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Abstract--Image normalization is useful for image recognition by the matching method. Recently, a 
normalization algorithm was developed to normalize images under the distortion of translation, rotation, 
scaling and skew. However, the method fails when the image is rotationaUy symmetric. A method is 
introduced called the modified Fourier descriptor to normalize rotationally symmetric shapes. This method 
is simple and fast, and can be combined with the preceding normalization algorithm to make it more 
general and realizable. 

Image normalization Rotationally symmetric shapes Modified Fourier descriptor 

I.  I N T R O D U C T I O N  

Pattern recognition has been an important area in 
computer vision applications. In the case of a planar 
image, there are four basic forms of geometric distor- 
tion caused by the change of a camera's location. They 
are translation, rotation, scaling, and skew. So far, 
there have been a number of methods developed to 
solve these distortions, such as moment invariants, tl) 
Fourier descriptor, t2'3) Hough transformation, c*) shape 
matrix, ts) and principle axis method, t6) All of the above 
methods can be made invariant to translation, rotation, 
and scaling. However, they become useless when the 
pattern is skewed. When the direction of the camera 
is not vertical to the planar image or the sampling 
intervals in the x - y  directions are not equal, the image 
is skewed. 

Recently, we have developed a method of image 
normalization, which normalizes all the images before 
recognition. Thus we just compare the input normal- 
ized pattern with reference patterns by the matching 
method, which is very simple and fast. 

The block diagram of pattern recognition by image 
normalization is shown in Scheme 1. 

This method first extracts features from the input 
patterns, then normalizes the input pattern by the 
normalization algorithm. Here, we define normaliza- 
tion as a process which transforms the input pattern 
into a normal form which is invariant under translation, 
rotation, scaling, and skew. We call the transformed 
image a normalized image. Since the normalized image 

Matching Method 

pattern ~ o r m a l i z a t i o n  

Scheme l. 

Pallern 
identification 

is invariant under translation, rotation, scaling, and 
skew, we may recognize patterns just by the simple 
matching method. This method has the following 
advantages: 

(1) the method is suitable when patterns are large; 
(2) the normalization algorithm is easy, does not 

need much computation; 
(3) the similarity measure by matching is rapid; 
(4) searching in the data base is efficient. 

Unfortunately, the normalization algorithm becomes 
useless for rotationally symmetric shapes. This will be 
discussed later. 

A shape is said to be n-fold rotationally symmetric 
if the shape, after being rotated through any multiple 
of 27r/n, becomes identical to the original shape. This 
is frequently encountered in real applications, tT) Tsai 
and co-workers have developed a series of methods 
to solve the recognition problems about rotationally 
symmetric shapes, t7-9) Their methods do not seem 
efficient, since the fold number must be found before 
normalizing the rotationally symmetric shapes. In this 
paper, we introduce a method called the modified 
Fourier descriptor to normalize rotationally symmetric 
shapes which can detect the fold number and rotation 
angle simultaneously. Hence this method can normalize 
rotationally symmetric shapes efficiently. 

In the following, we review the normalization 
algorithm developed recently and see why it fails for 
rotationally symmetric shapes. A summary of the 
normalization algorithm is given below. 

(1) Computing the mean vector c and the covariance 
matrix m of the original image 

e = [C~Cy] t (1) 
and 

M = F  u20 u ' l  1. (2) 
LUll UoEd 
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(2) Aligning the coordinates with the eigenvectors 
of M 

x ' l - F  e,x e , , l ~ x - C , l  
Y'J - L -  ely el ,d  LY - Cr]" (3) 

(3) Rescaling the coordinates according to the eigen- 
values of M I::]:[ °l  :lj 

c I L Y  J" 
(4) 

(4) Computing the third-order central moments of 
the compact image, say 

/ /30,  U21, Ul 2~' U03'  

(5) Calculating the tensors t I and t 2 

t 1 = u12 + u30 (5) 

t 2 = Uo3 + u2t. (6) 

(6) Finding the angle ct, which satisfies the following 
equation: 

t 1 
t a n ~ =  t2. (7) 

(7) Calculating the tensor f2 

E 2 = - t 1 sin ~t + t 2 cos ~. (8) 

If/-2 < 0, then ~ = ~t + n. 

(8) Rotating the compact image clockwise by 
angle ~t 

[ ~ ]  [ cosct s i n • l r x "  1 
= - s i n s  cos= jLy"_ l "  (9) 

Thus, we get the normalized image which is invariant 
to translation, rotation, scaling, and skew. 

For the rotationally symmetric shape, the covari- 
ance matrix defined in equation (2) is already equal 
to t!ae scaled identical matrix (the proof is shown in 
reference (7)) and the tensors defined in equations (5) 
and (6) are zero which makes equation (7) unsolvable. 
Therefore, the normalization algorithm proposed pre- 
viously becomes useless for the normalization of the 
rotationally symmetric shape. In this paper, we intro- 
duce a method called "modified Fourier descriptor" 
to normalize the rotationally symmetric shapes. 

The paper is arranged as follows. In Section 2, we 
introduce the theoretical deduction of the modified 
Fourier descriptor. In Section 3, we introduce how to 
realize the modified Fourier descriptor for the normal- 
ization of rotationally symmetric shapes. In Section 
4, we show the experimental results and in Section 5, 
we make a conclusion. 

2. THEORETICAL DEDUCTION F O R  MODIFIED 
FOURIER DESCRIPTOR 

Consider an N-fold rotationally symmetric shape. 
Let p(r, O) denote the signature of the shape at the 

location (r, 0) in the polar coordinate system and 
throughout this section, we take the origin of the 
coordinate system to be the centroid of the shape 

{10 if °bject exists (10) 
p(r, 0) = background 

The characteristic of the N-fold rotationally symmetric 
shape is 

p(r, O) = p(r, 0 + 2nk/N) k is any integer. (11) 

Thus p(r, O) is a periodical signal. 
Let P(f~,f2) denote the Fourier transformation of 

the shape with respect to parameter (r, 0) 

fo: f; P( f  t, f2) = p(r, O)e- J2~f ~°+ :2~) dr dO 
- oo ,  =0 

= f o l  -oo G(f2'O)e-J2=fl°dO (12) 

where 

f 
oo 

G(f  2, O) = p(r, O) e-J2":2' dr. (13) 
r=O 

Since p(r, O) is a periodic function with period 2n/N, 
the function G(f2, O) is also a periodic function with 
period 2n/N, i.e. 

G(f  2, O) = G( f 2, 0 + 21tk/N) where k is any integer. 

(14) 

Therefore, equation (12) may be expanded as a Fourier 
series 

Pt f l , f2 )  = ~, C.(f2)e -i2"'f°° (15) 
n = - - o o  

where 

fo = N/2n is the fundamental frequency 

N ( b2n/N 
C,(f2) =~-nJ  ° G(f2,O)e-J2"f°°dO. 

As shown in Fig. 1, the Fourier transformation of the 
rotationaUy symmetric shape in polar coordinates is 
zero except at the lines f~ = nfo. Let P(f) be the 
Fourier coefficients of P( f t , f2 )  on the line f2 =0.  

f2 

-3fo -2fo -fo 0 fo 2fo 3fc 

Fig. 1. 
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Then 

P(f)  = P( f , ,  O) 

= e - j 2 n f t O  r~ r 

0 = - - ~  L d r = O  

f ~ ~(0) = e - j 2 ~ t f i O  dO 
O= -- o0 

where 

(16) 

(17) 

f 
c¢ 

G(0)= p(r,O)dr. (18) 
r = O  

In fact, the function G(O) may be viewed as a modified 
Fourier descriptor, since it is not a function of the 
boundary of the shape but of the radian angle. 
Therefore, G(O) is also a period function with period 
2n/N 

G(O) = G(O + 2nk/N) where k is any integer. (19) 

Similar to equation (12), equation (19) may be expand- 
ed as a Fourier series 

P ( f ) =  ~ Cn ej2~n$°° (20) 

where 

fo = 2n/N is the fundamental frequency 

N t 2~/N 
C, = ~ J O G(O)e-J2~nf°° dO" (21) 

As shown in Fig. 2, the Fourier transformation of the 
Fourier descriptor G(O) is zero except at the location 
f = nfo. Observing equation (20), the first Fourier 
coefficient C1 is located at the fundamental frequency 
fo. By finding the fundamental frequency, we can 
derive the fold number N of the rotationally symmetric 
shape 

N = 2nfo. (22) 

In the following, we discuss how to use the Fourier 
descriptor to normalize the rotationally symmetric 
shape. Consider a shape as shown in Fig. 3 which is 

Fig. 2. 

Fig. 3. 

rotated clockwise by an angle A around the center of 
mass of the shape. Then the Fourier coefficients in 
equation (21) become 

C., = e J2r~nf°A C n = e - j"Na C, (23) 

where (~, are the Fourier coefficients of the rotated 
shape and C, the Fourier coefficients of the original 
shape. For n = 1, (~1 = e-JNa C1- In other words, when 
the shape is rgtated clockwise by an angle A, the phase 
of the first Fourier coefficient C1 decreases by NA. 
Thus, we may set the criterion of the normalization 
as follows. 

Rotate the rotationaUy symmetric shape around the 
center of mass so that the phase of the first Fourier 
coefficient C 1 becomes zero. This may be done just 
by rotating the shape clockwise by an angle O/N, 
where ~ is the phase of C 1 and N may be found by 
equation (22). 

3. REAL IMPLEMENTATION IN DIGITAL FORM 

In real implementation, we obtain the Fourier 
descriptor G(O) in duration [0 < 0 < 2~], denoted by 
s(O) 

s(O)={ G(O) elsewhere0<-0<2n" (24) 

Let S(f)  be the spectrum of s(O) 

S( f )={,=~_C,t~( f -nfo)}*27rsinc(2rt f )  (25) 

where • denotes convolution and f0 = N/27r. Obviously 

0 when f = n/2rr, but n vs kN 

S(f) = C, when f = nfo = nN/2rt (26) 

non-zero elsewhere 

So, we can find the Fourier coefficients C, by evaluating 
S(f)  at f = nNf o. 

In real implementation by computer, we must 
sample s(O). Let s(n) be the sampling sequence of s(O) 
with sampling interval T~ = 2n/M (where M is the 
length of s(n)) 

s(n)=s(O)6(O-nTs) f o r n = 0 , 1 , 2  ..... M - 1 .  (27) 

Let S(k) be the M-point DFT of s(n) 

M - 1  

S(k)= ~ s(n)e -j2"k/M for k=0 ,1 ,2  ..... M -  1. 
n = O  

(28) 

We may find that the kth coefficient S(k) corresponds 
to the spectrum S(f)  at the frequency f = k/2n neglec- 
ting the aliasing effect. Therefore, neglecting the aliasing 
effect 

0 if k # nN 
S(k)= C, i fk=nN"  

(29) 

If we consider the aliasing effect, S(k) can be given as 
follows. 
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Case 1. M is not a multiple of N 

faliasing component if k ~ nN 
S(k) (30) 

(C. if k = nN 

Case 2. M is a multiple of N 

0 if k ~ nN 
S(k)= . (31) 

C, + aliasing component if k = nN 

By the conclusion in Section 2, the purpose is to detect 
the location of C l (where we can find the fold number 
N) and the phase of C 1 (by which we can normalize 
shape). For  case l, the detection of the location of C a 
is ambiguous, but the estimated phase of Ca is more 
accurate. For  case 2, the detection of location of Ca is 
accurate, but there is little error in the estimation of 
the phase of C 1 . Therefore, there is a trade-off between 
case 1 and case 2. In summary, if the sampling length 
M is not too small, the aliasing effect many be neglected. 
By experiment, we choose M = 256 when the fold 
number N < 10. In this case, we may set a threshold 
which is very small to detect the coefficient C1 from 
the sequences S(k). 

Now, we summarize the normalization algorithm of 
the rotationally symmetric shapes by Fourier descrip- 
tors. 

(1) Verifying whether the input pattern is rotationally 
symmetric or  not. Since the covariance matrix of 
rotationally symmetric shapes is a scaled identical 
matrix, (7) we may apply this property to verify if 
patterns are rotationally symmetric: 

if M = kl the pattern is rotationally symmetric; 
if M # kl the pattern is not rotationally symmetric. 

Note  that the criterion is not strict but is suitable 
enough for real applications• 

If the pattern is not  a rotationally symmetric shape, 
normalize the shape by the normalization algorithm 
listed in Section 1. 

If the pattern is rotationally symmetric, carry on 
the procedure. 

(2) Evaluating the Fourier  descriptor s(n) 

N' 

s(n)= ~, p(i'Ar,2nn/M) for n = 0 , 1 , 2  . . . . .  M -  1 
i = I  

Table 1 

No. i [S(i)/S(O)I 

0 1 
1 0 
2 0 
3 0 
4 7.0280090E - 02 
5 0 
6 0 
7 0 
8 2.1902695E - 02 
9 0 

10 0 
11 0 
12 1.1369203E - 02 
13 0 
14 0 
15 0 
16 6.4240796E - 03 
17 0 
18 0 
19 0 
20 4.4142171E - 0 3  

(a) Rota t iona l l y  s y m m e t r i c  s h a p e  
(b) N o m a l i z e d  image  of f i g . l ( a )  
(c) Rota t ion  of fig. 1 (a) 
(d) N o r m a l i z e d  image  of fig. 1 (c) 

Fig. 4. 
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(a) 

Fourier Descriptor 

64 

48  

f- 

3;!  
C 

r-1 

t6 

i , , , , I . . . .  I . . . .  l . . . .  

51 102 t53  204 255  

M=256 

(b) 

r n  

60~ 

4B 

36 

E4 

t 2  

0 
. . . . .  4 

Amplitude 

8 t 2  

coe f  f i c i e n L  

Fig. 5(a), (b). 

t 6  . . . .  2 0  

where the choice of Ar, N' depends on  application.  
(3) M a k i n g  an  M-po in t  D F T  of s(n) 

M - I  

S(k)= ~, s(n)e -j2~'k/M for k = 0 , 1 , 2  . . . . .  M - -  1. 
sl=O 

(4) Searching the sequence {S(i)/S(O)} with the 
beginning from i = 1 ifS(i)/S(O) > threshold,  then N = i 
and  end  the searching. 

(5) F ind  the phase  of C~ by evaluat ing the phase  
of S(N), say ~b. 

(6) Rota t ing  the shape clockwise by the angle dp/N. 
Thus,  we get the normal ized  shape. 

4. EXPERIMENTAL RESULTS 

(1) Figure 4(a) shows a square  shape which is made  
by computer .  I t  is a rota t ional ly  symmetr ic  shape. The  
Four ier  descr iptor  of Fig. 4(a) is evaluated with 
M = 256 and  shown in Fig. 5(a). Then  we make  a 
256-point  D F T  of the Four ie r  descriptor,  the result ing 
first 20 Four ie r  coefficients are listed in Table  1, and  
plot ted in Fig. 5(b) by dB. Observ ing  these coefficients, 
they satisfy case 2 in equa t ion  (31). 

Table 2 

No. i IS(i)/S(O)I 

0 1.000000 
1 4.0429183E - 03 
2 2.2288881E - 02 
3 9.1571994E - 03 
4 0.1692139 
5 1.4055817E - 02 
6 2.0911200E - 02 
7 4.8770332E - 03 
8 4.3639529E - 02 
9 8.5320082E - 03 

10 1.9210672E - 02 
11 5.4477747E -- 03 
12 5.8793712E - 0 2  
13 1.2609311E - 02 
14 1.9429194E - 02 
15 2.2740040E - 03 
16 1.9058874E - 02 
17 7.1299216E - 03 
18 1.7912557E - 02 
19 4.4469251E - 03 
20 2.9510433E - 02 
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I ~b~ II ~°~ I 

(a) Rotat ional ly symmetr ic  shape  
(b) Nomal ized  image of f ig.2(a)  
(c) Rotation of f ig.2(a)  
(d) Normal ized  image of f ig.2(c) 

Fig. 6. 

(a) 

Fourier Descriptor 

64 

"8 
r -  

O~  

C 32 
o9 

t 6  

0 . . . .  I . . . .  I . . . .  i . . . .  I , , , , 

51 iO2  153 20A 

M=255 
255  

(b) 

6CY 

a8 

36 

r n  
no 

24 

t 2  

0 T 

Amplitude 

T 
c o e f f i c i e n t  

Fig. 7(a), (b). 

12  t 6  
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2O 
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(d) 

0 0 

0 0 

(a) Rotat ional ly  symmet r i c  shape  
(b) Nomal ized image of f ig.5(a) 
(c) Rotat ion of f ig.5(a) 
(d) Normal ized  image of f ig.5(c) 

Fig. 8. 

(a) Rotationally symmetric shape 
(b) Nomalized image of fig.6(a) 
(c) Rotation of fig.6(a) 
(d) Normalized image of fig.6(c) 

Fig. 9. 
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Figure 4(c) is the rotation of Fig. 4(a). 
Figures 4(b) and (d) are the normalized patterns 

of Figs 4(a) and (c), respectively. Observing the two 
normalized patterns, they are the same. 

(2) Figure 6(a) is a rotationally symmetric shape 
which is not made by computer but input by scanner. 
Thus, the pattern is not ideal for rotationally sym- 
metric shapes but there is some noise. 

The Fourier descriptor of Fig. 6(a) is evaluated with 
M = 256 and shown in Fig. 7(a). Then we make a 
256-point DFT of the Fourier descriptor, the resulting 
first 20 Fourier coefficients are listed in Table 2, and 
plotted in Fig. 7(b) by dB. Observing Fig. 7(a), the 
Fourier descriptor is periodic but there is some noise. 
Thus, the Fourier coefficients listed in Table 2 are not 
the ideal case of equation (29). The noise is little 
compared with C1. Thus, we can also detect the 
fold number and then normalize the pattern. 

Figure 6(c) is the rotation of Fig. 6(a) and also is 
input by scanner. 

Figures 6(b) and (d) are the normalized patterns of 
Figs 6(a) and (c), respectively. Observing the two 
normalized patterns, they are the same. 

(3) Figures 8 and 9 are other examples. 

5. CONCLUSION 

Over the years, a large number of recognition 
methods have been developed to solve the distortion 
of translation, rotation and scaling. The matching 
method is very easy and suitable for a large pattern, 
but the method must normalize .an image before 
matching. In this paper, we support the normalization 
algorithm listed in Section I to a more perfect, general 
and realizable state which can normalize the image 

under the distortion of translation, rotation, scaling, 
and skew. Advantages of this method are given as 
follows: 

(1) the method is suitable when patterns are large; 
(2) the normalization algorithm is easy and does 

not need much computation; 
(3) the similarity measure by matching is rapid; 
(4) the searching in the data base is efficient. 

Summarizing the above analysis, image normalization 
is very useful in image understanding systems. 
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