
ELSEVIER Signal Processing 40 (1994) 207 215 

SIGNAL 
PROCESSING 

A new approach to the design of complex all-pass IIR digital filters 

Jong-Jy Shyu ~'*, Soo-Chang Pei b 

"Department q[" Computer Science and Engineering, Tatung Institute o/" Technology, 40 Chungshan N. Rd., 3rd Sec. Taipei. Taiwan, 104, 
ROC 

bDepartment of Electrical Engineering, National Taiwan University, Taipei, Taiwan, ROC 

Received 25 October 1993; revised 4 February 1994 and 22 April 1994 

Abstract 

A new method is proposed for designing complex all-pass IIR filters, the all-pass IIR filters with complex coefficients, in 
this paper. By minimizing the integration of certain square phase error over interested frequencies, an eigenvector of an 
appropriate real, symmetric and positive-definite matrix is computed to get the filter coefficients. The stability is achieved 
by specifying properly the desired phase specifications. If an appropriate iterative process is used, equiripple complex 
all-pass filter design can be obtained. The method is simple and the performance is comparable to the existing methods. 
Several examples are presented to demonstrate the effectiveness of the approach. 

Zusammenfassung 

Ein neues Verfahren zum Entwurf komplexwertiger rekursiver AllpaBfilter wird vorgeschlagen, d.h. f/Jr Filter 
unbegrenzter Impulsantwort mit komplexen Koeffizienten. Dutch die Minimierung des quadratischen Mittelwertes 
geeigneter Phasenfehler im interessierenden Frequenzbereich gelangt man zur Bestimmung des Eigenvektors einer 
geeigneten reellen, symmetrischen, positiv-definitiven Matrix, aus dem man dann die Koeffizienten erh/ilt. Stabilit/it wird 
dutch die angemessene Vorgabe der Wunschphase erzielt. Dutch die Anwendung eines passenden iterativen Vorgehens 
kann man komplexwertige IIR-Allp/isse mit Equal-Ripple-Verhalten bekommen. Die Methode ist einfach, und die 
Leistungsf~ihigkeit ist vergleichbar mit bestehenden Verfahren. Etliche Beispiele werden vorgestellt, um die Wirksamkeit 
des Ansatzes zu demonstrieren. 

R~um~ 

Une nouvelle m6thode de calcul des filtres passe-tout IIR complexes, i.e. les filtres IIR avec coefficients complexes, est 
propos6e dans cet article. En minimisant l'int~grale d'une certaine erreur quadratique de phase sur les fr~quences 
d'int~r~t, on calcule un vecteur propre d'une matrice appropri~e, r6elle, sym&rique et d~finie positive, pour obtenir les 
coefficients du filtre. La stabilit~ est obtenue en sp~cifiant correctement les caract6risitiques d~sir~es pour la phase. Si l'on 
utilise un processus it~ratif appropri6, on peut obtenir un filtre passe-tout complexe fi ondulation ~quilibr~e. Cette 
m&hode est simple et ses performances sont comparables ~ celles des m~thodes existantes. Plusieurs exemples sont 
dorm,s, afin de d~montrer l'efficacit6 de la m&hode. 
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1. Introduction 

In this paper, we will propose an effective 
method for designing complex IIR all-pass filters. 
The all-pass networks are usually used to equalize 
the nonlinear phase systems as well as to compen- 
sate the phase distortions produced by the com- 
munication channels. Also, they are widely used in 
multirate applications [13]. 

In the last decade, there have been several papers 
published concern real coefficient IIR all-pass filter 
design with their respective features [5, 2, 1, 14, 8, 
6]. Recently, Ikehara et al. [6] extend their design 
algorithm to design further complex coefficient all- 
pass networks by Remez algorithm [7]. Phase error 
is regarded as amplitude of complex error between 
the designed and the desired all-pass function. Then 
Remez exchange algorithm is applied to the ampli- 
tude of complex error, and it is approximated to be 
equiripple. 

In this paper, we propose a least-squares ap- 
proach to the design of phase of complex all-pass 
filters which can be used to equalize the nonlinear 
phase systems. And the complex filters are widely 
used in several applications such as orthogonal 
filters of the TDM-FDM transmultiplexers and the 
envelope detectors with the Hilbert transformer 
[4]. They are also useful in single-sideband modu- 
lation system for processing in-phase and quadra- 
ture signals in sonar and radar applications. The 
method is based on minimizing a quadratic 
measure of the phase error which is formulated as 
ATQA where A is the coefficient vector, T denotes 
the transpose operation and Q is a real symmetric 
and positive-definite matrix. The method is origin- 
ally used to approximate the desired amplitudes of 
general multi-band filters [12]. By Rayleigh's prin- 
ciple [12,9], the desired coefficient vector A is just 
the eigenvector corresponding to the minimum 
eigenvalue of Q. The general formulation is de- 
scribed in Section 2. If an equiripple complex IIR 
all-pass digital filter is desired, a suitable weighting 
function is updated iteratively such that the max- 
imum peak phase error is minimized. In Section 2, 
the design procedures will be proposed in detail. 
The method is simple and the performance is com- 
parable to the existing methods. Several examples 
are presented to demonstrate the usefulness and 

effectiveness of the present approach in Section 3. 
Finally, the conclusions are given in Section 4. 

2. Formulation for the design of complex all-pass 
IIR digital filters 

For a complex all-pass filter with order N, the 
transfer function is characterized by 

H(z) = ~,~=o a*(N - n ) z - "  = z u~,~= o a*(n)z" 
N E,=o a(n)z-" E,N=o a(n)z-" 

z- N D*(1/z*) 
- O ( z )  ' (1) 

where * denotes the complex conjugate operation 
and a(n)'s are complex coefficients given by 
a(n) = aR(n) + ja1(n), in which aR(n) and ai(n) are the 
real part and the imaginary part of a(n), respective- 
ly. Due to the unit magnitude gain for all-pass 
filters, the design problem is focused on the phase 
design. It has been shown that if the phase of 
H(z),arg(H(eJ°')), is monotone decreasing and 
spans a range of 2nN as ~o increases from 0 to 2n, 
then the all-pass filter is stable [11]. Also, for stab- 
tizing IIR all-pass filters a necessary and sufficient 
condition for the group delay T(~o) of H(z) can be 
given by [8,10] 

fo ~r(og) = ~(~o) > 0, (2) dco 2nN for 

where 
d 

r(~o) - do~ arg(H(eJ~))" (3) 

So the stability for designing all-pass filters can be 
achieved by specifying the desired phase response 
properly. 

From (1), the phase of H(z) and the phase of 
D(z), arg(D(eJ'°)), are related by 

arg(n(eJ°')) = - N(o - 2arg(D(eJ'°)), (4) 

so the phase design of H(z) is equivalent to the 
phase design of D(z) and we can restrict ourselves to 
the design of the denominator phase for designing 
IIR all-pass filters. That is to say, given the desired 
phase response Pu(o)) of H(z), the design problem 
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becomes to find properly the coefficient a(n)'s such 
that the phase response of D(z) approximates 

PD(O) -- 

From (1), 

tan(arg(D(eJ°)))) = 

No + Pn(o) 
0 ~< o9 ~< 2n. (5) 

sin(arg(D (e~°~))) 

cos(arg(D(eJ°'))) 

N N 

- ~. aR(n)sin(nog) + ~ a,(n)cos(no) 
t l=O n ~ 0  
N N 

aR(n)cos(no) + ~" al(n)sin(no) 
n=O n=O 

SO 

N 

~. aR(n) [sin(arg(D(eJ°'))) cos(no) 
n=O 

+ cos(arg(D(eJ~'))) sin(no)] 
N 

(6) 

+ ~ al(n)[sin(arg(D(eJ°')))sin(no) 
n = 0  

- cos(arg(D(eJo')))cos(no)] = 0. (7) 

Defining 

A = EaR(0) aR(l) "" aR(N) 

al(0) a~(1) ... at(N)] T (8) 

and 

C(Og) = [cR(O ) CR(I ) "" CR(N ) 

CI(0 ) Cl(1 ) " '"  cI(N)] T, (9) 

where 

CR(n) = sin(arg(D(eJ°~))) cos(no) 

+cos(arg(D(eJ~')))sin(no), 0 <<.n <~N (10) 
and 

q(n) = sin(arg(O(eJ'°)))sin(no) 

--cos(arg(D(eJ'~)))cos(nog), 0 <~n <~N. (11) 

Eq. (7) can be represented in vector form as 

AVC(o) = 0. (12) 

But it is impossible for finite N to realize D(z) 
such that the actual phase of D(z) is exactly equiva- 

lent to the desired phase Po(o) of D(z), and the 
problem we face is to replace arg(D(eJ~')) in (10) and 
(11) by Po(o) and find a set of coefficients to mini- 
mize AT(7(o) as much as possible, where 

~:(o) = [~(0)  C R ( 1 )  " ' "  ~(N)  

( l ( 0 )  ( , ( 1 )  - . .  ( I ( N ) ]  ~" ( 1 3 )  

in which 

(R(n) = sin(Po(o))cos(no) + cos(Po(o)) sin(no), 

0 ~< n ~< N (14) 

and 

(l(n) = sin(Po(o9)) sin(no) - cos(Po(o)) cos(nog), 

O<~n<~N. (15) 

In this paper, we use the least-squares approach to 
find the coefficients with the phase error function as 

E = W(o) [ATC(Og)] 2 d o  = ATQA, (16) 

where W(o) is a positive-valued weighting function 
and 

f? Q = w(o9) C(o) CT(o) de) (17) 

which is obviously a real, symmetric and posi- 
tive-definite matrix. By Rayleigh's principle [9], the 
desired filter coefficient vector is just the eigen- 
vector corresponding to the minimum eigenvalue 
of Q, and can be calculated using the power method 
[12]. 

Sometimes, it is general to design equiripple 
phase error all-pass filters such that the peak phase 
error is minimized rather than to design those with 
least-squares integration of phase error. In order to 
achieve an equiripple complex all-pass filter in the 
Chebyshev sense, we can use the least-squares ap- 
proach stated above iteratively by incorporating 
a suitable nonuniform weighting function W(o) 
into the integrands. As to how to update W(o), we 
adopt the iterative algorithm in [3] with a slight 
modification. The overall design procedures can be 
described as below: 

Step 1. Specify the desired phase response Pn(o) 
and the filter order N. Then the desired phase 
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response of D(z) can be obtained by (5). Set the 
initial weighting function as 

W(co) = 1, 0 ~< co .% 2n. (18) 

Step 2. Calculate the matrix Q by (17) and find the 
coefficient vector A, the eigenvector corresponding 
to the smallest eigenvalue of Q. 
Step 3. Search for 7i, 6 and p where 
7i is the ith local maxima of the absolute phase 
error with phase ripple interval (@_ ~, co~], 
6 is max{Ti}, the largest one of 7i, 
p is min{7~}, the smallest one of ~,~, 
in which the absolute phase error is defined by 

Ev(co) = IPo(co)- arg(D(eJ'))l • (19) 

Step 4. Check whether the phase error is nearly 
equiripple by 

c~ - p 
- -  ( 2 0 )  

6 

where e is a preassigned very small positive con- 
stant. If the above condition is satisfied, then stop 
the process; otherwise go to the next step. 
Step 5. Compute the unnormalized weighting 
function 

~V((o) -~- W(co)~) 2, co i -  1 < co ~ cob 1 ~< i ~< I, (21) 

where I is the number of phase ripples between 
0 and 2rt, and find its maximum value 

6w = max{ fV(co), 0 ~< co ~< 2re}. (22) 

Then update the weighting function by 

 v(co) 
W(co) - , 0 ~< co ~< 2ft. (23) 

6w 

Go to Step 2. 

Comparing with the Remez algorithm, the pro- 
posed algorithm provides another simple and use- 
ful method, and it will be proved that the method is 
effective for designing equiripple all-pass IIR filters 
through numerical examples in Section 3. Although 
the convergence of the above algorithm has not 
been proven, we have found that the algorithm 
converges very rapidly with several design exam- 
pies. Also, the obtained IIR filters are stable in our 
design experience. 

3. Design examples 

In this section, four design examples are present- 
ed to illustrate the basic features of the proposed 
design method. 

Example 1. A ninth-order full-band nonlinear de- 
lay all-pass digital filter is designed with the desired 
phase response given by 

Po(co) = -  9co + 2rtsin ( 2 ) ,  0 ~.< co ,,< 2ft. (24) 

When e is set to 0.002, Figs. 1 (a) and (b) show the 
phase response and absolute phase error, respec- 
tively, after 20 iterations. (In Fig. l(b), the dotted 
line represents the phase error with peak value 
0.1906472 after the first iteration.)The peak phase 
error is 0.1013352 rad which is the same as that in 
[7]. The filter coefficients are listed in Table 1. 

Example 2. In this example a tenth-order all-pass 
digital filter is designed. The desired phase response 
is given by 

} PH(co)=10rc cos - 1  , 0~<co-%2rt, (25) 

and e is also set to 0.002. The obtained phase 
response after 11 iterations is given in Fig. 2(a) 
while Fig. 2(b) shows the absolute phase error. The 
peak error is 0.2295897rad which is almost the 
same as that in [7]. Also the filter coefficients are 
tabulated in Table 1. 

Example 3. If the given phase specification changes 
suddenly in certain frequencies, the method can 
also be applied to design stable equiripple all-pass 
filters. For example, when N = I0, 

9rt{cos(co/2) - 1 }, 

Po(co) = - 10n, 

9rt{cos(co/2) - 1 } - 2n, 

0~<  co < TC, 

CO = 7~, 

rt < co ~< 2rt 

(26) 

and e is preset to 0.01, the phase response and 
absolute phase error after 14 iterations are shown 
in Figs. 3(a) and (b), respectively. The peak phase 
error is 0.2301555 and the filter coefficients are 
listed in Table 2. 
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Table 1 
The filter coefficients a(n) in Examples 1 and 2 

n Example 1 Example 2 

0 2 .1033035e-01  + j  4 .6037804e -01  - 6 . 6 0 1 8 6 4 4 e - 0 2 + j  4 . 0 9 4 0 2 7 9 e - 0 7  
1 6 .1443030e-01  + j  2 .8079262e-01  - 2 . 2 0 0 2 7 3 8 e - 0 1  + j 2 . 3 8 8 6 3 7 2 e - 0 6  
2 - 3 .1076109e-01  - j  3 .5348146e-  01 - 3 .8852931e-01  + j 6.616286% - 06 
3 5.3777297e - 02 - j 2.2331145e - 01 - 4.8614397e - 01 + j 1.1594916e - 05 
4 6.7304885e - 02 - j 6 . 2 4 0 7 3 2 0 e - 0 2  -4 .8594553e  - 01 + j 1 .4667442e-05  
5 2 . 9 3 6 4 5 3 5 e - 0 2 - j  1 .8815762e-02  - 4 . 1 3 5 6 6 3 3 e - 0 1  + j  1 .4491874e-05  
6 6 . 7 6 8 4 6 3 3 e - 0 3 - j  1 .2128184e-02  - 3 . 0 9 4 2 4 8 4 e - 0 1  + j  1 .1423992e-05  
7 - 2 . 2 7 6 8 0 5 2 e - 0 3 - j  2 . 5 6 1 3 2 4 4 e - 0 2  - 2 . 0 3 9 3 9 9 0 e - 0 1  + j  6 . 7 9 1 5 1 5 9 e - 0 6  
8 2 . 6 4 8 5 6 3 5 e - 0 2 - j  3 . 2 3 6 0 5 8 5 e - 0 2  - 1 .1385784e-01  + j  2 . 6 2 5 5 7 4 9 e - 0 6  
9 2 . 7 5 7 4 3 9 6 e - 0 2 + j  1 .2586640e-02  - 4 . 8 2 2 9 2 4 3 e - 0 2 + j  4 .5061690e--07 

10 - 1 . 1 5 5 2 3 3 4 e - 0 2 - j  3 . 0 7 2 7 1 2 7 e - 0 8  

Fig. 1. Example 1: Design of 
a ninth-order  full-band equiripple 
all-pass filter. (a) Phase response. (b) 
Absolute phase error. (Dotted line: 
phase error  after the first iteration.) 
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Tab le  2 
The  filter coefficients a(n) in E x a m p l e s  3 a n d  4 

n E x a m p l e  3 E x a m p l e  4 

0 - 4 . 7 6 7 2 7 0 3 e - 0 2  - j  1 . 6 7 3 7 6 3 4 e - 0 6  1 . 8 9 7 1 1 4 7 e - 0 1  + j  3 . 8 2 8 3 5 6 0 e - 0 1  
1 - 1.9066264e - 01 - j  4 .3791938e - 06 6 .3593991e - 01 + j 2 .1450698e - 01 
2 - 3 . 7 1 6 2 4 9 9 e - 0 1  - j 3 . 8 1 2 1 5 4 5 e - 0 6  4 . 7 2 3 0 4 4 9 e - 0 1  - j  2 . 3 4 0 4 7 1 5 e - 0 1  
3 - 4 . 8 9 3 6 2 9 6 e - 0 1  + j  2 . 3 7 0 4 7 1 6 e - 0 6  8 . 8 2 1 2 4 5 8 e - 0 2  - j  2 . 6 1 5 1 8 9 0 e - 0 1  
4 - 4 . 9 9 6 6 5 3 8 e - 0 1  + j 6 . 1 4 9 5 3 0 3 e - 0 6  - 4 . 8 1 2 4 0 1 6 e - 0 2  - j 9 . 7 1 1 3 7 1 9 e - 0 2  
5 - 4 .2584031e - 01 - j 3 . 9 8 0 5 7 6 4 e -  06 - 3 .2263713e - 02 - j 1.0882776e - 02 
6 - 3 .1441323e - 01 - j 2 .4184307e - 05 - 7 .9872832e - 03 + j 3 .9580417e - 03 
7 - 2 . 0 1 5 7 2 1 2 e - 0 1  - j  3 . 5 0 2 2 5 0 7 e - 0 5  - 6 . 3 9 3 3 7 4 0 e - 0 4  + j  1 . 8 9 5 4 1 6 9 e - 0 3  
8 - 1 . 0 7 1 9 6 1 7 e - 0 1  - j  2 . 6 4 8 4 8 8 2 e - 0 5  1 . 7 4 3 9 3 7 0 e - 0 4  + j  3 . 5 1 9 2 4 6 1 e - 0 4  
9 - 4 . 1 6 8 0 2 9 3 e - 0 2  - j  1 . 0 5 0 7 4 0 5 e - 0 5  6 . 4 9 5 1 2 2 4 e - 0 5  + j  2 . 1 9 0 8 5 5 1 e - 0 5  

10 - 8 . 5 5 0 3 5 2 5 e - 0 3  - j  1 . 6 8 0 8 3 8 9 e - 0 6  9 . 6 3 8 4 3 6 2 e - 0 6  - j  4 . 7 7 6 2 2 9 3 e - 0 6  
11 4 .8408161e - 07 - j 1.4351317e - 06 
12 - 7 . 4 8 5 8 8 7 0 e - 0 8  - j  1 . 5 1 0 5 1 3 2 e - 0 7  

Fig.  2. E x a m p l e  2: Des ign  of  
a t e n t h - o r d e r  fu l l -band  equ i r ipp le  
a l l -pass  filter. (a) P h a s e  response.  (b) 
A b s o l u t e  p h a s e  er ror .  



(a) o 

-2 

-4 

-6 

"E" -8 

Normalized Frequency 

-10 

-12 

-14 

-16 

-18 

"200 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

(b)o.z5 

0.2 

0.15 

m 

0.1 
¢h 

0.05 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

J.-J. Shyu, S.-C. Pei . Signal Processing 40 (1994 207 215 213 

Normalized Frequency 

Fig. 3. Example 3: Design of a tenth-order full-band equiripple all-pass filter. (a) Phase response. (b) Absolute phase error. 

E x a m p l e  4. Somet imes ,  the desired g r o u p  delay  is 

g iven ra ther  t h a n  the phase  specif icat ion.  F o r  
example ,  a twe l f th -order  al l -pass  filter is des igned  
with 

r(co) = 12 + r~sin(~o - ~/4), 0 ~< co ~< 2~. (27) 

The  c o r r e s p o n d i n g  desired phase  by (3) is 

Po(~o) = - 12~o + r~cos((o - n / 4 )  + c, 

0 ~ ~,) ~< 2rr, (28) 
F-  

where  c is ay cons tan t .  If c =  - ( \ / 2 / 2 ) r t  a n d  
e, = 0.01 are chosen,  Figs. 4(a) a n d  (b) show the 
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Fig. 4. Example 4: Design of a twelfth-order full-band equiripple all-pass filter. (a) Phase response. (b) Absolute phase error. 

delay response and phase error  respectively after 23 
iterations. The peak phase error  is 9.7059 x 10 -8 
and the filter coefficients are tabulated in Table 2. 

4. Conclusions 

In this paper, an effective least-squares approach 
has been proposed for designing complex IIR all- 

pass digital filters. By formulating the phase error  
function over interested frequencies into the form 
A T Q A  where A is the coefficient vector and Q is 
a real, symmetric and positive-definite matrix, the 
desired solution is just the eigenvector correspond- 
ing to the smallest eigenvalue of Q. The stability is 
achieved by specifying properly the phase specifica- 
tions. In order  to achieve equiripple complex all- 
pass filters, an iterative weighting least-squares 
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approach has been used such that the maximum 
phase error is minimized. Comparing with the exist- 
ing methods, the method is simple and effective. 
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