB) matrix are developed. We
use the SVD to approximate an RB matrix in the least square sense
and define the pseudoinverse matrix of an RB matrix. Moreover,
the RB SVD is employed to implement the SVD of a color image.
The computational complexity for the SVD of an RB matrix is
only one-fourth of that for the SVD of conventional quaternion
matrices. Therefore, many useful image-processing methods using
the SVD can be extended to a color image without separating the
color image into three channels. The numbers of the eigenvalues
of an RB matrix, the �� roots of an RB, and the zeros of
an RB polynomial with degree are all finite and equal to �, not
infinite as those of conventional quaternions.

Index Terms—Quaternion, reduced biquaternion (RB), singular
value decomposition (SVD) and eigenvalue of reduced biquater-
nion (RB) matrix.

I. INTRODUCTION

T HE well-known concept of the quaternion was �rst intro-
duced by Hamilton in 1843 [1]. The quaternion is a gen-

eralization of the complex number. It has four components, i.e.

(1)

where , , , and are real and , , and satisfy

(2)

From (2), the multiplication of quaternions is not commutative.
Owning to this, many operations, such as Fourier transforms
[47] and convolutions, are different from those of the complex
algebra [25] and the eigenvalues of a quaternion matrix boil
down to two categories, left and right eigenvalues [5]

(3)

In (3), and can be quaternion numbers and
may not be equal to . Moreover, the eigenvalues of a
quaternion matrix are in�nite. If is an eigenvalue of

Manuscript received February 08, 2006; revised July 25, 2007. First pub-
lished March 07, 2008; current version published October 29, 2008. This work
was supported by the National Science Council, R. O. C., under Grants NSC
91-2219-E-002-044 and NSC 93-2752-E-002-006-PAE. This paper was recom-
mended by Associate Editor T. Chen.

The authors are with the Department of Electrical Engineering, Na-
tional Taiwan University, Taipei, Taiwan (e-mail: pei@cc.ee.ntu.edu.tw;
jahan_chang@mtk.com.tw; djj1@ms63.hinet.net; roc3.chen@msa.hinet.net).

Digital Object Identi�er 10.1109/TCSI.2008.920068

a quaternion matrix , then every element of the set
is also

an eigenvalue of [5].
On the other hand, the concept of reduced biquaternions

(RBs) was �rst introduced by Schütte and Wenzel [2]. The
major difference between RBs and quaternions is the multi-
plication rules, which are commutative for RBs. Thus, many
operations of RBs are simpler than those of quaternions. More-
over, both the quaternion and RB matrices can be employed to
represent color images. The SVD of a conventional quaternion
matrix was proposed in [36], [37]. In this paper, we propose the
SVD of an RB matrix. Each of these two SVDs can be utilized
to decompose color images. Compared to that of the quaternion
matrix SVD, the complexity of the RB matrix SVD is reduced
to a smaller factor of one-fourth.

In [3], we discussed the de�nitions and properties of RBs
and developed their fast Fourier transform for signal and image
processing. A brief review is given as follows.

Definition of RBs:

where

(4)

This setting produces two special numbers, and , where

(5)

Therefore, and are both idempotent elements ( ,
) and divisors of zero. Any RB with the form or

is also a divisor of zero and does not have a multiplicative
inverse (where and are any complex numbers). Thus, for
RBs, there is no solution of the variable in the following equa-
tion:

(6)

and there are in�nite solutions to the following equation:

(7)

Hence, the RB system is not a complete division system.
Three Useful Representations of RBs: We introduced three

useful representations of RBs in [3]. These three representations
are (a) forms, (b) matrix representations, and (c) polar
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forms. Each representation has its advantages. The complexity
of many operations can be reduced when applying forms.
The matrix representations are helpful in de�ning the norm and
conjugation. We can understand the geometric meaning of RBs
from polar forms. We give a brief review of these representations
as follows.

a) forms: A RB number is often represented in
the following form:

(8)

where , , , and
, are all complex numbers.

b) Matrix representations: The matrix representation of 1,
, , and are

(9)

where , , ,
, and .

Therefore, the matrix representation of an RB
is

(10)
The four eigenvalues of are

(11)

Moreover, the determinant of is the product of the above
four eigenvalues.

(12)

c) Polar forms: An RB can be uniquely represented by a
polar form if

(13)

where is de�ned as in (12), and

The proof of (13) can be found in [3].
An interesting thing is

(14)

where and are the hyperbolic cosine and sine
functions, respectively.

RB Matrix: Similar to the RB number, the RB matrix has
four components [45] and it is often represented by the linear
composition of two complex matrices using forms

(15)

where

(16)

and , , , and are the real, -, -,
and -parts of an RB matrix, respectively. By this form
representation, the addition and multiplication of RB matrices
can be easily calculated by two additions and two multiplica-
tions of complex matrices. Moreover, the transpose , conjuga-
tion and Hermitian transpose of an RB matrix can be de�ned
as

(17)

where can be , , or . The conjugation used here is different
from the de�nition in [3], but this conjugation is more suitable
for calculating the SVD of an RB matrix. Some algebraic oper-
ations of the RB matrices are listed as follows.

(a) .
(b) .
(c) .
(d) if

and are invertible.
(e) .
(f) .
(g) .
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These properties can be easily proved by (17) and the corre-
sponding properties of the complex matrices. In general, (b),
(c), (f), and (g) are not satis�ed by quaternion matrices [5].

In Section II, we introduce the ways to derive the eigenvalues,
eigenvectors, SVD, and inverse of an RB matrix. One applica-
tion of the RB matrix eigenvalues for calculating the zeros of an
RB polynomial is discussed in Section III. Three applications of
the RB SVD for the least square error problem, the pseudoin-
verse of an RB matrix, and color image processing are given in
Section IV.

Notation and Definition List: Throughout this paper, we use
the following notations.

� , , , : the real part, -part, -part, and -part of a
quaternion or an RB number .

� , , : complex, quaternion, and RB matrices.
� , , , : the real, -, -, and -parts of

a quaternion (or an RB) matrix.
, where can be or .

� , , : complex, quaternion, and RB vectors.
� (conjugation): For both the quaternion and the RB,

.
� (Hermitian): conjugation + transpose of a matrix or

vector.

� (Norms): In this paper, for both the quaternion and the
RB

� (addition):

� Multiplication for quaternions:

� Multiplication for RBs:

� Eigenvectors and Eigenvalues: For quaternions,
(left form) and

(right form). For RBs,
.

� , : idempotent elements of RBs.

� : the equivalent complex matrix of .
� : the equivalent complex matrix of an RB matrix

.
� , : the �real + parts� and the � parts�

of a quaternion (or an RB) matrix, respectively.
and .

where can be or .

� , : For RBs, and
, i.e., .

II. EIGENVALUES, EIGENVECTORS, AND SVD OF AN RB
MATRIX

A. Algebraic Structures of RB

In this subsection, the inherent group structure of RBs is in-
vestigated in a way for giving itself a character similar to the re-
lationship between quaternions and the rotation group .
Note that for every RB , we have

Moreover, if there are two complex numbers and such that
, then by , , and

multiplying the equation with gives and multiplying
it with gives . Thus, and consequently

and are linearly independent over complex numbers. In
other words, the set of RBs can be denoted as the following
direct sum:

where stands for the complex number �eld. Let be the
group consisting of all RBs with unique multiplicative inverse.
In order to set a group representation of , we recall a simple
representation of as follows:

where stands for the real number �eld. Therefore, we get an
alternative representation of any RB element

as follows:

Let

the above formula can then be further simpli�ed to
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One can easily see that this mapping is a group homomor-
phism, because an RB has its unique
multiplicative inverse if and only if
the following linear system is nonsingular:

(18)

i.e.,

which guarantees that , , i.e., the matrix

is of full rank. In summary, this representation tells us that the
geometric meaning of is a decomposition of the four-dimen-
sional Euclidean space into two independent planes, and each of
their coordinates is transformed by a rotation plus a contraction
or expansion .

B. Eigenvalues and Eigenvectors of a Quaternion Matrix

The eigenvalues and eigenvectors of a quaternion matrix were
discussed in [4], [5]. Let be an quaternion matrix and

(19)

where and .
Note that and are two complex matrices. Then the

eigenvalues and eigenvectors of can be calculated by the
eigenvalues and eigenvectors of the corresponding equivalent
complex matrix [4], [5]

(20)

If is an eigenvalue of , then will be another one. Both
of these two numbers are the eigenvalues of the quaternion ma-
trix . There are eigenvalues of the complex matrix .
Thus, we can get complex eigenvalues with nonnegative imag-
inary part of [4]. However, the quaternion eigenvalues of a
quaternion matrix are in�nite. If is an eigenvalue of a quater-
nion matrix, then is an eigenvalue, too ( is any quaternion
that satis�es ). This proof can be found in [5].

Furthermore, if is an eigenvector of
the complex matrix for , then
is an eigenvector of the quaternion matrix for , where
the superscript represents the complex conjugation, and

are two complex column vectors, is a
complex column vector, and is an quaternion column
vector.

C. Eigenvalues and Eigenvectors of a RB Matrix

For RBs, the multiplication is commutative. Thus,
for . Consequently, the

eigenvalues and eigenvectors of an RB matrix are �nite. Here,
we illustrate two different ideas to compute the eigenvalues and
eigenvectors. The results of these two methods are identical.

Method 1: Using the Equivalent Complex Matrix of an
RB Matrix: Similar to the quaternion matrix, an RB matrix

has its equivalent complex matrix,
too. If

(21)

the equivalent complex matrix of the RB matrix is

(22)

where and are de�ned in (16). The relations be-
tween and are shown as follows:

(a) If where is an identity matrix,
then .

(b) If , then
, where or .

(c) is the equivalent complex matrix of
.

(d) If is an eigenvalue of and
are the corresponding eigenvector, then

are the eigenvalue of the complex matrix and
, respectively, and and are the

corresponding eigenvectors.
Moreover, the converse is also true. If and (

and ) are the eigenvalues (eigenvectors) of the and
, respectively, then is

the eigenvalue of the RB matrix and
is the corresponding eigenvector.

The proof of (a)�(c) is very easy by (22). Here, we only give
the proof of (d).

(Proof of (d)): Assume to be an
RB matrix, and is an eigenvalue of

where and are two complex numbers and
is the corresponding eigenvector of with and being two
complex vectors. Then

(23)

We have

(a)
(b)

(24)
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In addition

(25)

(26)

Therefore, and are the eigenvalues of the
complex matrix and , respectively, and

and are the corresponding eigenvectors.
We can calculate the eigenvalues and eigenvectors of an RB
matrix by calculating the eigenvalues and eigenvectors of the
two complex matrices and .

Moreover, if

and , then

(27)

and the converse of (d) is also true.
From (d), because there are eigenvalues (eigenvectors) of

a complex matrix, there are eigenvalues (eigenvectors) of an
RB matrix.

Method 2: Using Forms of RBs: Alternatively, we
can represent an RB matrix using the two idempotent elements

and as in (8)

(28)

Therefore, if and ( and ) are the eigen-
values (eigenvectors) of the and , respectively, then

will be the eigenvalue of the RBs matrix and
will be the corresponding eigenvector. The

proof is shown as follows.

(29)

The results obtained by method 1 and method 2 are identical.
Again, using forms can simplify the analysis of RB ma-
trices. A comparison between the eigenvalues and eigenvectors
of a quaternion matrix and an RB matrix is shown in Table I.

TABLE I
COMPARISONS BETWEEN THE EIGENVALUES AND EIGENVECTORS OF A

QUATERNION AND RB MATRIX

The complexity of computing the eigenvalues of an RB matrix
is much lower than that of the conventional quaternion matrix.

D. SVD of a RB Matrix

The algorithm for calculating the SVD of a quaternion matrix
using its equivalent complex matrix was developed in [36], [37].
We can obtain the SVD of an RB matrix using steps similar to
those of quaternions and the equivalent complex matrix of an
RB matrix. However, using the form representation can
simplify the steps. Thus, we only discuss the method of
form representation. Assume that the RB matrix is

(30)

where and are de�ned in (16). The SVDs of
and are in fact the SVDs of two complex matrices. Sup-
pose that

(31)

where

(32)

and are two diagonal matrices with real elements
and , respectively, and the superscript
means the Hermitian transpose. Then the SVD of an RB matrix
is

(33)

(34)

By (32), and are unitary matrices, too.

(35)

Note that diagonal matrix is not a real matrix unless
. Usually, it has real and parts.
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TABLE II
COMPARISONS BETWEEN THE SVDS OF A QUATERNION MATRIX AND AN RB MATRIX

Therefore, using the two elements and , we can calcu-
late the SVD of an RB matrix by the SVD of two complex ma-
trices without developing a new algorithm. The complexity of
the SVD of an RB matrix is one-fourth of that of the SVD of a
quaternion matrix. Moreover, the original matrix is usually re-
constructed by the sum of the outer products

(36)

The complexity of (36) using the RB matrix will be only
three-fourth of that of using the quaternion matrix, because
six (eight) real multiplications are necessary and suf�cient
to compute the product of two RBs (quaternions) [38]�[42].
Consequently, using RB matrices for the SVD of a color image
is more ef�cient than using quaternion matrices.

The comparison between the SVDs of a quaternion matrix
and an RB matrix is illustrated in Table II.

E. Inverse of a RB Matrix
For an RB matrix

the inverse of exists, if and only if the inverses
of and exist. Moreover, the inverse of is

. The deviations are as follows.
(a) : Suppose that the inverse of exists and is de-

noted as . Then

(37)

Thus, the inverses of and exist and they are

(b) : Suppose that the inverses of and exist
and are denoted as and . Then

(38)

Therefore, the inverse of exists and it is
.

III. APPLICATIONS OF EIGENVALUES OF AN RB MATRIX FOR
FINDING ZEROS OF RB POLYNOMIAL

We can use the eigenvalues of an RB matrix to calculate the
zeros of an RB polynomial. Before discussing the zeros of an
RB polynomial, we �rst review the roots of a conventional
quaternion and then discuss the roots of an RB.

A. The Roots of a Conventional Quaternion:
To �nd the roots of a quaternion [8], [9], it is useful to

represent quaternions in the polar form as follows.

(39)

where , ,
, and if , then

is a pure unit quaternion and . The roots of a
quaternion are

(40)

Therefore, for a nonreal general quaternion, the number of
roots is . However, a positive real quaternion has just two
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TABLE III
COMPARISON BETWEEN THE � ROOTS OF A QUATERNION AND AN RB

square roots but infinite roots for . In addition, a
negative real quaternion has infinite roots, both for
and . The real quaternions have in�nite roots because the
choice of the number of a real quaternion can be arbitrary pure
unit quaternions [8], [9].

B. The Roots of a RB :

For an RB number, the th roots can be computed by two
different methods. The �rst method is using polar forms of an
RB and the other is using the forms.

Method 1: By Means of the Polar Form of an RB: For an RB,
its polar form is

The parameters , , , and can be calculated by (13). We
can calculate the roots of an RB using this polar form. Let

, then the roots of are

(41)

where , , and if n is odd, , else
or 1. Therefore, there are roots of an RB if is

odd; and there are roots of an RB if is even. However,
there are duplicate roots when is even due to the following
property

(42)
Therefore, if is even, , , would give
the same duplicate roots. If we set the range of the value as
following equation,

if is even
if is odd (43)

there are roots of an RB for any value of . However, for
, each root still has two duplicate roots because

(44)

Method 2: By Means of the Form Representation of
an RB: On the other hand, we can represent an RB using the
two numbers and as in (8)

(45)

By (5) and (45), the solutions of , i.e., the th roots
of , can be obtained from the following:

(46)

where and are de�ned in (16). Note that
and are problems of the roots of a

complex number. Thus, there are complex roots of each
equation. Therefore, there are totally roots of an RB. This
result is the same as that obtained from the polar form of an RB.

The comparison between the th roots of a quaternion and
the th roots of an RB is shown in Table III. The following two
examples are given to demonstrate the correctness of our results.

Example 1: Calculating the square roots of any RB number

In [2], the authors showed that the square roots of an RB are

(47)

where , , and .
In fact, these solutions are the same as ours in (41) or (46). We
can show that (47) and (41) are equivalent,

(48)

(49)

(50)

(51)

Assume that

(52)
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and use the fact that , then

(53)

(54)

(55)

C. The Zeros of a RB Polynomial

Definition 1—A RB Polynomial: Given a series of RB coef-
�cients , a monic RB polynomial of degree is
expressed as the function of the with RB variable

(56)

Definition 2—A Zero of an RB Polynomial: Given an RB
polynomial , we say that is a zero if . For
quaternion polynomials, the fundamental theorem of algebra
was �rst considered by Eilenberg and Niven [10], [11]. They
prove that every quaternion polynomial has at least one zero.
Niven�s algorithm can be found in [11]. A simpler method mod-
i�ed from Niven�s algorithm was developed in [12] for com-
puting the zeros of a quaternion polynomial. A companion ma-
trix associated with the polynomial is proposed herein for calcu-
lating the information about the trace and the norm of the zero.
For a quaternion polynomial with degree , the number of zeros
may be or in�nite.

On the other hand, for RB polynomials, we will develop two
methods for calculating the zeros. The �rst method is using the
companion matrix which is similar to the biquaternion one. The
second one is using the form representation as in (8) that
divides an RB polynomial into two complex polynomials.

Method 1: By Means of Companion Matrices:
Definition 3—Companion Matrix: Given an RB polynomial

as (56), the matrix

...
. . . (57)

is called the companion matrix associated with the RB polyno-
mial .

Theorem 1: If is an eigenvalue of the companion matrix ,
then (a) is a zero of , and (b)
is an associated eigenvector.

Proof:

TABLE IV
COMPARISONS BETWEEN THE ZEROS OF A QUATERNION AND RB POLYNOMIALS

(a) Assume that is the associated
eigenvector of , then

...
. . . ...

...
(58)

Multiplying both sides yields the following equations

(59)
(60)

Substituting (59) into (60), we obtain

(61)

Since , as cannot be the zero vector, we conclude

(62)

and the eigenvalue is a zero of the polynomial .
(b) If we choose , then by (59) we obtain

and we conclude that is
an eigenvector associated with the eigenvalue .

In Section II, we know that an RB matrix has exactly
eigenvalues. Consequently, there are exactly zeros of an

RB polynomial with degree .
Method 2: By Means of Forms: Given an RB poly-

nomial , we can divide
this RB polynomial into two complex polynomials and

as

(63)

(64)
(65)

By the complex algebra, we know that both and
have exactly complex zeros. Therefore, there are

zeros of an RB polynomial. This result is the same as that
obtained by method 1. The comparison between the zeros of
a quaternion polynomial and an RB polynomial is shown in
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Table IV. The following example is employed to demonstrate
the correctness of our methods.

Example 2: Then we try to calculate the zeros of the fol-
lowing two RB polynomials.

(a)

(66)
(b)

(67)
(a) The companion matrix [see (57)] corresponding to (66) is

(68)
(b) The eigenvalues of the companion matrix can be calcu-

lated by the following steps.
1) First, we divide the companion matrix into two com-

plex matrices and and cal-
culate their eigenvalues. The eigenvalues of

are , , and
, and the eigenvalues of

are , , and
.

2) The nine eigenvalues of the companion matrix, that
is the nine zeros of the RB polynomial, are shown in
Table V.

(c) The companion matrix associated with in (67) is
shown in (69) at the bottom of the page.
We follow the steps as (a) to calculate the eigenvalues of
the companion matrix. Here, we only show the six eigen-
values of and in Table VI.
The 36 zeros of in (67) can be computed from

.

IV. APPLICATIONS OF THE SVD OF AN RB MATRIX

A. Pseudoinverse of an RB Matrix

We can use the SVD of an RB matrix to compute its
pseudoinverse. Assume that , as in
(33), and

. . . (70)

TABLE V
ZEROS OF THE POLYNOMIAL OF EXAMPLE 2(A), �� � � � � �,

WHERE � AND � ARE THE EIGENVALUES OF �� � � � AND
�� � � �, RESPECTIVELY

TABLE VI
EIGENVALUES OF THE TWO COMPLEX MATRICES DERIVED FROM THE

COMPANION MATRIX ASSOCIATED WITH THE POLYNOMIAL OF EXAMPLE 2(B)

Then the pseudoinverse matrix is

(71)

where

. . . (72)

(69)
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Fig. 1. Selected eigenimages of Mandrill baboon: (a), (b), (c), (d) using RB SVDs. (e), (f), (g), (h) using quaternion SVDs. (a) (e) original image. (b), (f) the �rst
eigenimages. (c), (g) the �fth eigenimages. (d), (h) the twenty-�fth eigenimages.

if
and
if but
if but
if

(73)

B. Least Square Error Problem for RBs

Suppose that there is an RB matrix and an RB vector
. We want to �nd an RB vector such that

(74)

is minimized. Here, the norm of an RB vector is de�ned as

(75)
where , , , and are real and correspond to the real- -,
-, and -parts of , respectively. The problem to minimize (74)

can be solved by the SVD of . Assume that
, as in (33). Then can be solved from

(76)

where the pseudoinverse is de�ned in (71) and (72).
The RB vector solved from (76) will be the solution to
minimize the square error in (74).

Proof: Suppose that . Then
can be expressed as

where , , , and are the real- -, -, and -parts of ,
respectively. Note that

(77)

Thus, if both and
are minimized, then can also be minimized. Note that
if we use (15) and (16) to decompose , and
as the for:

(78)

then

(79)

From (76)

(80)

where

(81)
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