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Abstract--For the time being, many methods about how to solve the motion and structure of a rigid object 
in 3D space by using point or line correspondences have been widely researched. In this paper, the projected 
2D image shapes of planar patches in 3D space are used as our basic image features. We try to determine 
the motion parameters and plane equations of planar patches in 3D space from the relationships among 
their observed image shapes. Besides, scaled-orthographic projection is used instead of the original perspec- 
tive projection because of its simpler and tractable mathematical formulas. Not only a closely-approximate 
model to perspective projection, it further solves the inherent depth indeterminacy which exists in ortho- 
graphic projection. Moreover, after applying a pre-processing of.rotation correction to the original image 
data, our estimation result can achieve a better numerical solution than that without this pre-processing. 
Simulation experiments show the excellence of our algorithms in estimating the motion parameters. 
Ambiguities, indeterminacy, and data degeneracy are also carefully discussed in this paper, which provides 
some important insights to the problems. 

Planar patch Affine transformation Shape normalization Perspective projection 
Orthographic projection Scaled-orthographic projection Ortho-perspective projection 

1. I N T R O D U C T I O N  

Determination of the 3D structure and motion of a 
rigid object from its projected 2D image features (points, 
lines, or contours) is one of the most important tasks 
in computer vision. Most existing studies adopt per- 
spective projection which is known to be one of the 
most suitable models for formulating the phenomenon 
of camera projection in real applications. 

where (x, y) is the image of a point (X, Y, Z) in 3D space 
(see line l in Fig. 1). However, no matter how good it 
is, some inherent limits still exist when we want to 
uniquely recover the motion and structure ofa 3D rigid 
object whose size is relatively small when compared 
with the object-to-camera distance. 

As a well-known fact, the most important reason 
why the algorithms using perspective projection can 
often uniquely solve the motion parameters is based 
on the depth-dependent character of projective projec- 
tion. Once this character cannot be clearly observed 
from the input image data (i.e. when the object size is 
comparatively small to its depth), these algorithms will 
fail because their solutions (although unique) are very 
sensitive to the observation errors. On the other hand, 
these algorithms are often complex and time-consum- 
ing because of the nonlinearity of perspective projec- 
tion. It means some nonlinear searching method may 
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be introduced in these algorithms. Perhaps, for lineariz- 
ing these nonlinear equations, several rigidity con- 
straints are sometimes relaxed and the input data are 
thus over-used to solve some intermediate variables 
which are in fact dependent on each other. Both of these 
shortages should be avoided as much as possible. 

In order to solve the problem of weak depth-depen- 
dent character of a far (or equivalently small) object, 
several simpler projection models are proposed/~1 
Here (X, Y,Z) ~ is the 3D coordinate of a point, and 
(x, y)r is its projected point on the image plane. 

1.1. Orthographic projection 

The value k is a scaling constant which will not be 
changed during the motion of the target (see line 2 in 
Fig. 1). This projection is used when the following two 
constraints are satisfied: (1) the target is placed far 
enough away; (2) the depth change resulting from motion 
will not substantially affect the apparent size of its 
images. That is to say, it does not consider the depth 
change during the motion of the target. Some related 
researches (2-13) were proposed in the past years. 

1.2. Scaled-orthographic projection 

This projection is proposed for further considering 
the change of apparent size of image during the motion. 
It is defined as 
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Fig. 1. Four kinds of projection models. P is a point on the object, c is an appropriately-defined center of 
the object. Lines 1-4 separately represent the perspective, orthographic, scaled-orthographic, and 

ortbo-perspective projection. 
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Fig. 2. Lines 1 and 3 separately represent the perspective projection and scaled-orthographic projection of 
a point P. It can be clearly observed that the perspective projection is better approximated by scaled- 

orthographic projection when the object is placed far from the camera or near to the Z-axis. 

where Z, is an appropriate positive value which depends 
on the depth of the observable parts of the target object 
in 3D space (see line 3 in Fig. 1). For  example, the 
projective depth Z r may be the Z-value of the object's 
center. Scaled-orthographic projection has a larger 
working depth range than that of orthographic projec- 
tion. So, it is a better model. Besides, from Fig. 2, it is 
easy to observe that scaled-orthographic projection is 
closer to perspective projection when the object is 
placed farther away from the camera or nearer to the 
Z-axis. 

1.3. Ortho-perspective projection 

Before we introduce it, we define a plane H which 
passes through the center c of the observable parts of 
the target object; the normal vector of this plane H is 

parallel to the viewing direction FC (see line 4 in 
Fig. 1). The projection is described as follows. First, 
along the direction of FC, the point P = (X, Y, Z) T 
projects a point P2 = (X', Y', Z')  T on the plane H; then 
we define the image point (x, y)T as 

z' k Y'd (4) 

Obviously, the ortho-perspective projection is a ro- 
tated form of scaled-orthographic projection. It is a 
much better model because it further considers the 
off-axis property (see Fig. 2). Although its mathematical 
formula seems complex, it is not hard to use. For example, 
we can suitably rotate the coordinate system such that 
the viewing direction FC is lying on the new Z-axis, 
and the simpler formula of scaled-orthographic projec- 
tion can be applied in the new coordinate system. 
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Fig. 3. Formulation of problem (I). Determine the position of Pobs by using the relationship between Sr~f 
and SoB~. Here the position of the reference patch Pref is known as prior information. 

In this paper, we try to solve two closely-related 
problems ((I) and (II)) about how to determine the 
motion and position of a planar patch (or patches) in 
3D space by using scaled-orthographic projection. 
References (14-20) are some related researches about 
using planar patches. Readers can see how the scaled- 
orthographic projection simplifies the mathematical 
derivations and makes a fairly-good estimation. 

As a well-known fact, there exist some indetermi- 
nacy and ambiguities in orthographic projection. The 
scaled-orthographic projection has similar problems, 
too. In this paper, we will discuss how these indeter- 
minacy and ambiguities happen. 

Our paper is organized as follows: Section 2, the 
problem formulation and main algorithm of problem 
(I). Section 3, the problem formulation and main algor- 
ithm of problem (II). Section 4, discussions about the 
indeterminacy, ambiguities, and some degenerate 
cases. Section 5, simulation experiments. Section 6, 
final conclusion. Finally, the appendixes show (1) some 
basic relationships of an orthogonal matrix especially 
used in scaled-orthographic projection; (2) the methods 
of acquiring an affine transformation with or without 
correspondences. 

Before leaving this section, we must emphasize one 
thing: We derive our algorithm by scaled-orthographic 
projection because we want to model the projective 
geometry in a simpler way. Of course, this adopted 
model should be as close to perspective projection as 
possible for fitting the practical use. Therefore, solving 
the general problems (i.e. done by perspective projec- 
tion) by using a simpler and well-approximate model 
is our most important goal. 

2. FORMULATION AND ALGORITHM FOR PROBLEM (I) 

2.1. Problem formulation 

Problem (l) is formulated as follows (see Fig. 3t: 
Assume that a reference planar patch Pref, placed at a 
known position and orientation, projects a shape Srof 
on the image plane by perspective projection. After 
applying an unknown 3D rotation R and translation 
T to Pr~r, the new patch Pob~ projects another 2D shape 
Sob~ on image plane by perspective projection, too. The 
new patch Pobs is placed far enough away such that the 
scaled-orthographic projection approximates the per- 
spective projection quite well. Besides, we also assume 
the recognition problem has been solved previously. 
Now, our problem is: "Can we estimate the unknown 
position and orientation of the patch Pobs from the two 
projected shapes Sre f and Sobs by using the scaled-ortho- 
graphic projection?" 

2.2. Relationship between Sr~r and Sob.~ 

Without loss of generality, the camera coordinate 
system is considered as the global coordinate system. 
If a point Po on the planar patch Pr~ is denoted by 
Po = (Xo, Yo, Zo) T, and its corresponding point P in 
Pobs by P = (X, Y, Z) T, we can define a coordinate trans- 
formation between these two points by 

P = R P  o + T (5) 

where R is a 3 × 3 orthogonal matrix; T is a 3 × 1 
translation vector. 

For the special use of scaled-orthographic projection, 
it is convenient to separate the rotation matrix R and 
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translation T into the following forms: 

E 1 I'l R* rl  ; T =  (6) 
R =  r~ r3 /  T 3 

where R* is a 2 x 2 matrix; r~,r2, and T* are 2 × 1 
vectors; 7"3 and r 3 are 1 x 1 constants. 

If the reference patch Pfef is lying on a plane charac- 
terized by 

noxXo + nor Yo + nozZo = ko = no'Po (7) 

then the target patch Pobs must be lying on another 
plane characterized by 

nxX + nr Y+ nzZ = k = n" P = (Rno)-(RPo + T) (8) 

(Inol- Inl--- 1). 
Although the exact relationship (i.e. by perspective 

projection) between the two projected shapes S,,f and 
Sob, can be easily obtained by substituting equation (7) 
and the formula of perspective projection equation (1) 
into equation (6), its mathematical formula is too com- 
plicated for us (ignored here). Because the target patch 
Pot~ is placed far enough away, we may use scaled-ortho- 
graphic projection model instead of perspective pro- 
jection model to approximate the relationship between 
S,er and Sob~. After substituting the definition in equa- 
tion (3) and the plane equation in equation (7), we have 

, ,) 
LYoJ 

where q~=(nox, nor)/noz and k'o=ko/noz; ( x , y ) =  
(X, Y)/Z,, (xo, Yo)=(Xo, Y0)/Z,o; Z, and Zro are two 
appropriate positive values. We may define the pro- 
jective depth Z, (or Z,o) to be the Z-component of the 
center of the planar patch Pobs (or Pref)" 

From equation (9), we know there approximately 
exists an affine transformation between the two pro- 
jected shapes Sref and Sobs. Without loss of generality, 
let us consider a special case when the known reference 
patch P~¢r is lying on a plane Z o = k o = Z,o and its 
center is located at (0,0,Z,o) r. Then the affine par- 
ameters A and h in equation (9) can be written in a 
simpler form: 

R * =  = - - -  rt. (10) 
A; z,0 \Z,o/ Z,o 

In Appendix B, we propose a method which can 
solve the affine parameters, A and h, without using 
point correspondences. In the following derivations, 
we assume the affine parameters have been obtained 
previously. 

2.3. Determine the rotation matrix 

For a more convenient description, we define several 
unit vectors as follows: 

r I F2 

where 

According to the orthogonality of the matrix R, we 
can decompose R* into the following form (the details 
of derivations are listed in Appendix A): 

R ,  = [-~ll~lL-][ - r 3  0]F~T ] 0 _ljL~j=usvT. (12) 

Therefore, from equation (I0), AA T and ATA can be 
decomposed by 

AAT = U [ ( ~ ° ) 2 S 2 ] U T ;  ATA = V [ ( ~ ' ° ) / S 2 ] V  x • 

(13) 

If we assume that the two eigenvalues of AA T (or 
AXA) are 21 and 2z, and they satisfy 0 < )-1 -< 22, it is 
easy to obtain 

• ,~1 
r 3 = s l g n ( d e t ( A ) ) ; ( ~ ) ;  c =  / ( 1 - ( ~ ) ) > 0  

(14) 

and 

rl = c~1 = c(6u0; 
Z, 1 

r2 = c~2 = c(6v0; - - -  > 0 
Z,o ~/22 

(15) 

where the vector u~ (or vl) is the first column vector of 
U (or V); 6 is either 1 or - 1. Readers should pay great 
attention to the signs of the matrices U and V obtained 
by equation (13). These signs should satisfy equation 
(12) simultaneously. 

From the results derived in equations (14) and (15), 
two answers of the rotation matrix R are obtained. 
One of them is the correct answer, and the other one 
is the reflection answer• 

2.4. Determine the translation 

First, we determine T* from equation (10) 

T* = Z,b - Z,orl. (16) 

Because the center point Co = (0, 0, Zro) of the refer- 
ence patch Pref corresponds to the center point C = 
(Cx, Cr, Cz = Zr) of the target patch Pobs, we have (from 
equation (5)) 

T 3 = Z r -  r 3zro. (17) 

The plane equation of the target patch Pob~ can be 
obtained by using equation (8). Now, we finish the task 
of solving the problem (I). 

3. FORMULATION AND ALGORITHM FOR PROBLEM (!I) 

3.1. Problem formulation 

Consider a rigid object moving (including rotate and 
translate) in 3D space. This object is also positioned 
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Fig. 4. Formulation of problem (II). There are N patches observed at three time instants by a camera. The 
jth planar patch P~j at time t~ projects a 2D shape S~s on the image plane. We try to determine the motion 
parameters and structure of these planar patches by using the relationships among the projected shapes S~ss. 

far enough away such that the scaled-orthographic 
projection can be used to approximate the perspective 
projection. 

On this object, there are N planar patches which can 
be observed at three time instants to, tl, and t2 by a 
steady camera (see Fig. 4). The j th planar patch at the 
time instant t~ is denoted by P~j. This patch P~j projects 
a 2D shape named S~j on the image plane. The cor- 
responding motion parameters including 3D rotation 
and translation of the object at different time instants 
are defined in Fig. 4 (rotation R, S, W; and translation 
T,U,V). 

Now, the problem is: "How to estimate the motion 
and structure of the rigid object by using the approxi- 
mate affine transform relationships among the cor- 
responding image shapes So j, S~j, and Szj (for j = 1 to 
N)?" 

3.2. Definition o f  variables 

We first define the approximate affine relationships 
among the corresponding shapes S0s, S~j, and S2j (index 
j is neglected in equations (18)-(20)) 

Fx .7  [-[Xi2]=yi2 A A i 2 i ' [ Y i l J  + bizh (18) 

where A~,  and 6~2 . are the affine parameters from time 
ti~ to ti2; (xi, yi) T is the corresponding image point at 
time t~ which is projected by scaled-orthographic pro- 
jection 

ix, 7 1 7 ]  ,19, 
Yi = Z , i  Y, " 

Z,i is an appropriate positive constant defined at time 
t~ which is similar to the projective depth Z, described 
in equation (3). Here, the Z-component of the centroid 
C i = (Cix  , f l y  , Ciz) T of the N planar patches Pijs at a 
fixed time t~ is defined to be the projective depth Z,~. 

The plane equation for the j th planar patch P~ at 
time t~ can be written as 

nix X i q- niy Yi q- nizZi = ki. (20) 

For  the convenience in description, the rotation 
matrices R, S, and W are similarly segmented as we 
have done in equation (6). (For examples, S*, W*, sl, s 2, 
w l, w2, s3, w 3 . . . .  , etc.) Similar to equation (15), we also 
define the unit vectors g~, s~, ff~ . . . .  , etc. 

3.3. Solve the rotation matrices 

From the derivation in equation (9), we have the 
following formula: 

where qo = [nox/noz, nor/noz] T. 
Pre-multiplying both sides of equation (21) by (f~)T, 

we have 

/ Z , 0 \  A± T (r~I)TAIo=(Zr°~[('~)TR*-I=--~Zrl)(r2)~Zrl, ] (22) 

where the relation (f~-)TR* = __(f~-)T is explained in 
Appendix A. 

Equation (22) can be further rewritten as 

(AToJ)ii + J ( Z ' ° f E ) = O .  (23) 
\z ,~  / 

To the other affine matrices A2a and A2o, we can 
derive their relationships by using similar equations 
like equations (21) and (22). 

(AT1J)Sl -1- J ( L e l s 2 ~  = 0 (24) 
\z,2 / 

+ 0 (25) 
\Zr2 / 

For thejth planar patch at three time instants (to, tl, 
and t2), we have three sets of equations--equations 
(23)-(25). If the number N of the planar patches is 
larger than one (N _> 2), the vectors il ,12,$1,i2,11, 
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g'2, and the relative depths Z r l / Z r o  , Zr2/Zro can be 
easily solved. Notice that the solved normal vectors 
(f~,f2,~l . . . . .  etc.) are still subject to a sign value +1 
or - I. 

From the derivations in Appendix A, we separate 
the rotation matrices R, S, and W by 

= r  -r3~l ~T - ~IZ (~2Z)T brl] (26) 
R L C~.X r3 

S = [ --S3SlST -- SlJ- ( S 2 Z ) I k s  T kSs31 ] (27) 

- [  - w3~'~2T- ~ (~v21)r P w ' I  (28) 
W -- L PI~2 T W3 / 

where c=6~1c1, k= (~klkl, and p =  ~plpl; 6c,(~k, and 6p 
are either + 1 or - 1 .  Obviously, the undetermined 
signs of the solved unit vectors in equations (23)-(25) 
are included in the values of c, k, and p. 

Because these rotation matrices must satisfy W = SR, 
we have 

W *  = S ' R *  + s I rr: (29) 

W 1 = S*r 1 -t- r3s I (30) 

w~ = s~R* + s3rz t (31) 

W 3 : STrl + s3r 3 = (kC)~T2rl + s3r 3. (32) 

After substituting the R* and S* in equations (30) and 
(31) by the forms described in equations (26) and (27), 
we have 

[---kr3(sTrt) + CS3]Sl -1- [--k(gXff)]gl  ~ = P~t (33) 

[ -- CS3(sTF1) -~ kra]PI + [ -  C((~)Te 1)] (r2 j-)T = p , T  

(34) 

If we separately dot (inner product) equations (33) 
and (34) by D~ and f~, we can solve c and k in terms 
ofp. 

/ -*I+f \  t35) 

Next, we separately dot equations (33) and (34) by 
Sa and f2; then we will have two linear equations of the 
two unknowns r 3 and s3 as follows: 

(fl)r3 + (--~s2Trl)S3 = (w1Tsl); 

( -  fl~zwf,)r3 + (~)S3 = (~zt P2)- (36) 

It is easy to uniquely solve r 3 and s 3 by equation 
(36). And from the orthogonality of R and S, we have 
]cl = x/(1 - r~) and Ik[ = x/(1 - s~). Besides, ]Pl is equal 
to Ikl/I/71 or Icl/l~l. 

However, once 6p is determined, the exact values of 
c and k can also be uniquely determined by the relations 
c = ~p and k = tip. Then from equation (32), we can 
uniquely decide the value of w 3 by 

W 3 = sTrl + s3r 3 = (~flp2)~Tf 1 + s3r 3. (37) 

Now, with the known values c, k, p, r3, s 3, and w 3, 
we can acquire the rotation matrices R, S, and W, which 
completes the task of finding the rotation matrices. 

Before leaving this section, two things must be 
noticed: (1) 6p is still undetermined. Thus, two ambi- 
guous solutions must be discussed. (2) Although we 
successfully solve the rotation matrices, it does not mean 
that the solved rotation matrices may always satisfy 
the characteristics of an orthogonal matrix exactly. It 
is because the affine matrices A+2~, are approximate 
results. Hence the final estimation should be slightly 
modified for satisfying the orthogonal constraints. 

3.4. Solve the translation and the plane equation for Poj 

First, from equation (21), qo can be determined (index 
j is neglected in equations (38) and (39)) 

qTo = lc [ - ( Zrl ~('~ Alo) + ('~R*) Z,o/ (38) 

and the orientation vector no of the planar patch Poj is 

no = (nox ' nor, noz)T _ (q0x, q0v, 1) T (39) 
x/(q~x + q2y + 1)" 

Of course, the orientation vectors (nl and n2) of the 
planar patches P u  and P2s are equal to Rno and Wno. 

Now, we want to determine the translation par- 
ameters T and V. If the center of the planar patch Pq, 
is denoted by C~j, the average center C~ of the N planar 
patches Pu at a fixed time t+ is defined as 

u ( au \ 
C, : Z [ ~ / Cu (40) 

Za'? 
where a u is the area of the planar patch Pu" On the 
other hands, if the center and the area of the projected 
image shape S u is separately denoted by % and alj, 
equation (40) can be rewritten in a new form (under 
the scaled-orthographic projection) 

Ci = L [  ( _ a ~ ) [ Z , ~ c q ]  (41) 

j=l  j~l (aij/Inij'zI)TL- Cij 'z-I  

where the Z-component of C~ has been defined to be 
the projective depth Z,g at time q, no, z is the Z-com- 
ponent of the orientation vector n u. 

We may define an average image center c~ at a fixed 
time ti by 

U (a,ij/inij.z]) 
c i=  ~ N %. (42) 

j=t Z (a'u/Inu.zl) 
1=1 

So we have 

 43, 

Because C~ = RC o + T and C2 = WC0 + V, we can 
easily determine the translation vectors 

v z, F- 1 1 T - Z "  r e l ] - - R  ; - - W  . 
Z,o Z , o k l J  Z,o Z,oL1 

(44) 
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Until now, we have solved the rotation matrices R 
and W, translation vectors T/Z,o and V/Z,o, normal 
vector noj of the planar patch Poj. The final unknown 
is the position vector of the center Co; of the planar 
patch Poj. Because the relationships Clj = RCo~ + T 
and C2~ = WCoj + V should be satisfied, we have 

Cij.z _J L Coj.z 

Z'2Czjl = W IZ '°e°J]  + V. (45, 
C2j.z J t_ Coj.z J 

Then the value Co~.z/Z,o can be easily solved by 
using 

(Z~t~ fCoi.z~ + ( T * ) ( 4 6 )  

and CoflZ,o = (Co j, Coj,z/Z,o) T. 
Now, the whole work is complete. 

4 .  D I S C U S S I O N  

4.1. Indeterminacy 

The so-called indeterminacy here is defined to be 
the quantity that is impossible to be determined only 
from the input image data. For example, the Z-corn- 

ponent of the 3D translation vector is an irrecoverable 
quantity if orthographic projection is used. However, 
there is no indeterminacy in scaled-orthographic pro- 
jection/fthe projective depth Z, has been appropriately 
defined. For examples, let us consider a rigid object 
which is translating in the direction of the Z-axis (see 
Fig. 5). If the projective depth Zr is a constant which 
will not be affected by the depth of the rigid object, all 
of the projected images will be the same regardless of 
the object's depth. So the depth of the object is now an 
indeterminacy. On the contrary, if Z, is defined to be 
the Z-component of the object's center, the change of 
object's depth will induce different images. So there is 
no indeterminacy any more. 

Notice that the inherent indeterminacy of true values 
for monocular vision is not considered here. For 
example, all we have are relative answers such as T/Z,o 
and Z,t/Z,o, not true values like T and Z, t. In problem 
(I), we can obtain the true values because the value of 
Z,o is known as prior information; however, in problem 
(II), only relative values are obtained because we do 
not know the exact value of Z,o. 

4.2. Ambiyuity 

The so-called ambiguity is the case when the image 
data cannot distinguish several obtained answers and 

• (X,Y,Z) (X,Y,Z+at_. ] _ _ (_X,Y,Z+a_2 ! 

Z axis 

I \-x: I "--r--7-" " - - ' -  

image plane ' 
Z=Zr 

Fig. 5. Indeterminacy of depth in scaled-orthographic projection. Once the projective depth Zr is fixed, 
any point on the line which passes through a fixed point (X, Y, Z) and parallel to the Z-axis will project to 
the same image point (X/Zr, Y/Zr). Therefore, if all the points on the rigid object translate a random distance 

to the direction of the Z-axis, their projection image will not change. 

#2 structure I #1 structure 
[ - - -  

~ ~eflectio, to 

~ Z axis 

image plane Z=Z r 

Fig. 6. Reflection structures (to the Z = Z, projective plane) when using scaled-orthographic projection. We 
also find that these two structures project the same image on the image plane. 
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decide which one is correct. Just as the orthographic 
projection does, the scaled-orthographic projection 
suffers from the ambiguities, that is reflection. The 
original object and its mirror object (to some plane 
Z = Z,) in 3D space projects exactly the same image 
on the image plane if the scaled-orthographic projection 
model is used (see Fig. 6). If the motion is constrained 
to be rigid, each one of the original and mirror objects 
can rigidly move to project the same image data in an 
image sequence, which causes ambiguities. That is the 
reason why we can obtain two sets of solutions in 
problems (I) and (II). 

Another possible ambiguity occurs when the affine 
transformation between two corresponding shapes is 
not unique. For  example, if the reference patch P~,f 
used in problem (I) is a square, or rectangle, or circle, 
there is no unique affine transformation between S~,f 
and Sob~. In such a case, more ambiguities should be 
considered. 

4.3. Degeneracy 

The so-called degeneracy is the case when the input 
image data do not contain enough information. It 
usually results from a degenerate motion or degener- 
ate structure. 

In problem (I), data degeneracy happens only when 
the normal vector n of the observed patch Pobs is 
parallel to the image plane, which produces a line 
segment on the image plane. Of course, no meaningful 
affine transformation can be obtained now. 

In problem (II), except for the similar ill-projection 
stated above, there are several degenerate cases (except 
the fourth one). We will briefly discuss them now. 

1. If all the N planar patches on the target object 
have the same orientation vector (not necessarily all of 
them are on a plane), their affine matrices A~21~s are 
also the same (see equation (9)). (It means there are not 
enough independent equations for us to solve the un- 
known variables in equations (23)-(25).) 

2. If any one of the rotation matrices R, S, and W 
is a rotation around the Z-axis (including the identity 
matrix), data degeneracy happens. Take R for exam- 
ple, the affine matrices Atos for all the N planar 
patches on the object are equal because r t and r2 are 
zero vectors (see equation (9)). However, when it really 
happens, we have no need to solve equation (23) any 
more. In fact, the affine matrix Alo is now exactly 
equal to (Z,o/Z, OR*, which implies the R matrix can 
be uniquely determined. 

How about the remaining two unknown rotation 
matrices S and W? After acquiring R and the unit 
vectors .4 i and wi (obtained by equations (24) and (25)), 
we still cannot determine these two matrices from 
equations (30)-(32). That is to say, data degeneracy 
does exist in this case. 

Besides, if all of the matrices R, S, and W are rotations 
around the Z-axis, these rotation matrices will be easily 
determined. However, we still cannot determine the 

normal vectors nijs of the planar patches Pijs. Data 
degeneracy still exist! 

3. If all the matrices R, S, and W are all identity 
matrices (means 3D translation only), the normal vec- 
tors nij still cannot be determined. In this case, only 
the relative projective depth values Z r 1/Z,o and Zr2/Z,o 
can be determined. 

4. A hazard case of problem (II) happens when g~i I = 
+ 1. In this situation, we cannot determine the par- 
ameters such as c, k, and p by using equations (35) and 
(36). However, we can determine those parameters by 
directly using the following two equations (similar to 
equation (21)) 

Alo=(Z'°~(f l (-r3fT2-cq~)-i~(P~) T) (47) 
\ Z , l ]  

A20 : ( Z : : ) ( , I ( _ W 3 f f 2 T  pqoT)_ff~ (ff~)T). (48) 

We first solve the two vectors: a lo=-r3Pr2-cqro  
and a2o : -w3ff  ~ - pqo T from equations (47) and (48); 
de-compose qo into k I rE "}- k2i~ and substitute it back 
to alo and a2o. Finally, we can obtain R and W (still to 
a reflection). So it is not a degenerate case. 

Of course, it seems too rough to say that the above- 
listed cases of data degeneracy in problem (II) contain 
all possible degenerate situations. At least, we provide 
some insights to data degeneracy. Remember that de- 
generate data always cause indeterminacy of some 
parameters. 

5. SIMULATED EXPERIMENTS 

5.1. Rotation correction 

Before using our algorithms derived by scaled-ortho- 
graphic projection, a pre-processingjob called rotation 
correction must be executed first. In Section 1, we have 
said that the ortho-perspective projection is a rotated 
form of scaled-orthographic projection. On the other 
hand, we know scaled-orthographic projection is as 
good as ortho-perspective projection when the object's 
viewing direction is pointing toward the Z-axis. There- 
fore, we can suitably rotate the camera around its own 
focal point F such that the new projected image is near 
the center of the new image plane. Notice the new 
projected image can be directly generated by the old 
image ifa suitable rotation R has been given. After the 
motion and structure parameters are obtained by using 
the new projected image, we can determine the true 
solutions by transforming the new coordinate system 
back to the old coordinate system. Details are not 
shown here. 

5.2. Simulation experiments 

Our simulation experiments are divided into two 
parts for proving our algorithms derived in Sections 3 
and 4. The first goal of our experiments is to prove that 
our derivations are exactly correct if the image is pro- 
jected by using the scaled-orthographic projection 
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Fig. 7. Reference shape which is the image of the reference patch placed at center position = (0, 0, 6) and 
orientation vector = (0,0, 1). (b) Observed shape with an unknown position and orientation. (c), (d) Two 
solutions (#1 and #2) are watched from their side lines to show their differences in structure. Here, 
#1 is the previously designed true solution. Both of them can project the same image on the image plane if 

scaled-orthographic projection is used as the image model. 

model (no modeling errors). The second goal is to 
prove that our estimation is very close to the true 
solution if the image is projected by using the perspec- 
tive projection model (considering modeling errors). 
The third goal is to test the error sensitivity. Experiments 
E l - E 3  are designed for problem (I). Experiments E4-  
E6 are designed for problem (I1). 

El. Figure 7(a) shows the reference shape Sre f. It is 
projected by the reference patch Pref placed on the 

plane Z,o = 6. The image center ofSre f has been moved 
to the origin of the image plane. Then we randomly 
assign a rigid motion R and T to  Pref tO create a new 
patch Pobs which projects a new image shape Sobs by 
scaled-orthographic projection (the modeling errors 
are not  considered, see Fig. 7(b)). Two estimated sol- 
ution patches, #1 and #2, are displayed in Figs 7(c) and 
(d) (side-viewing). Estimated parameters are listed in 
Table 1. The #1 solution is almost the same as the true 
solution. These errors are introduced by quantization 

Table 1. Comparison between the real solution and our estimation results of problem (I). Sob s is generated by scaled- 
orthographic projection for not considering the modeling errors 

Parameters Real Est. # 1 Est. #2 Err. of #1 

Rotation (0.5000,0.1000, -0.9000) (0.5000,0.1000, -0.9000) (-0.5000, -0.1000, -0.9000) 5.6 × 10-13% 
Center (1.3304, 5.0789, 20.0000) (1.3304, 5.0789, 20.0000) (1.3304, 5.0789, 20.0000) 2.5 x 10- ~3 % 
Orientation (-0.1225, -0.4566,0.8812) (-0.1225, -0.4566,0.8812) (-0.1225, -0.4566, -0.8812) 3.5 × 10-15deg 
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Table 2. Comparison between the real solution and our estimation results of problem (I). Sob s is generated by perspective 
projection for considering the modeling errors 

Parameters Real Est. #1 Est. #2 Err. of #1 

Rotation (0.5000,0.1000, -0.9000) (0.5312,0.0882, -0.8848) (-1.0383, -0.1836, -0.8265) 3.55% 
Center (1.3304, 5.0789, 20.0000) (1.3292, 4.8595, 19.7076) (1.3292, 4.8595, 19.7076) 1.7682% 
Orientation (-0.1225, - 0.4566, 0.8812) (-0.1414, - 0.4769, 0.8675) (0.2352,0.8196,0.5225) 1.7699 deg 
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Fig. 11. Construction of the observed two planar patches on a rigid object. (a) Actual size of #1 patch. (b) 
Actual size of #2 patch. (c) The structure of the test object. For simplicity, we assume that no,, n02, C 0,, Co2, 

and Co are on the same plane. The angle 0 is defined as the intersecting angle of these two patches. 

Table 3. Comparison between the real solution and estimation results of problem (II). Two sets (N = 2) of corresponding 
planar patches are used. Scaled-orthographic projection is used as image model, and no observation error is added 

Parameters Real Est. #1 Est. #2 Err. of #2 

R 

W 

T 
V 
nol 
1102 
Co 
Cl 
C2 

0.4000, 0.2000, 0.2000) 
0.8000, 0.6000, 0.6000) 
- 3.5868, 10.0605, 5.1132) 
- 11.4181, 12.7151,14.1758) 
0.7068, 0.0000, 0.7074) 
- 0.7068, 0.0000, 0.7074) 

1.00130, 0.0000, 20.0000) 
2.0000, 3.0000, 23.0000) 
3.0000, 4.0000, 25.0000) 

(-0.4000, -0.2000,0.2000) 
( -  0.8000, - 0.6000, 0.6000) 
(5.6652, - 4.5231, 4.8074) 
(16.0602, -6.0890,13.6579) 
( - 0.7068, 0.0000, O. 7074) 
(0.7068, 0.00013, 0.7074) 
(1.0000, 0.0000, 20.0000) 
(2.0000, 3.0000, 23.0000) 
(3.0000, 4.0000, 25.0000) 

(0.4000, 0.2000, 0.2000) 
(0.8000, 0.6000, 0.6000) 
( - 3.5868,10.0605, 5.1132) 
( -  11.4181,12.7151,14.1758) 
(0.7068, 0.0000, 0.7074) 
( - 0.7068, 0.0000, 0.7074) 
( 1.0000, 0.0000, 20.0000) 
(2.0000, 3.0000, 23.0000) 
(3.0000, 4.0000, 25.0000) 

2.7× 10-7~o 
2.5 × 10-7% 
3.25 × 10-7 ~o 
3.0 × 10-7% 
3.5 × 10-15% 
7.4× 10-15% 
1.2 × 10- 7 ~o 
1.4×10 7% 
2.0× 10-8% 
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effect in computation. Besides, notice the change of 
signs in the two estimated rotation vectors and orien- 
tation vectors. From the listed estimation results, we 
can guarantee that our derivations are correct. 

E2. All the planar patches and motion parameters 
are the same as that in El. However, the image shape 
Sob s is now projected by perspective projection (the 
modeling errors are considered, see Fig. 8). After a 
rotation correction, a center-corrected shape S'obs can 

be generated by the old shape Sobs- Notice the S'ob~ is 
very near to the origin of the image plane. The best- 
approximated affine transformation between Sref and 
S'ob s is utilized to determine the motion parameters. 
Numerical results listed in Table 2 are very close to the 
true answer (#l solution). 

E3. In this experiment, we try to qualitatively discuss 
the error sensitivity of the estimations (of problem (I)). 
There are many kinds of errors in the real situation: such 

°3 I 
0.2 

0.1 ! 

o) 

-0.1 
-0.2 

-0.3 i r i 

-0.2 0 0.2 

0.3 

0.2 

0. l 

0 

-0. l 

-0.2 

-0.3 i E : 

-0.2 0 0.2 

O . 3 1  

I ! 

C) i- 

-0.1 f 
-0.2 

-0.3 

(a) 

i i i 

-0.2 0 0.2 

0.3 

0.2 

0.1 

0 

-0.1 t 
-o.2 L 

-0.3 

(b) 

-0.2 0 0.2 

o.3! 

{).2 

0.1~ 

I 

° I 
-0.1 
-0.2 

(c) 

-0.3 ' ' 
-0.2 0 

t 

t 
0.2 

0.3 

02 1 

0.1~ 

-0.1 1 

-0.2 I 

03 

(d) 

-0.2 0 0.2 

(e) (t) 

Fig. 12. The corresponding images of the case used in experiment E5. (a), (c), (e) are the projected image 
shapes at t = to, tl, and t2. (b), (d), (f) are the corresponding center-corrected image shapes of (a), (c), (e). 



22 S.-C. PEI and L.-G. Llou 

Table 4. Comparison between the real solution and estimation results of problem (II). Perspective projection is used as image 
model, and no observation error is added. Notice that the #2 solution is very close to the real solution 

Parameters Real Est. #1 Est. #2 Err. of #2 

R (0.4000,0.2000,0.2000) (-0.6137, -0.0930,0.2881) (0.3911,0.1863,0.1980) 3.36~o 
W (0.8000,0.6000,0.6000) (--0.9570, --0.3682,0.8346) (0.7913,0.5810,0.5993) 1.79% 
T (-3.5868,10.0605,5.1132) (4.4925,-8.3189,7.0587) (-3.2724,9.9852,5.3564) 3.42~o 
V ( -  l 1.4181, 12.7151,14.1758) (14r7289 , - 7.9957,14.9665) ( - 11.0474, 12.9024, 14.7281) 3.11~ 
n0a (0.7068, 0.0000, 0.7074) (0.6306, 0.0279, - 0.7756) 10.7088, 0.0273, 0.7049) 1.57 deg 
n02 (--0.7068,0.0000,0.7074) (--ff7725,0.0053, --0.6350) (--0.7014,0.0047,0.7128) 0.52 deg 
C O (1.0000, 0.0000, 20.0000) (1.0052, -0.0074, 19.9689) (1.0068, -0.0075, 19.9996) 0.05~o 
C 1 (2.0000, 3.0000, 23.0000) (2.0428, 3.0345, 23.3335) (2.0459, 3.0391,23.3694) 1.61 ~,~ 
C 2 (3.0000,4.0000,25.0000) (3.1073,4.1328,25.8111) (3.1121,4.1391,25.8508) 3.41~ 

as modeling errors, quantization errors, and position 
errors in extracting the image shapes . . . . .  etc. The final 
errors of the affine transformation are in fact a total- 
collect of these factors. Hence, we directly add some 
error quantities on the affine transformation to test 
the sensitivity of our  algorithm. Notice that we use 
scaled-orthographic projection here for neglecting the 
modeling errors. 

In this experiment, five cases with different orien- 
tation vectors of the same planar patches used in exper- 
iment E1 are analyzed (see Fig. 9). These test cases are 
generated by rotating the Pr~f around the axis (1,0, 0) T 
with five different 0 angles (0 °, 15°, 30°,45 °, and 60 °) 
and, without loss of generality, placing all their centers 
at point (0, 0, 20). Orientation errors (deg) and percentage 
center position errors (Yo) are our main discussion 
topics. 

The errors added on the attine matrix A and trans- 
lation vector b are created as follows: 

F 6'1 6'z]; b = b +  (49) 
• ~ = A + 1-621 622J  O'2 

where the 6~j and ~ are random variables of normal 
distribution with zero means and standard deviations 
6 and ~r. 

Because the image shape Sobs has been placed at the 
image center previously, we do not  need to discuss the 
influence from a. Hence, tr is set to zero in all five test 
cases. The results are shown in Fig. 10. Every point on 
them is iterated 100 times, then averaged. 

We can clearly observe that the same error level will 
induce remarkably different performance in orientation 
vector estimation, but only a very slight difference in 
center position estimation. It implies that the estimation 
result of a less slanted patch is more sensitive than that 
of a more slanted one in solving their orientation 
vectors. 

E4. This experiment is very similar to experiment 
El.  It is designed for solving problem (II). Scaled- 
orthographic projection is used as the projection model 
for not considering the modeling errors. The object 
shown in Fig. 11 contains two planar  patches, Pol and 
Po2 (at time to). The center points and orientation 
vectors of the two planar patches are separately denoted 
by Co a, Coz, no ~, and no2. These center points and often- 

tation vectors are lying on the same plane. So we 
can define an intersecting angle 0 = cos-  1 ([nol 'no21) 
as shown in Fig. 1 l(c). 

Numerical results shown in Table 3 prove our deri- 
vations. Notice the estimated translation T and center 
positions are properly scaled for an easier comparison. 

ES. Of course, this experiment, designed for problem 
(II), is also similar to experiment E2. The structure of 
the target patches and motion parameters are the same 
as that in experiment E4. However, the projected shapes 
on the image plane are obtained by perspective projec- 
tion (the modeling errors are considered). The process of 
rotation correction is also executed as that in exper- 
iment E2 for a better approximation (see Fig. 12). 

The estimation results shown in Table 4 are quite 
close to the true solutions. 

E6. Analyzing the error sensitivity of problem (II) 
is a very troublesome problem because there are too 
many parameters that should be specified and tested. 
For  example, different structures, motion parameters, 
positions will affect the error sensitivity. There seems 
to be not enough room to list all these results in our 
paper. Therefore, only a very simple case is tested. 
Even so, it still provides some important  properties in 
error sensitivity. Notice here that we use scaled-ortho- 
graphic projection for not considering the modeling 
errors. 

The object defined in experiment E4 is used here. 
The distance CoaCo2 is set to zero. Then we set six 
different intersecting angles 0 to create six test structures 
in this experiment (15 °, 30 °, 45 °, 60 °, 75 °, and 90°). 
Errors are added to the affine matrices in a similar 
method defined in experiment E3. tr is still set to zero 
because all the centers of these two patches are placed 
on the Z-axis. 

Without  loss of generality, all of the average centers 
C i of the two patches Pn  and P/2 at time t~, (i = 0-2) 
are placed on the Z-axis. These centers are (0, 0, 18), 
(0, 0, 21), and (0, 0, 24). The corresponding rotation vec- 
tors to R and W are 0.3 × (I/x/2,0, l/x/2 ) and 0.7 x 
(1/x/Z, O, l/x/2). 

Rotation vector errors (~o) and center position errors 
(~o) are our main discussion topics. Results are shown 
in Fig. 13. It is easy to find that the case of smaller inter- 
setting angle 0 is more error sensitive. However, there is 
no remarkable difference among the errors of the esti- 
mated center positions for all six cases. 
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6. CONCLUSIONS 

In this paper, we derive our algorithm by using 
scaled-orthographic projection, instead of perspective 
projection. Once again, readers should realize that 
scaled-orthographic projection is close to perspective 
projection when the size of the target is relatively small 
(compared to the depth of this object) and placed near 
to the Z-axis. If the target does not satisfy these con- 
straints, the estimations will be poor. 

At least four advantages can be obtained by using 
scaled-orthographic projection: 

(1) After making a rotation correction to the original 
image data, the scaled-orthographic projection model 
will be as good as a better model, ortho-perspective 
projection. 

(2) The complexity and difficulty of mathematical 
derivations of perspective projection is so greatly re- 
duced in our algorithm that we can obtain a closed- 
form solution of 3D motion and plane equations. 

(3) From the derivations in our paper, we know the 
limits when we try to recover a unique 3D motion 
of a far object by using perspective projection. There 
are two distinct solutions (the true solution and the 
reflection solution) which can generate almost the same 
image on the image plane. 

(4) Solutions obtained from scaled-orthographic 
projection can be used as a good initial guess of non-  
linear searching or iteration in many algorithms which 
derive their equations from perspective projection. 

Indeterminacy and ambiguities are carefully dis- 
cussed in our paper. Some readers may think that these 
uncertain properties of scaled-orthographic projection 
cause some serious problems in motion estimation. 
However, we would rather believe that these uncertain 
properties introduced by using scaled-orthographic 
projection faithfully reflect the inherent weakness of 
motion recovery when the object is small and positioned 
far enough from the camera. Besides, some degenerate 
cases resulting from degenerate structure or motion are 
also discussed for providing more insights to the prob- 
lem. 

In future work, we try to derive another similar 
closed-form solution from other kinds of image features 
(such as image lines) under the scaled-orthographic 
projection. 
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APPENDIX A. RELATIONSHIPS OF AN ORTHOGONAL 
MATRIX 

Assume matrix R is an orthogonal  matrix (especially used 
in the rigid object motion) can be divided by the form defined 
in equation (6). We try to find the relationships among  R*, r~, 
r 2, and r 3. Because RR T = R t R  = 13 (identity matrix), we have 
the following equations: 

R*R *T + rlr  ~ = 12; R*TR * + rEr ~ = 12 (A1) 

R*r 2 + rar I = 0; R*Trl + r3r 2 = 0 (A2) 

t 2 r 2 = 1 (A3) r 2 r  2 + r 3 ~ l ;  r ] - r l  + 

det (R) = I. (A4) 

From equation (A3), we know Lrll = IrEI, rl = eft and r 2 = cf2. 
f~ and ~ are defined as that  in equation (IlL By pre- 
multiplying both sides of equation A2(a) by f~ and rearranging 
equation A2(b), we have 

(i i )tR* = a ( ~  )t ; ~TR, = _r3~] (A5) 

where a is a constant. Therefore, the matrix R* can be de- 
composed into 

r,=ELi~][-Or~ 0][~ ]ajL,,~)~j (A6) 

and det (R*) = - r3a. 
Pre- and post-multiply both sides of equation A l(a) by (~)l- 

and ~ ~, we have a 2 = I. Because the cross product of the first 
column vector and the second column vector of an orthogonal 
matrix R is equal to the third column vector, we know 
det [R*) = r 3. Thus  a = - 1. 

By using a similar method,  readers can derive another 
important  property of an orthogonal  matrix. 

APPENDIX B. METHODS OF ACQUIRING THE AFFINE 
TRANSFORMATION 

In order to keep our paper short and neat, we just show 
the main ideas here. 

If there exists an unknown affine transformation between 
two corresponding shapes $1 and $2 on the image plane, how 
do we solve this unknown transformation from the two shapes 
$1 and $2? (see Fig. B1). 

If the corresponding points on these two shapes are avail- 
able, all we have to do is to solve a set of linear equations, 
that seems very easy. However, if these corresponding points 

s ~  . . . .  

equal ~llap~o 

Fig. B 1. The process of acquiring the affine matrix A by using 
shape normalization method. 

are not available, it is not so easy as before. A lot of methods 
without were proposed using corresponding points/2°-26~ 

First, we separately normalize the two image shapes S~ and 
S 2 into another two "normalized" shapes S'~ and S 2 (see 
Fig. B1). (27'2ul The so-called "'normalized" shape is a shape 
whose dispersion matrix (defined later) is an identity matrix. 
Dispersion matrix M is defined as 

1 
M = I ~ p p t d x d y  ( B I )  

I S I s  

where ISI is the area of the image shape S; p is the coordinate 
vector relative to the shape center e of the shape S. 

This symmetric matrix M can be decomposed into Q A Q  r 
by using similarity transformation. If we make a coordinate 
transform to p such that p' = ( Q A -  1/2)Tp = Hp, then the new 
dispersion matrix M' of the normalized shape S' is just an 
identity one. 

Therefore, from the above procedure, we have HI, HE, and 
the normalized shapes S'1 and S'2. Now, because the normalized 
shapes S' 1 and S~ are only different by a rotation angle 0, it is 
easy to show that the affine matrix A can be written by 
A = H 21R(0)H1 ' and the translation vector b by b = e 2 - Aev 

The rotation R(0) can be obtained by many methods. Be- 
cause the two shapes S'1 and S'2 are only different by an angle 
0, this problem must  be easier than the general affine case. 
We do not wish to discuss these methods here. 

Once the matrix R is acquired, the whole problem is com- 
pletely solved. A detailed algorithm is described in reJer- 
ence (20). 
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