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Abstract--A new moment-preserving classifier for two-class clustering is suggested. Based on preserving the 
complex moments of two-dimensional (2D) input data, an analytic, non-iterative and unsupervised classifier 
is proposed. This new classifier is suitable for applications requiring fast automatic two-class clustering of 2D 
data or fast automatic hierarchical clustering. Furthermore, the computation time is of order of data size and 
hence much faster than the well known iterative k-means algorithm. Experimental results show that the 
proposed classifier can acquire acceptable clustering results. 
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1. I N T R O D U C T I O N  

Clustering, the unsupervised process of finding homo- 
geneous groups in data, Ct~ plays an essential role in 
many fields, including image processing, pattern rec- 
ognition, artificial intelligence, geosciences, medical 
research, economics, etc. Specifically, two-class clus- 
tering problems are frequently encountered in real 
applications of the above fields, for example, block 
truncation coding for color image compression, cell 
tissue analysis and forecast of economic behaviours, 
etc. The optimum approach to this problem is the 
Bayes classifier. The job of the Bayes classifier is to find 
an optimum decision boundary which minimizes the 
average risk or cost. To-implement this parametric 
classifier, a priori probability distributions of classes 
have to be known beforehand. However, the estima- 
tion of class statistical parameters is not an easy 
task. Non-parametric clustering methods have thus 
been designed to overcome this difficulty. Most of 
non-parametric clustering methods developed so far, 
such as the k-means method, ~2~ the ISODATA 
method, ¢3~ the fuzzy c-means method, ¢4~ and the ag- 
glomerative hierarchical method using a dissimilarity 
matrix, ¢5~ etc., are iterative and thus unsuitable for 
performing fast automatic two-class clustering. It is 
therefore desirable to develop a fast automatic non- 
parametric clustering method which can be employed 
to partition an input set Q of N patterns into two 
classes. 

One efficient method of achieving this goal is based 
on the moment-preserving principle proposed by Delp 
and Mitchell. ~6'7~ It avoided iterative computation 
by using mathematical formulae to express the deci- 
sion boundary, which separates the two classes in 
terms of the input patterns directly. When the N input 

patterns are one-dimensional (1D), say, forming a set 
Q={q(i)}~=l, the partition of Q into two disjoint 
clusters QA and Qs has been described in reference (7) 
by the moment-preserving principle. Through the deri- 
vation of reference (7), two disjoint clusters QA and QB 
are obtained such that the first three moments, E[q], 
E[q2], E[q3]: 

E[qk]----~ q(i) k, f o r k = l ,  2and3,  (1) 
i = 1  

are preserved, where E[]  represents the expectation. 
The good performance of this clustering method has 
been reported when it is applied to monochrome 
image segmentation, la~ However, when the input 
patterns are two-dimensional (2D), Q={[qo(i), 
ql(i)] }~- t, Lin and Tsai 191 have shown that preserving 
five joint-moments of [qo(i), ql(i)]: 

1 s 
E[q~ 'q l ]  = ~  i -~,-1 q°(i)k'q~(i)~' for k + l =  1 and 2, 

could not generate two separated classes. Instead of 
preserving the joint-moments, 19~ some other features 
{E[qe], E[ql] ,  E[r], El0], qS] } were preserved during 
the process of two-class clustering. Among these fea- 
tures, r and 0 represent the polar coordinates of the 
point (qo, qO and 4~ is the directional angle of the 
principle axis. When there are well-elongated shapes in 
the data, Lin and Tsai have reported that their algo- 
rithm may fail if two clusters are too close to each 
other. 

The divisive approach is another approach to re- 
duce the computational complexity of clustering prob- 
lems and produces an acceptable solution in the 
meantime. It partitions the input pattern space sequen- 
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tially into K disjoint sub-regions. Concerning 2D pat- 
terns, the partition line is assumed to be perpendicular 
to one of the coordinate axes of pattern space. One 
implementation of this approach is Heckbert's me- 
dian-cut algorithm. Ix°l The partitioned axis of refer- 
ence (10) is chosen to be the axis with the largest 
variance. Also the partition line passes through the 
median point of the projected pattern distribution 
along the partitioned axis. The centroids of the separ- 
ated classes are then chosen to be the class representa- 
tives. One drawback of a med-cut algorithm is that it 
can only partition the pattern space in the direction 
perpendicular to that of the coordinate axis. 

In this paper we propose a complex-moment- 
preserving (CMP) clustering algorithm to partition the 
input 2D patterns into two classes. Instead of using the 
joint-moments as designated by equation (2), we ex- 
press the input 2D pattern space as a complex-valued 
space and define complex moments of input patterns. 
Through this definition, the moment-preserving prin- 
ciple for ID data clustering can be extended to 2D 
data. An analytical solution is also obtained. The 
computation time is of the order N, the data size, and 
hence much faster than any interactive two-class clus- 
tering algorithms. 

This paper is organized as follows: Section 2 first 
describes complex moments. Section 3 then presents 
the binary CMP clustering algorithm for two-class 
classifying problems. In Section 4 we compare the 
performance of the proposed classifier with some two- 
class classifiers. The extension of the binary CMP 
clustering algorithm to multi-class clustering prob- 
lems is also discussed. Finally, a conclusion is made in 
Section 5. 

2. COMPLEX MOMENTS 

To generalize the clustering method of the moment- 
preserving principle from 1D data to 2D data, we 
adopt the complex moments °~) to explicitly express 
the statistical parameters of 2D data. 

For the set of input patterns Q = { [qo(i), q~(i)] }~: 1, 
we first designate a 2D pattern [qo(i), ql(i)] as the 
complex number ~(i): 

El(i) = qo(i) + jq i ( i ) ,  

with j being denoted as the imaginary unit and 
j2 = _ 1. Based on the above expression of 2D pat- 
terns, we extend the first three 1D real moments as 
defined by equation (1) to the complex moments as 
follows: 

th~ = EEl]  

rh= = E[~/~*] 

rh3 = E[@@*~] 

where ~* is the complex conjugate of~ and the defini- 
tion of the third-order complex moment rh 3 is adopted 

from high-order statistics. 112J Equation (4) can be re- 
duced to: 

th~ = E[qo] + j E [ q l ]  

rh 2 = E[q2 + q2] (5) 

~/3 = E[q 3 + q2qo] + j E [ q  3 + q2oq,], 

that is, the complex moments can be seen as 2D vector 
moments. The complex-valued r~ 1 represents the cen- 
troid of the input pattern [qo(i), ql(i)]. The real-valued 
rh z expresses expected value of the vector length of 
[%(0, ql(i)] • Also, the complex-valued ffz 3 consists of 
the sum of joint third-order moments among [qo(i), 
ql(i)]. Since the principle of moment-preserving is to 
preserve the statistical distribution of input patterns, it 
is usually necessary to maintain at least the location of 
distribution and to hold its dispersion in some degrees. 
In applied statistics 113) the information about the dis- 
persion of input patterns can be described by the 
central moments. That is, input patterns will be shifted 
to its centroid first and then calculated from the asso- 
ciated th k defined by equation (5), for k = I, 2, 3. The 
complex moments in equation (5) become: 

rh 1 = 0 + j 0  

ff~2 = E[(qo - E[qo]) 2 + (ql - E[q l ] )  2 ] 

rn3 = E[(qo - E[qo]) 3 + (ql  - E [ q l ] ) 2 ( q o  - E[qo])] 

+ j E [ ( q l - E [ q l ] ) Z + ( q o - E [ q o ] ) 2 ( q l  - E[q~])]. 

(6) 

We will implement the proposed clustering method 
in the next section by preserving the input central 
complex moments. The complex moments mentioned 
later indicate central complex moments. Concerning 
1D input patterns, it can be proved that the preserva- 
tion of central real moments is equivalent to the preser- 
vation of non-central real moments. Nevertheless, this 
relationship of equivalence will not hold when con- 
sidering the definitions of complex moments [equa- 
tions (5) and (6)]. 

3. BINARY COMPLEX-MOMENT-PRESERVING 

CLUSTERING 
{3) 

The problem of performing the binary CM P cluster- 
ing on a 2D data set Q is to select a line as a threshold 
to separate Q into a two-level data set G, such that the 
first three complex moments of Q are preserved. The 
resultant two levels in G are defined as Zo and 31. After 
the binary CMP clustering, all below-threshold pat- 
terns in Q are replaced by the complex-valued zo and 
those above-threshold patterns in Q are set to be the 
complex-valued ~1. 

(4) Let Po and Pl denote the probability of the below- 
threshold and the above-threshold patterns in Q after 
the binary CMP clustering. Therefore: 

Po + Pl = 1. (7) 
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Fig. 3. The error probability distribution of the CMPclassifier vs the correlation coefficient, p, when po,#1, 
% and 11 are fixed to be 100, 150, 20 and 15, respectively. 

Then the first three complex moments of the two-level 
data set G are given by: 

1 

ri'~ = ~ pA 
k=O 

1 

ril = Y, p A ~ *  (8) 
k=O 

1 

ri~ = ~ PJd*~k. 
k=O 

If we let the first three complex moments of the two- 
level data set G equal those of Q, rik = ri~, k = 1, 2, 3, we 
obtain the following moment-preserving equations: 

PoZo + PlZl = ria 

PoZo ;~* + PlZlZ~ ' = ri2 

PoZoZ~Zo "~ PlZ1ZI*Z1 = ri3" 

(9) 

Thus, using the complex moments,  moment-preserv- 
ing principle Can still be maintained for 2D data. The 
solution of reference (7) is a special case of the pro- 
posed clustering operator. The moment  preserving 
equations (8) can be solved indirectly by adopting the 
following polynomial of complex number  £: 

C(~) = ~*~ + ~*71 + ?o 

= (~ - ~o)(~ - ~ ) ,  (10) 

where zk for k = 0, l, the representatives of the thresh- 
olded classes by the binary C M P  clustering operator 

are the roots of C(;~), i.e. C(2k) = 0. If we multiply C(~k) 
with equation (7) and the equation defining ri'l, 
respectively, we obtain: 

{ Po C(~o) + P l C(~I ) = 0 

PoZoC(~o) + pl zl  C(~l) = O. 

Then using equation (8) we have: 

?o + ~*~1 + ri2 = 0 
(1 1) 

r i l C o  "[- ~1271 -~- if/3 = 0. 

From equation (11), 3o and 71 can be expressed as 
follows: 

(ri3 - rilri2) 
51 (12) 

(rilri* - ri:) 

?o = - ( r i * ? l  + ri2)- (12) 

Since r i l  = 0 in the proposed C M P  clustering, ?o and 
Cl will be reduced to - r i t  z and -( r i3/ r i : ) ,  respectively. 
Using ?0 and 71, the roots of C(£k) = 0 can be solved. 
For  convenience, we define: 

~k = Zko + j z ~ l  

?1 = ClO +J¢11 
?o = Coo" 

By the above definitions, the real and imaginary parts 
of C(~k) = 0 can be represented as the following equa- 
tions: 

Z20-~Z21"~-ZkoClo-~-ZklClldffCo0=O (13) 

ZkoCll -- zklClo = 0 (14) 
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Substituting equations (14) into (13), we have a second- 
order equation of number  z k~: 

, + + oo=0 
\ C 1 1 J  . /  \ C l l  . /  

(15) 

From equation (15), the two solutions, z o x and z~ ~, can 
be obtained directly as: 

- 1  
Zo,  = 5~-a ( a c , ,  + I c , , l ~ )  

(16) - 1  
z , ,  = - - f ~ a ( a C , ,  - Ic ,  , I  ax/-a 5 - Z -  4Coo), 

where a = x ~ o + C ~ v  Since Coo = -rfi2, it can be 
readily shown that the values of Zo~ and zt~ are real. 

After zk~ is obtained, the corresponding Z~o can be 
acquired from equation (14). 

3.1. Aloori thm for  the binary C M P  clusterin9 

Since we preserve the central complex moments in 
implementing the binary C M P  clustering operator,  2o 
and ~ should be transformed back to the old coordi- 
nates by the inverse translation with Aqo = - E [ q o ]  
and Aq~ = - E [ q ~ ]  after Zo and ~ are obtained• Then 
we choose the line 1 ~ perpendicular to and bisecting the 

line segment ~o2~ as the decision boundary to separate 
the two classes• This segmentation of two classes is 
equivalent to the nearest-neighbour clustering of two 
class representatives, ~o and ~ .  We notice that the 
computat ional  complexity of the binary C M P  cluster- 
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Fig. 4. Clustering results of the generated data listed in Table 1: (a) the proposed CMP classifier; (b) Lin's 
classifier; (c) the Bayes classifier; (d) the MC classifier• 
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Fig. 5. Clustering results of the generated data listed in Table 2: (a) the proposed CMP classifier; (b) Lin's 
classifier; (c) the MC classifier. 

ing operator is mainly dominated by the calculation of 
complex moments ~k, for k = 1, 2, 3, which is of the 
order N, the data size. 

To classify a set of 2D data points using the C M P  
principle, we summarize the proposed clustering algo- 
rithm as follows: 

(a) The values of 2D data points are represented by 
complex numbers. Then the moment preserving equa- 
tions (8) are solved to obtain ~o and ~1. 

(b) The line l' perpendicular to and bisecting the line 

segment ~,o~ is chosen to separate the two classes of 
data points. 

(c) A two-class bit-map, which identifies the mem- 
bership of classified data points, is constructed such 
that each data point is coded as "one" or "zero", 

depending on whether that data point is on the right of 
the decision boundary or not. 

As an example, suppose a 2D data set Q is provided 
and arranged in the following manner: 

Q = {(1, 11), (2, 12), (3, 13), (4, 14), (5, 15),(6, 16), (7, 17), 
(8, 18), (60, 30), (61, 31), (62, 32), (63, 33), (60, 34), 

(61, 35), (62, 36), (63, 37)}, 

thus 

~o = (7.4, 7.7) 

~1 = (58.3, 40.1), 

and the corresponding two-class bit-map is: 

{0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1}. 
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Fig. 6. Clustering results of the generated data listed in Table 3: (a) the proposed CM P classifier; (b) Lin's 
classifier; (c) The MC classifier. 

3.2. Sta t i s t ica l  analys is  o f  per formance  

Since it is commonly assumed that a region of high 
local concentrat ion of patterns, known as the core, is 
associated with each cluster, we use the normal dis- 
tr ibution to approximate the probability distribution 
of each cluster. In view of the central-limit theorem, t ~ 3) 
this approximation seems to have a good degree of 
reliability. Thus, in this sub-section, we analyse the 
performance of the binary C M P  clustering operator 
for the case that the input data set is composed of two 
equiprobable 2D normal distributions with equal cor- 
relation coefficients. For  each distributions, the com- 
ponents of data have equal variances. The covariance 

matrix, C i, of each distribution is given by: 

( °'/2 Pa/Z'~ for i =  0, 1, c,= p~ ~ 7 '  

where ~r~ and p represent the variance and correlation 
coefficient, respectively• The probability density func- 
tions of these normal distributions are then denoted as: 

( '  ) /i(q) = (2r~1Ci11/2) 1 exp - ~(q - mi)'Ci- l(q _ mi) , 

for i = 0 ,  1, 

where q = [q0, ql]  is the vector representing the data 
point and m~ = [#i,/tl], for i = 0, 1, are the mean vec- 
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tors for each distribution. The value of IC~[ is determi- 
nant of the covariance matrix C~. According to the 
moment theorem for normal distribution, t ~ a) complex 
moments r~ 2 and fit 3 can be calculated as: 

= + + ½( ,o - 

1 + 2 )  

+j(a2--a2)(P°--I~')( 1 +2)" (17) 

Then, ~o and ~ can be obtained by using equation (16). 
The linear equation, which formulates the decision 
boundary, is thus described as: 

qo = s - tq x, (18) 

with 

(zo o ÷ - 7 1 o  - 
S =  

2(Zoo - Z~o ) 

(Zo~ -z~,) 
t--  

(Zoo -- Z~o )' 

To determine the total probability of classification 
error, we have to obtain P~o, the probability of classi- 
fying an input pattern as cluster 1 when it is not, and 
P~,  the probability of classifying an input pattern as 
cluster 0 when it is not. Assuming/~o is smaller than p~, 
these error probabilities, P~o and Pet, can be expressed 
a s : ( 1 4 )  

+ ~  + c o  

P~o=  ~ ~ fo(qo, q,)dqodq, (19) 
- -  o ~  s - t q l  

d- ~o $ - t q l  

t~= ~ ~ f~(qo, q~)dqodq~, (20) 

where fo(qo,  qO and f~(qo,  qO are the probability den- 
sity functions for each cluster, respectively. Once P~o 
and P~ are obtained, the total error probability, which 
is estimated as the ratio of the number of misclassified 
data points to the total number of available data 
points, can be denoted as: 

P~ = ½(P~o + P~x). (21) 

In Figs 1, 2 and 3 we investigated the behaviours of 
the proposed clustering operator when the parameters 
of two input 2D normal distributions are varied. |n 
Fig. 1, p, #o and #1 are set as 0.1, 100 and 150, 
respectively. The variances of two distributions are 
changed. We observed that the minimum total error 
probability happened when the variances of two dis- 
tributions were near. In Fig. 2, we fixed p, a o and a~ to 
be equal to 0.1, 5 and 10, respectively. The mean 
vectors of two distributions then were changd to indi- 
cate the closeness of two distributions. We noticed that 
the farther away the two distributions, the smaller the 
total error probability. Finally, we displayed the rela- 
tionship between p and total error probability in 
Fig. 3 by setting Po, P~, ao and a x to be 100, 150, 20 and 
15, respectively• Figure 3 showed that when the 
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correlation between the components  of the data point, 
q0 and ql, was increased, the total error probability 
increased. 

4. EXPERIMENTAL RESULTS 

To illustrate the effectiveness of the proposed two- 
class clustering operator,  several two cluster examples 
have been tested. For  these examples, we have used 
a random number  generator based on normal distribu- 
tions ~151 to create a 2D set S A and used the same 
generator to create another  2D set S B. These two sets 
were then merged together to form a data set Q. The 
different two-class classifiers were finally applied to Q. 
For  the examples shown in Figs 4 and 5, the number  of 
points in each subset, S A and Sn, is 1050 points. In the 
example of Fig. 6, however, one of the subsets contains 
1400 points and the other subset contains 700 points. 
The two generated data subsets in Fig. 4 are two 
identical normal distributions specified in Table 1. 
Figures 5 and 6 consider the cases when a well-elon- 
gated-shape data set exists. The distributions of two 
generated data sub-sets in Figs 5 and 6 are specified in 
Tables 2 and 3, respectively. 

For  these examples, we utilized (1) the Median-Cut  
(MC) classifier, tl°) (2) Lin's classifier tg~ and (3) the 
proposed classifier to carry out  the task of the cluster- 
ing data set Q. For  the opt imum Bayes classifier, we 
compared its performance with the above three classi- 
fiers only using the example of Fig. 4, in which its 
opt imum decision boundary can be decided. The re- 
spective computed decision boundaries for each classi- 
fier are shown as the solid straight lines in each figure. 
The classified results were evaluated by means of the 
total error probability or equivalently the classifica- 
tion error rate. The confusion matrix is also a well- 
known indicator that can be used to evaluate cluster- 
ing results. 

As we observe, the MC classifier cannot classify data 
in each examples well. Lin's classifier fails in the 
examples shown in Figs 5 and 6 with the elongated- 
shape data set and the distance between the two 
clusters is too close. This situation has been reported in 
reference (9). The proposed C M P  classifier does not 
separate very well the data in the example of Fig. 6. 
Nevertheless, the proposed classifier shows better re- 
suits in each example compared with the MC classifier 
and Lin's classifier. These clustering results are further 
enhanced by the error rate and confusion matrices in 

Table 2. The statistical parameters of the two 2D distributions for the example of Fig. 5 and performance 
comparison of different two-class clustering algorithms 

Generated data Lin's classifier MC classifier CMP classifier 

Mean Covariance Mean Covariance Mean Covariance Mean Covariance 
vector matrix vector matrix vector matrix vector matrix 

Population l 91.46 211.9 200.3 90.81 155.3 37.1 100.13 237.3 80.8  91.46 211..9 200.3 
(1050) 126.33 200.3 205.0 110.99 37.1 139.4 128.15 80.8 107.8 126.33 200.3 205.0 

Population2 105.52 201.2 192.0 113.17 120.4 4.7 88.02 225.1 66.9 105.52 201.2 192.0 
(1050) 111.91 192.0 199.4 134.67 4.7 105.3 104.11 66 .9  95.7  111.91 192.0 199.4 

Error rate 0.52 0.29 0.00 

Confusion 385 665 735 315 1050 0 
matrices 714 336 313 737 0 1050 

Table 3. The statistical parameters ofthe two 2D distributions for theexampleofFig. 6 and performance 
comparison of different two-class clustering ~lgorithms 

Generated data Lin's classifier MC classifier CMP classifier 

Mean Covariance Mean Covariance Mean Covariance Mean Covariance 
vector matrix vector matrix vector matrix vector matrix 

Population 1 140.02 31.5 7.4 128.18 501.7 -56.2 120.01 652.2 9.1 138.41 50 .7  36.5 
(1400) 99.84 7.4 401.0 117.09 -56.2 135.1 112.11 9.1 152.8 99.77 36.5 405.8 

Population2 90.63 402.7 61.2 118.93 816.2 --42.3 120.13 759.0 21.1 85.00 256.7 -1.8 
(700) 99.92 61.2 422.2 85.11-42.3 172.2 80.05 21.1 163.2 98.36 -1.8 412.9 

Error rate 0.46 0.49 0.045 

Confusion 684 716 693 707 1400 0 
matrices 252 448 340 360 96 604 
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Fig. 7. Clustering results of the test image 'Peppers': (a) original colour image; (b) clustering result in (r, g) 
space by the CM P classifier; (c) colour segmentation result of the test image. 

Tables 1, 2 and 3. These tables also compare the 
statistical properties in each classified sub-sets of the 
above classifiers for the test examples. As we can see, 
the proposed CMP classifier is better than the MC and 
Lin's classifiers on average, although one classified 
sub-set of Lin's classifier in the example of Fig. 4 re- 
sembles the original sub-set. In addition, we notice in 
Table 1 that the classifying result of the proposed 
classifier is close to the Bayes classifier. The error rate 
of the proposed classifier in this table is 0.052, whereas 
it is 0.049 with the Bayes classifier. 

In the last two-class classifying example, we applied 
the proposed CMP clustering operator to the problem 
of colour-image segmentation. Since colour informa- 
tion can improve the performance of traditional 
monochrome image segmentation, colour image seg- 
mentation has become one subject of object recogni- 

ton in recent years. The test colour image, named 
"Peppers", consists of three components that corre- 
spond to the "red", "green" and "blue" colour. The 
image is 480 × 480 size coded at 8 bits/pixel/compo- 
nent and shqwn in Fig. 7(a). The input 2D patterns 
chosen are from the (r, 9) space: 

R 
r 

(R + G + B) 

G (22) 
9 (R + G + B)' 

where R, G and B represent colour components red, 
green and blue of the test colour image. In this space, 
the r and 9 components represent the normalized 
chromatic information, respectively. Some previous 
works t16) have supported using these colour features 
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Fig. 8. Multi-classclustering results ofthegenerated datalistedin Table 4: (a) three-cluster result generated 
by the proposed CMP classifier; (b) four-cluster result generated by the proposed CMP classifier; 
(c) three-cluster result generated by the k-means classifier; (d) four-cluster result generated by the k-means 

classifier. 

for colour-image segmentation. The distribution of 
(r, g) patterns for the test colour image is illustrated in 
Fig. 7(b), where the horizontal coordinate represents 
the r component and the vertical coordinate represents 
the g component. The colour segmentation result is 
shown in Fig. 7(c), in which two grey-levels were used 
to represent two classified classes• As we can see, the 
proposed classifier separates the colour pixel (picture 
elements) of the test image into red- and green-col- 
oured objects. The highlights in the test image are 
classified as green-coloured objects• 

Concerning the multi-class clustering problem, the 
proposed binary CMP clustering operator can be 
directly extended by using the binary decision tree 
approach. The proposed scheme will try to split the 2D 
data set Q until the pre-determined number of cluster- 

ings, M, is reached. The resultant partitioning of Q will 
exhibit the structure of a binary tree. Each node of the 
tree represents a subset of Q and the children of any 
node split the members of the parent node into two 
sets. The operator used for splitting nodes is the binary 
CMP clustering operator. Whether a node can be split 
further or not is indicated by the number of members 
in its child sets. If any of the child sets is empty, then 
this node will be declared as unsplitable. For  these 
splitable nodes, the criterion to determine which node 
should be split in the next stage in the variance of the 
node. This scheme may now be described as: 

(1) Input the 2D set Q. 
(2) Do the following M-1 times or when no nodes 

are splitable: 
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Table 4. The statistical parameters of the multiple 2D distributions for the example of 
Fig. 8, 

Generated data for Figs 8(a) 
and (c) 

Generated data for Figs 8(b) 
and (d) 

Mean Covariance Mean Covariance 
vector matrix vector matrix 

Population 1 80.13 97.0 30.5 80.15 97.1 30.6 
(1050) 80.08 30.5 101.I 80.07 30.6 101.3 

Population 2 159.89 101.9 34.4 159.89 101.9 34.5 
(1050) 159.78 34.4 104.4 89.78 34.5 104.5 

Population 3 80.23 95.8 28.3 50.23 95.6 28.4 
/1050) 159.99 28.3 94.3 120.00 28.4 94.0 

Population 4 129.7 104.8 35.8 
(1050) 149.5 35.8 99.8 

(a) Find a splitable node such that its variance is 
maximum; 

(b) Use the binary CMP clustering operator to form 
two new nodes. 

(3) Assign the membership of each cluster formed 
by step 2 to the data points in Q. 

Figure 8 shows examples of applying the above 
multi-class clustering scheme when the generated data 
are in fact formed of more than two clusters. The 
generated data sub-sets are all identical normal dis- 
tributions, whose statistical parameters are listed in 
Table 4. For these data, the classified results of the 
k-means classifier ~2~ are also obtained. From Fig. 8(a) 
a.nd (b)we observe that the proposed scheme can 
obtain the desired clusters. Although some clusters 
might be improperly cut by the proposed scheme in 
Fig. 8(a), some merging operations after thresholding 
may be introduced to overcome this situation. The 
results achieved by the k-means classifier is presented 
in Fig. 8(c) and (d). We see that the k-means classifier 
has good decision boundaries to separate data into the 
desired clusters. Although the k-means classifier per- 
forms better than the proposed scheme, the complexity 
of the k-means classifier is greater than that of the 
proposed scheme. For instance, the k-means classifier 
should consider the number of iterations needed and 
the problem of being convergent or not. For the data 
size and the number of iterations being equal to N and 
I, respectively, the computational load of the k-means 
classifier is of the order IN .  In addition, unless the 
initial guess is well chosen, the results of the k-means 
classifier are easily trapped inside the local minimum, 
which degrades the performance of the k-means classi- 
fier. 

5. CONCLUSIONS 

In this paper, we present a two-class classifying 
operator based on the complex-moment-preserving 

principle. The traditional 1 D moment-preserving clas- 
sifter ~7~ can be considered as a special case of the 
proposed classifier. Through preserving three complex 
moments, an analytical solution can be obtained. The 
computational complexity of the proposed classifier is 
proportional to the data size. Moreover, the perform- 
ance of the clustering results is satisfactory from the 
experiments shown in Section 4. As compared with the 
other non-interactive algorithms mentioned in Section 
4, the proposed algorithm becomes attractive for fast 
automatic two-class clustering or any other-fields re- 
quiring fast automatic hierarchical clustering. 
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