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Abstract--The three-dimensional (3D) motion of a planar surface (or patch) can only be detected from the 
motion of its projected 2D contour or region image on the plane of vision. Acquirement of corresponding 
points is the most important procedure. In the past, many methods of how to find corresponding points 
were published frequently. Affine transformation is used for the matching work. By this transformation, 
the position, orientation and motion of a planar patch can be calculated. Numerical calculation is very 
simple in this method because only the mass moments need to be calculated not iterative or exhausting 
searching. 

Motion analysis Affine transformation Computer vision 

I. I N T R O D U C T I O N  

Detecting the three-dimensional (3D) motion of a 
planar patch from the two-dimensional (2D) motion 
of its projected image is one of the most important 
tasks in computer vision and image processing. One 
of the prevailing approaches is first to detect the 
corresponding points and then to analyze their optical 
flow vectors. ~l-s~ However, it is well-known that the 
correspondence problem is one of the most difficult 
problems in image processing; not only because of 
the discouraging, boring, iterative searching but also 
because its highly noise-sensitive and ambiguous 
characteristics make us feel that a new method to 
detect 3D motion without searching corresponding 
points should be developed. 

From reference (4) an idea was obtained about how 
mass moments were utilized in pattern recognition. 
Then, a new thought came to mind: "Why not use 
affine transformation to get motion parameters? ' 's~ 
So, the method described in reference (4) was modified. 
In later articles, the way of linking affine transformation 
with motion parameters will be shown. Before that, 
details on how the problem of tracking planar patch 
is formulated, will be described. 

When the surface normal vector of a planar patch 
is not parallel to the viewing axis of the viewer (Z-axis), 
the perceived shape on the image plane is skewed. 
However, skewing is not the only case that can happen 
to the projected shape when the patch moves in 3D 
space. Translation, rotation and scaling should also 
be considered. After inspecting the projected shape R 
and R', which correspond to the planar patch before 
and after motion, that there approximately exists an 
affine transformation relationship between the two 
shapes, R and R' is assumed, as shown in Fig. 1. 

In fact, this relationship is just a kind of point cor- 
respondence. 

Because the affine coefficients are easily derived by 
the mass moments of the shape R and R' (shown later), 
iterative searching is no longer required. In addition 
to easy calculation, mass moments have another excel- 
lent characteristic: noise-insensitivity. 

Finally, some details should be especially noticed 
here. 

(1) The reason why the moving rigid body in 3D 
space was restricted to being planar or approximately 
planar was so that the occlusion problem did not 
occur. Only those shapes projected from a planar 
patch can be utilized to do the matching work by 
affine transformation. 

(2) Perspective projection is adopted to model the 
camera. 

(3) In this paper, the use of one camera (monocular 
vision) or two cameras (binocular vision) to track a 
planar patch in 3D space is attempted. 

(4) For simplicity, the projected image should be 
thresholded first to get a bilevel image. Level white for 
the projected shape and black for the background. 

(5) Assume that it is known that the projected shapes 
come from the same planar patch in 3D space (i.e. 
recognition has been done previously). 

2. U S I N G  MASS M O M E N T S  T O  C A L C U L A T E  A F F I N E  
T R A N S F O R M A T I O N  C O E F F I C I E N T S  

As shown in Fig. 1, there are two shapes R and R' 
on the image plane. Both of them can be considered 
as different projected shapes of the same object planar 
patch at different positions and orientations. 

Now, a pixel point p = (x, y) in region R can map 
to another pixel point p' = (x', y') in region R' via the 
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p' = (x', y 3 ~  (shape R') 
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image plane \~ 

F =  (0, 0, 0) 

Fig. I. Geometrical structure of the projected shapes and 
the object planar patch at different positions and orientation. 

following affine transformation: 

(4), it should be replaced by summation operat ion (~) 
in actual processing. 

Here, we define the dispersion matrix M and M '  
just as in reference (4) 

M = Im2o m , , ]  (6) 
Lmx~ mo2d 

M'  = [ ° ?  ° re?x1 (7) 
L rat l rao2 d 

Let ~q ,22 ,EI ,E  2 be the eigenvalues and the cor- 
responding eigenvectors of matrix M. In the same way, 
we also define 2' 1, 2~, E'I, E' 2 of the matrix M'.  Notice 

• x that IIE~II = lIE211 = !IE'I II = IIEhll = 1. 
Let us define matrix E = [E~ IE2] and E' = [E't IE~]. 

Because M and M' are symmetric, we must have 
E~ _1_ E 2 and E'~ _1_ E~ and 2 , 2 2 ,  2'1,2~ > 0 (positive real 
solutions). 

F rom similarity transformation, the matrix M can 
be decomposed into 

°1 M = E E r = Z I Z  T. (8) 
~;,2J 

In the same way, the matrix M' can also be de- 
composed into 

M '  = E'  E 'T = Z ' I Z  'T. (91 
,i'~_j 

Now, in shape R, if we change the coordinate  system 
(I) by P~ and P2 as the two basic vectors and (c~,cr) as 

Because the center point c = (cx, %) of region R must 
map to the center point c'=(c'x,c'y) of region R', 
equation (1) can be stated in a more convenient form 

, b x -- c x x --  c x 

--  cr.J L c 

Our purpose here is to acquire the four affine coef- 
ficients a, b, c, d. 

First, we define mass moments  m~j and m'~# 

rni/= s i l + j j ! ( x  - C x ) i ( y -  ('r)J dx  dy (3) 

1 
m ' , J = S , + j I  ~ ( x ' - - c ' , , ) ' ( y ' - - c ' r ) J d x ' d y  (4) 

(5) 

where (order = i + j) 

moo = ~ ~ dx dy = S, 
R 

c x = ~ x d x d y ,  
R 

c r = S ~ y d x d y ,  
R 

S = det(A)S'. 

m o o = ~  I d x ' d y ' = S  ' 
R" 

c' x = ~ ~ x '  dx '  dy '  
R" 

c'r = S I Y' dx '  dy'  
R' 

According to equations (3) and (4), the mass moments 
of any order can be obtained as required. Although 
integration operat ion (S) is used in equations (3) and 

A 

- ( x ' ~ X ; )  ~ ~ (x', y') 
(cx, %) 

~ (e~, c~) 

shape R shape R' 

~P (coordination transform)/P' 
(Xr. Yr) (x~-. 

normalized shape R r normalized shape R~- 

~ R  / / i d e n t i c a l  shapes 

J 

~ (x*r. y'r) 

rotated normalized shape R'r  

Fig. 2. The process of acquiring affine transformation between 
R and R' from normalizing shapes R r, R~- and R~. 
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From equations 

- -  ('~. 

Comparing with 

the center, the original point coordinate ix, y) can be 
represented by a new point coordinate (xr,y.r), and 
we have a new transformed shape R.~ (as shown in 
Fig. 2). Similarly, we have another new shape R' r from 
R' via P',,P'2 and (,".c',.I. 

And we define the moment mr,~ and the dispersion 
matrix M-r as follows: 

I 
n,r, j = ..~{,~ i I .  ,.,.~ (x.,)'(yr,J dx r dyr  (1 I) 

.V/1 = m72° m l l t  1. (12) 

kmr l  i mrz2J 

The dispersion matrix M and M r  will have the 
following relationship (similar to M '  and M~): 

M = PM.r  Pr. (13) 

Compared with equation (8), we can choose P = Z 
such that the dispersion matrix M r  of the shape R.z 
is equal to the identity matrix I. Similarly, the shape 
R' is transformed to the shape R' r by P', which is 
forced to be equal to Z '  in order to make M '  r = I, 
too. These transformed shapes (like R r and R'r) in 
Fig. 2 whose dispersion matrices are equal to ! are 
here called normal ized  .shapes. 

In spite of the same dispersion matrix 1, it does not 
mean that the shapes R. r and R'-r are really identical. 
In fact, R r differs from Rir just by a rotation angle 0. 
If we rotate the shape R r by this angle 0 and transform 
the shape R r to R ~'~ (as shown in Fig. 21, then R r and 
R~* will be identical. Thus we have 

[;I,TI icon0 .,0D!l (14, 
= L s i n 0  cos0 J L y ; . ]  = LYrA 

.q.J 
( 1 0 ) ,  114) and 1151, we have 

j = P ' R ' P  1[ ' ¢ - c x ]  {16) 
L Y - cy j" 

equation (2) gives 

A = p ' R T p  - t  (17) 

If 0 is known, we can easily calculate all the affine 
coefficients. So here comes a question: "How can we 
know the value of 0T' 

Obviously, the Fourier transformation (FT) and the 
complex log mapping (CLMI are the two appropriate 
choices to obtain 0. In the following, we will provide 
two other methods to obtain 0 without a complex 
value operation and matching process as FT or CLM 
did before. 

(1) The first method is very simple. Let us look at 
the two normalized shapes R. r and R r in Fig. 3. There 
often ex is t s  a point D~ (or Dr) on the outer edge of 

normalized shape R T 

normalized shape R~- 

Fig. 3. Finding the difference angle 0 between CI)~ and 
("DI I" 

R. l (or R~.) such that the distance ..CD t (or IIC'D:, ) 
is maximized. Then we just need to calculate the 
difference angle 0 between CD. r and C'D'. r. 

Careful readers may have found that D r {or Dr) 
does not always exist uniquely. So we especially point 
out the two words: often exist.  

(2) The second method is a little more complex than 
the first. Higher order moments (order = 3) are used 
to solve the rotation angle 0. Because all the mass 
moments mi. / and mlj whose orders are equal to or 
less than 2 will not suffice to fully determine the four 
affine coefficients (in equations (2) and (14t) between 
the two shapes, R and R', there is still one degree of 
freedom (that is O) to be solved. Here we utilize higher 
order moments to solve the last unknown 0. Naturally, 
third-order moments are the best candidates. From 
equations (2)-(4) we have 

1 
m3° = {detlAIl-' [a3n13° -]- 3aZbm21 

+ 3ab2ml2 + h3;n03]. (18) 

From equation (17), the coefficients a , b , c , d  are all 
functions of 0 and then we have to solve equation (18) 
to get 0. Of course, we may have more solutions than 
only one. However, if the object planar patch is not 
so symmetric (e.g. rectangle, square, circle, etc.), most 
of the time we can get a unique solution. Even multiple 
solutions do exist, it is natural to choose the solution 
whose matching ratio is highest to solve the ambiguity. 

Because digitized summation ~ is used instead of 
continuous integration ~', values of mass moments 
cannot avoid quantization error, which makes us feel 
that equation (18) is not as precise as we derive. But 
later experiments will show that the error of the de- 
sired affine coefficients from solved 0 in equation (181 is 
quite small. 

Just as we have discussed previously there are many 
methods to solve 0. Any one of them will suit our 
purpose. 

3. TRACKING A PLANAR PATCH BY TWO CAMERAS 

Information about orientation and position of a 
planar patch in 3D space is the key to track this object 
patch. The goal here is to get this information im- 
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Fig. 4. Geometrical structure of binocular vision. 

mediately when the projected shapes of the object planar 
patch are seen on each image plane of the two cameras 
(see Fig. 4). There were many methods which attempted 
to solve this problem} 2'a~ However, these methods 
look complex. 

Affine transformation still plays a main role in our 
method. Surprisingly, when two cameras are used for 
tracking, acquiring the four affine coefficients becomes 
much easier than using just one camera. When using 
two cameras, there is no necessity to calculate higher 
order moments. 

The two cameras, named camera 0 and 1, are placed 
as shown in Fig. 4. Both of them have the same focal 
length f,  and their focal points Fo and F~ are put at 
(0, 0, 0) and (d, 0, 0). 

Under the rules of perspective projection, a point 
P = (X, Y, Z) in 3D space can project two image points 
(X~°),y t°)) and (xm, y m) (as shown in Fig. 4). We can 
write the following equations: 

(xt°',yt°'):(f)[x, Y] (19) 

(xC~),ytl))=(f)[X-d. Y]. (20) 

It is easy to find tha t /o)  = y,)  for the object point 
P in 3D space, but x cm ~ x m ifd -~ 0. It is easy to find 
that 

fd 
Z - - -  ( 2 1 )  

X (o) __ X (1) 

Z 
(X, Y) = = [xtm,/°)]. (22) 

J 

From equations (21) and (22), we can completely 
recover the 3D coordinate (X, Y, Z) of the point P. 

Now, if this point P is any one point on the object 
planar patch which projects two shapes R and R' on 
two image planes, this point P must project two image 
points (x ~m, ytO)), (x m, ym). Suppose there approxi- 
mately exist an affine transformation between the two 
shapes, R and R', then we will have 

bifx,O,-x,O, 1 
.,'"-.,i"J-- .jL.,o, ,,o, }, J (23) 

o r  

Ly"J dJL/°~J + -cx~°)-d'~°'+/c')J c Yc 

( 2 4 )  

where (x' °', y~c °') = c '°), (x" ' , /c")  = e" '  are the centers 
of the shape R and R'. 

Because of the special structure of these two cameras, 
we h a v e / o ~ =  y~t) for all points in shapes R and R'. 
Then equation (24) should be modified to 

ix,,, l 
From equations (21) and (25), we have 

fa N 
Z = x~O~ x, fi - (1 - a)x 'm- b/°)  b~"  (26) 

Once we know a,b, bx,xt°),/°~, any one point P =  
(X, Y,Z) on the planar patch can be obtained from 
equations (22) and (26). Sometimes, we hope that the 
normal vector of the object planar patch can also be 
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obtained. Substituting equation (19) into equation (26) 

( 1 - a ) X - ( b ) Y - ( ~ ) Z = d  (27) 

we found that equation (27) is just a representation of 
a plane in 3D space and its normal vectors are 

( 1 - a , - b , - ~ )  (28) 

(1 - a )  2 + b 2 -t- 

H e r e  we choose the sign that can make v,z < 0. 
Next, how can we obtain the coefficients a, b in 

equation (25)? Of course, the method described in 
Section 2 can be used. But we also notice that the four 
affine coefficients in equation (23) are not completely 
unknown ( c = 0 , d =  1). We cannot help suspecting 
that there should be a shortcut in solving the last two 
unknowns a and b. From equations (4) and (23) with 
c = 0, d = !, we have the following results: 

b (29) 
m ' l l  = . - m 0 2  + r o l l  

a 

b 2 
m'2o = am2o + 2bmt t + -moz (30) 

a 

1 
m~)2= too2. (31) 

a 

We can solve a and b from equations (29) and (31) 
and get 

t o o 2  a = - - -  (32) 
i 

too2 

b rol l  - - m l t  (33) 
t 

t o o 2  

Once we get a and b from measured moments mij 
and m' o, the normal vector of object planar patch can 
be recovered from equation (28). 

4. TRACKING A PLANAR PATCH BY ONE CAMERA 

Many similar researchers ~t-3} have presented such 
a problem in the past, monocular vision was adopted 
by them. Basically, monocular tracking is quite dif- 
ferent from binocular tracking because there is not 
enough information from just one camera. For this 
reason, some prior information or reference should be 
provided first. In the following paragraph, a new method 
based on affine transformation will be presented. 

First, for the object planar patch, we should know 
its prior information. The so-called prior information 
is only one projected shape Rre f of the objected planar 
patch with known position and orientation (as shown 
in Fig. 6). Now, if the patch moves to another place 
with new position and orientation and then projects 
a new shape Robs on the same image plane, we can 
acquire the desired information of the moved planar 
patch (such as normal vector v,) by comparing the 
two shapes R,cf and Rob,. 

Just as mentioned before, there approximately exists 
an affine transformation relationship between the two 
shapes R,ct and Robs. However, the shortcut described 
in Section 3 cannot be used here because no special 
relationship should exist between these two shapes. 
It means that the affine coefficients here can only 
be determined by the general method described in 
Section 2. 

As known before, a planar patch is completely 
determined if the coordinates of at least three points 
on it are known (not on the same line). Referring to 

camera 0 

0, YO, \ 

I \ 
I x 
! 
I 

I 

l 

\ 
\ 

\ 

Z 

, ,~  B O) 

~ E 0 ) 

shape R'  x 

X 

c. oral 

d 

Fig. 5. Illustration of the structure in analyzing the affine transformation between the shapes R and R'. 
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Fig. 7. Ambiguous solution patches (I and 2) from different 
sets o f ( t t , t  2) with the same set of(Ot,Oz, Ot2) (see Fig. 6). 

Fig. 6 (or Fig. 7), we define the following parameters: 

IJVOll = Zo, ItFAII = Z I  = t l Z o ,  .FB[I = Z2 = t 2 Z o  

/ A F O  = Or, / B F O  = 02, /__AFB = 012 

IIOAII = d r ,  IIOBll =d2,  IIABH =da2 

where O is the center of the patch. 
The points A, B,O are three points on the object 

planar patch and each of them projects a point (A', B', 
O') on the image plane. It is easy to find that the object 
planar patch can be completely determined once the 
parameters t l , t 2 , Z o  are acquired. The question is: 
"How can we get them?" 

Assume that the projected points A', B', O' can be 
acquired by the known affine relationship between 
R,+f and Robs (A, B, O corresponds to Ao, Bo, Co which 
were previously chosen in the reference patch, see 
Fig. 6). We also assume that the distance (d , ,d2 ,d ,2)  
is also known from prior information. From the three 
triangles & F O A ,  & F O B ,  & F A B  (see Fig. 7), and 
applying the cosine theorem, we have 

(k) 2 = t~ - 2tl cos01 + 1 (34) 

(ak) 2 = t 2 - 2t 2 cos 02 + l (35) 

(bk) 2 = t 2 - 2t2t I cos 012 + t 2 (36) 

where we define k = d , / Z  o, a = d2/dt,  b = d l z /d l .  
Although there are three unknowns k 2, t t, t2 in three 

equations, it is very hard to solve them by brute force. 
For simplicity, we further assume a = 1, L A O B  = 90 °. 
This assumption is easily fitted if we properly choose 
the three points Ao, Bo, Oo in the reference patch. From 
the above assumption, we have OA Z OB and then 

t l t2cosOt2- - t xcosO2- - t l eOSO l + I = 0  (37) 

when cos0t2 # cos0t cos02, we have 

! -- t t cos 0 t 
t2 = cos 02 - tt cos 0,2 (38) 

when cos012 =cos01 cos02, we have 

(tt cosOt - l)(t2 cos 02 - 1)=0.  (39) 

Substituting equation (38) into equations (34) and 
(35), then we have 

a+t+t +a3t~  +a2t2t + a t t  I + a o = O  (40) 

where 

17/4 ----. COS2 012 

a 3 =  _2COS02COS012_2COS0  lcOS 2012 

a 2 = 6 cos 01 cos 02 cos 012 + c0s2 02 - c0s2 01 

a i = - 4 cos 01 cos2 02 _ 2 c o s  02 COS O 12 + 2 COS 01 

a o = 2cos 2 0 2 -  1. 

Solving equation (40) to get it; and from equations 
(38) and (34), we can acquire t 2 and Zo (from k). Then 
the position and orientation of this object planar patch 
are now known! 

Because equation (40) is a fourth-order equation of 
tt ,  it seems that t t has four solutions. But in a practical 
situation, only two or three solutions are reasonably 
adopted (it must have t I > 0, t2 > 0). 

Careful readers may have found that there can be 
many solutions to t 1, which means that we may get 
two or more ambiguous tracking results as shown in 
Fig. 7. c7~ Can the correct solution be distinguished 
from the wrong ones? Because affine transformation 
is used to approximate the matching result between 
the two shapes, gref and Rob,, and it needs a more 
accurate matching to solve the ambiguity, we do not 
think that affine transformation is accurate enough 
to disambiguate them. 
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5. FROM POSITIONS AND ORIENTATIONS OF AN OBJECT 
PLANAR PATCH TO OBTAIN MOTION PARAMETERS 

BETWEEN TWO DIFFERENT TIMES 

If we can separately obtain the positions and orien- 
tations of the moving object planar patch at two 
different times (t o and t~), it is easy to acquire the 
motion parameters of this moving patch, binocular 
vision is used here because we do not want to discuss 
ambiguity from monocular  vision. 

The object planar patch at t -- to projects two shapes 
R o and R. on cameras 0 and l, and the same planar 
patch at t = tl also projects two shapes R o and R'~ 
on the two cameras. We can get the normal vector us 
and center (Xo, Yo, Z o) at t= to  from the method 
described in Section 2. Similarly, we can also get u~ 
and center (X' o, Y'o, Z'o) at t = t 1 . Now, we randomly 
choose a point A on the object planar patch at t = 0. 
This point A corresponds to another point A' on the 
object at t = t~. Then we define 

OA O'A' 
U I = - -  . ~ U '  1 - -  

"OA' II O'A' II 
U 2 = n 3 X I I  1 : Ul2 = U3 X U' 1 

and 

U = [u ,  luz lu3 ]  (41) 

L:' = [u; l u'2 lu' 3 ]. (42) 

Then a point  P = IX,  Y, Z )and  its corresponding point 

Fig. 8. Four example shapes with the relation of atline trans- 
formation. All cameras with the same focal length [ = 0.25 m. 

P'  = (X', Y', Z')  must have the following relationships: 

iixo I ,xo  I tx Y'o = U ' U - ' | Y - Y o ]  =R  Yo • 

L - oj L z,,j 
(431 

The matrix R is the desired rotation matrix (R is a 
Hermitian matrix). 

6. EXPERIMENI" 

In the following paragraph, we will present three 
experiments. The first experiment tests the method 
described in Section 2. The second experiment tests 

Table 1. Results of experiment A 

Affine trans. Real affine matrix Est. affine matrix Match ratio 

S,,-.,S, [ 0.5829 -0.4879] [ 0.5830 -0.4990"] 0.9876 
0.4720 0.4879 0.4797 0.4861 J 

S°-*$2 V 0.7272 -0.0849] [ 0.7376 -0.0806] 09815 
L-03087 O. lJ L - 0 3 , 8 3  0.6106, 

S,,-,S., [ 0.2893 -0 .4060] [  0.2945 -o.4,681 0.9709 
0.3447 0.3407 J 0 . 3 6 4 7  0.3380.J 

(al (b) 

Fig. 9. (a) Binocular tracking test: projected shapes of the same object planar patch with different positions 
and orientations on camera 0. (b) Corresponding projected shapes on camera I. 
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(a) (b) 

Fig. 10. (a) Monocular tracking test: R,,f: placed at (0,0, 1), orientation at (0,0, - 1). (b) Different Rob s. 

Table 2. Results of experiment B 

Patch Real center Real orientation Error 
at time [Est. center] [Est. orientation] angle 

t i (0.200, 0.000, 2.600) 
[(0.201,0.000,2.591)] 

t 2 (--0.100,0.000, 1.700) 
[ ( -  O. 100, 0.000, 1.698)] 

t 3 (0.100, 0.120, 1.550) 
[(0.101,0.120, 1.547)J 

t4 (0.000, - O. 180, 1.470) 
[(0.00 I, - O. 180, 1.468)] 

t S (0.200, - 0.220, 1.500) 
[(0.202, -0.221, 1.499)] 

(0.000, 0.000, - 1.00) 0" 
[(0.000, 0.000, - 1.00)3 
(0.087, 0.291, - 0.953) 1.05': 
[(0.069,0.295, -0.953)] 
( - 0.839, O. 177, - 0.515) 1.22" 
[( - 0.830, O. 167, - 0.532)] 
( -0 .891 , -0 .110 , -0 .441 )  1.73 
[(-0.881,  -0.094, -0.464)] 
( -0.799, -0.362. -0.481) 0.77' 
[( - 0.798, - 0.352, - 0.489)] 

Table 3. Results 

Patch Real center 
at time [Est. center] 

of experiment C 

Real orientation Error 
[Est. orientation] angle 

t I (0.200, 0.240, 2.000) 
# I [ (0.195, 0.234, 1.952) 
#2 (0.195,0.235, 1.955)] 
t2 (0.170, - 0.220, 2.500) 
#1 [(0.164, -0.209,2.390) 
#2 (0.164, -0.209, 2.395)] 
t3 (0.000, 0.000, 1.800) 
#1 [(0.000, 0.000, 1.752) 
#2 (0.000, 0.000, 1.752) 
#3 (0.000, 0.000, 1.752)] 
t ,  ( - 0.240, - 0.230, 1.780) 
# 1 [ (  - 0.236, - 0.224, 1.747) 
#2 (--0.231, -0.219, 1.711)] 
ts (-0.160,0.150, 1.500) 
#1 [(--0.155,0.146, !.463) 
#2 (--0.155,0.147, 1.466)] 

(0.00O, 0.00O, - 1.00) 0.0 ~ 
[( -0.000, 0.000, - 1.00) 68.8' 
(0.000,0.000, - 1.00)] ~- 2.24 '~ 
( - 0.309, - 0.432, - 0.847) 0.0 ~ 
[( - 0.263, - 0.458, - 0.849) > 3.02: 
(0.114,0.601, -0.792)] 67.9' 
(0.000, 0.000, - 1.000) 0 ~ 
[( -0.000,0.000, -0.999) D0.85 ~ 
( - 0.045, - 0.006, - 0.999) 2.74 ~ 
(0.006, - 0.045, - 0.999)] 2.75 ° 
(-0.259,  -0.483, -0.837) 0 ~ 
[(-0.255,  -0.487, -0.836) >0.32 ° 
(0.453, 0.665, - 0.594)] 86.6 ° 
( - 0.656, - 0.040, - 0.754) 0 ° 
[(0.806, --0.106, -0.582) 85.1 ° 
( - 0.662, - 0.080, - 0.745)] D 2.4 ° 

the  m e t h o d  m e n t i o n e d  in Sec t ion  3. The  th i rd  exper-  
imen t  tests  the  m e t h o d  desc r ibed  in Sec t ion  4. All the  
s imula t ion  results  cons ide r  q u a n t i z a t i o n  effect. Real  
answers  are  c o m p a r e d  wi th  e s t ima ted  results.  

(A) T h e r e  are  four  shapes  in Fig. 8 (size: 256 x 240). 

They  are  So, S t ,  $2, $3. 
(B) In this expe r imen t ,  we use two  camera s  to t rack  

a m o v i n g  objec t  p a t c h  (at t = to). Here ,  Fig. 9(a) s h o w s  
the  image  p lane  o f  c a m e r a  0, Fig. 9(b) the  image  p lane  

of  c a m e r a  1. T h e  objec t  p l ana r  pa t ch  at  five r a n d o m l y  
chosen  pos i t ions  is cons idered .  At  each  t ime t = ti, the  
ob jec t  pa t ch  pro jec t s  two  shapes  St and  S'~ on  camera s  
0 a n d  1 (bo th  Figs  9(a) a n d  (b) are  256 x 240 pixeis). 

Non l inea r i t y  f rom perspec t ive  p ro jec t ion  affects ou r  
t r ack ing  results  the  most .  W h e n  this factor  ou t s t ands ,  
our  t racking e r ror  angle grows  rapidly to abou t  6 ° -  10 °. 
However ,  w h e n  this factor  is no t  appa ren t ,  the  e r ro r  
angle  is r educed  to a b o u t  00-3  ° . 
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(C) In this experiment, we use only one camera to 
track an object patch. Figure 10 (256 x 240) shows five 
projected shape Si from different positions of the same 
planar patch at time t = t~. 

Notice that we have multiple solutions for each 
patch Ti, and only one of them corresponds to the 
correct answer. 

7. CONCLUSION 

In this paper, we present two methods to track an 
object planar pa tch--monocular  tracking and bin- 
ocular tracking. Both of them are based on affine 
transformation which makes the matching process 
become much easier than it used to be. For this reason, 
our methods seem to be easier than others. 

Finally, there is still one thing to be emphasized. 
Because affine transformation is a linear transformation, 
any nonlinear factors will affect our results. Non- 
linearity from perspective projection has the most 
threatening effect on the accuracy of matching from 
affine transformation. To reduce this crisis, the size of 
the projected shape should be confined to a suitably 
small range. However, it should not be too large or 
too small. On one hand, a too large shape makes the 

nonlinearity from perspective projection outstand; on 
the other hand, a too small shape forces the inference 
from quantization error and noise to grow up. Neither 
of them should happen! 
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