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Abstract 

In this paper, an effective approach is proposed for designing discrete coefficient 2-D FIR digital filters for sampling 
structure conversion. After obtaining the initial continuous solution, the conventional Lagrange multiplier approach as- 
sociated with an appropriate tree search algorithm is used iteratively to optimize the remaining unquantized coefficients 
of the designed filter in the least-squares sense when one or more of the coefficients take on discrete values, till all of 
the filter coefficients are quantized. The method is simple and the performance is comparable with that of the existing 
methods. 

In diesem Beitrag wird sin wirksamer Ansatz zum Entwurf zweidimensionaler FIR-Filter mit diskreten Koeffizienten 
zur Abtastraster-Umsetzung vorgeschlagen. Nach dem Erhalt einer kontinuierlichen Anfangslosung wird der iibliche Ansatz 
mit einem Lagrange-multiplikator zusammen mit einer geeigneten Baumsuche iterativ angewandt, urn die verbliebenen 
unquantisierten Koeffizienten des entworfenen Filters im Kleinste-Quadrate-Sinn zu optimieren; dabei nehmen einzelne 
Koeffizienten diskrete Werte an, bis schlieglich alle Filterkoeffizienten quantisiert sind. Das Verfahren ist einfach, und es 
leistet gleich vie1 wie die bekannten Methoden. 

Dam cet article, on propose une approche efficace de conception de filtres FIR 2-D a coefficients discrets pour la conversion 
de la structure d’echantillonnage. Apres avoir obtenu la solution continue initiale, I’approche par multiplieur de Lagrange 
conventionnel associe a un algorithme de recherche par arbre est utilisee iterativement afin d’optimiser au sens des moindres 
carres les coefficients non quantifies du filtre lorsqu’un ou plus des coefficients prend des valeurs disc&es. et ce jusqu’a 
ce que tous les coefficients du filtre soient quantifies. 
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1. Introduction 

In digital signal processing, the conversion between 
different periodic sampling structures is an important 
problem, especially for the conversion between quin- 
cunx and rectangular structures in television image 
processing and HDTV applications [2,7,9, lo]. The 
sampling matrices of the rectangular and quincunx 
sampling structures are generally given by 

$=‘d O 
[ 1 T2 

and 

S 
LTl LTl 

LK = KT2 

I -KT2 ’ 

(1) 

respectively, where Tl and T2 represent the horizontal 
and vertical sampling periods, and L and K are quin- 
cunx sampling parameters. 

The conversion from the rectangular sampling 
structure to the (L,K) quincunx sampling structure, 
and the inverse operation, correspond, respectively, 
to decimation and interpolation process. To avoid 
aliasing error and to remove redundant images, ap- 
propriate decimation filters and interpolation filters 
must be used, respectively. Moreover, because human 
eye is particularly sensitive to the distortion on the 
flat areas of the reconstructed pictures in the inter- 
polation processing, certain constraints for designing 
interpolation filters should be considered. 

The conversion system’s operation requires numer- 
ous multiplications and additions. Multiplication, in 
particular, is extremely time consuming. So if a mul- 
tiplication operation could be replaced by only a few 
shift operations, then the complexity of the entire con- 
version system could be reduced quite dramatically, 
such that a fast real-time system becomes feasible. 

In this paper, an effective method is proposed for de- 
signing 2-D discrete coefficient FIR digital filters for 
sampling structure conversion systems. The method 
associates the Lagrange multiplier approach and a tree 
search algorithm, hence the constraints stated above 
can be incorporated into the design procedures. For 
each branch of the tree, the Lagrange multiplier ap- 
proach is used to optimize the remaining unquantized 
coefficients of the designed interpolation and decima- 
tion filters in the least-squares sense when one or more 

of the coefficients takes on discrete values. The pro- 
posed approach can be applied for different discrete co- 
efficient spaces including the evenly distributed finite 
wordlength space and the nonuniformly distributed 
powers-of-two space. In this paper, the former is used 
only for comparison. Comparing with the existing 
methods, the method is simple and the performance is 
comparable. 

2. Review of the applications of the Lagrange 
multiplier approach for designing continuous 
coefficient 2-D FIR filters for sampling 
structure conversion 

Suppose the frequency response of the designed fil- 
ter with quadrantal symmetric coefficients h(ni,nz) is 
given by 

H(o,, w2) = 5 5 h(n,, n2)e-jn~wle-j”~02 

W=-N, ,Q=-& 

N, N, 

= c c a(nl,n2)COS(~lWl)COS(n202), 

n, =o IQ=0 

(3) 

where a(ni,nz) is related to h(nl,n2) by 

Obn2) ifni =Oandnz=O, 

4nl,n2) = 
2h(nl,nz) if (nt = 0 and n2 # 0) 

or (q # 0 and n2 = 0), 

4h(nl,nz) otherwise. 

(4) 

Eq. (3) can be represented in vector form by 

Ww,f32) = ~Tw31,~2) = CTbw2V, (5) 

where 

A = [‘4,T AT . . . A$JT 

and 
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in which 

Ai = [a(i,O) a(i, 1) . . . a(i,NZ)lT, O<i<Nt, (8) 

and 

and 

= [cos(iwl ) cos(iol ) cos(w2) . . . 

cos(iw,)~os(N2a2)]~, ObidN,. (9) 

Using these notations, the integrated square error is 

e= 
I/ 

~(W,~2)IWW,~2) 
R 

-H(w 302 >I* dw dw2 

= s+PTA+ATQA, (10) 

where R represents the designed bands, W(wt ,132) is 
the weighting function, 

.S= JJ W(w,,W2)02(01,W2)d0,dW:!, (11) 
R 

P= -2~(W,~*)~(W,~*) 

x C(w) ~2) dw dm2 (12) 

and 

Q=JJ W(w > 02 )C(w > 02) 
R 

xCT(01,m2)d~t doz. (13) 

Because human eye is particularly sensitive to the 

distortion on the flat areas of the reconstructed pic- 
tures in the interpolation processing, the following fre- 
quency constraints in the first quarter plane should be 
considered [8, lo]: 

H(O,O) = G, 

ff(wl/, 3 WZk, > = ff(&>, h2k2) = 0, 
(14) 

where G is equal to 1 for the decimation filter design 
and equal to 2LK for interpolation processing, 

(ml& 3 a2k, ) = 
(211 + l)n (2k, + 1)7t 

> L’K ’ 

but (h,h) # (O,O), (16) 

in which 1x1 denotes the largest integer less than X. 
Eq. (14) can be represented in matrix form by 

BTA = G, (17) 

where 

B = [C(O,O) C(wo,w20) . . . C(qi, 02~) 

C(&o, (521) . . . CC&, 0212 )I (18) 

and 

G = [G 0 . . . 0 0 . . . OIT. (19) 

Hence, the design of two-dimensional filters for 

sampling structure conversion can be formulated as a 
quadratic programming problem 

Minimize e=s+PTA+ATQA 

subject to BTA = G, 
(20) 

which results in the closed-from solution [5,8] 

A = Q-‘B(BTQ-‘B)-‘G 

+;Q-‘[B(B’Q-‘B)-‘B’Q-’ -ZIP, (21) 

where Z is an (Nt + l)(Nz + 1) x (NI + l)(N2 + 1) 
identity matrix. 

3. Design of finite-wordlength 2-D FIR filters 
for sampling structure conversion 

Once the continuous coefficient filter is obtained, 

the key operation in the discrete optimization al- 
gorithm is to optimize the unquantized coefficients 
when some of the coefficients take on discrete values. 
Notice that the constraints of some coefficients to 
discrete values can be represented in a constrained 
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matrix form. For example, the coefficients a(O,2), 
a(O,5) and a(O,3) should be constrained to discrete 
values &(0,2), Ud(O, 5) and Ud(O, 3), respectively, 
which can be represented by the constrained equation 

[ 

0 0 1 0 0 0 0 ... 
0000010 . ..]A= [;:::;;;I. 
0 0 0 1 0 0 0 e.1 

(22) 

Hence, the Lagrange multiplier approach can be ap- 
plied iteratively as an effective discrete optimization 
algorithm. 

As to the branch and bound methods [l], there are 
two main tree search strategies, i.e. the depth-first- 
search strategy and breadth-first-search strategy. The 
former has the advantage of producing an early im- 
provement in the initial solution, and the latter usu- 
ally leads to a better first solution but is ineffective 
which makes it rarely be used alone. In this paper, 
we use the hybrid tree search of the two [3]. The de- 
tails of the tree search algorithm is described as fol- 
lows. After obtaining the continuous coefficient filter 
by (2 1 ), the coefficient with maximum absolute value 
is selected to take on discrete values and then fixed 
at I discrete values in the vicinity of the continuous 
optimum value. Each of the discrete values is fixed 
and the Lagrange multiplier approach is used to find 
the continuous solution under the constrained equa- 
tion like (22). Hence, there are I optimization prob- 
lems if the chosen coefficient is fixed at I different 
discrete values, which result in I sets of continuous so- 
lutions under fixing the first quantized coefficient. For 
each of the I sets of continuous solutions, the coeffi- 
cient with maximum absolute value is chosen to take 
on discrete values from the unquantized coefficients. 
So there are I2 optimization problems when two co- 
efficients are quantized, which also result in J2 sets of 
continuous solutions under fixing two quantized co- 
efficients. For each of the obtained solutions, certain 
measure error is computed such that the constraints in 
(14) can be incorporated into the optimization. Then 
only I of the I2 problems, which provide the smallest 
error, are selected for further quantization of the co- 
efficients (so that the number of problems should be 
processed would not increase step by step) and pro- 
duce I2 further optimization problems when a third 
coefficient is selected to take on discrete values. The 

processes are continued until all the coefficients take 
on discrete values. 

The procedures for designing finite-precision co- 
efficient filters for sampling structure conversion by 
the proposed iterative Lagrange multiplier approach is 
summarized as follows: 
Step 1. Find the initial optimal continuous solution by 
(21) and the given specifications. 
Step 2. Select the coefficient with maximum absolute 
value, for example a(~i, Q), and fix it at I discrete 
values in the vicinity of u(ri, r2), say uh(q,r2), i = 
1 I. ,..‘, 
Step 3. Establish the constrained equation for each 
of the I optimization problems under fixing the first 
quantized coefficient 

BFA= Gi, i= l,..., 1, (23) 

where Bi, i = l,..., I, are column vectors with zero 
elements except the (ri + Y~(A$ + 1) + 1)th element 
beunit and Gi, i = l,..., I, are one-element matrices 
with element aa T-Z), i = 1,. . . , I, respectively. 
Step 4. Find the I sets of continuous solutions by 

A = Q-1Z3i(Z3~Q-1Bj)-1Gi 

+~Q-‘[B~(B~Q-‘Bi)-‘B~Q-’ - ZIP. (24) 

Step 5. Select the coefficient with maximum absolute 
value from unquantized coefficients for each of the I 
sets of continuous solutions and fix it at I different 
discrete values, for example, uy(kt , k2), i = 1,. . . ,I, 
j = l,... , I, where i denotes the order of I discrete 
values in the previous quantized step and j denotes 
that in the latest quantized step. ’ 
Step 6. Establish the constrained equation for each of 
the I2 further optimization problems under fixing the 
quantized coefficients by 

BzA= Gij, i = l,..., I, j= l,..., 1, (25) 

where 

Bij = [Bi Zj], i= l,..., 1, j = l,..., 1, (26) 

and 

G Gij = q , i = l,..., 1, j = l,..., Z, 
[ 1 (27) 

inwhichZj,j = O,..., 1, are column vectors with zero 
elements except the element be unit whose position 
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agrees with that of the quantized coefficient in Step 5, 

and q, j = 0,. . . , , I are one-element matrices with el- 

ement a:(/~, , kz ), j = 0,. . . , Z, for the corresponding i. 

Step 7. Find the I2 sets of continuous solutions by 
(24) and calculate the error value 

eA =s+PTA+ATQA+W.S(IBTA-GI) (28) 

for the I2 optimization problems where B and G 
have been originally defined in (17)-(19), W is the 
weighting constant and S(M) denotes the summation 
of the elements in the matrix M. Then select I sets 
provide smallest value of eA for further optimization. 
Notice that the error in (28) is so defined that the con- 
straints in (14) can be incorporated into the discrete 
optimization. 

Step 8. If all the coefficients are quantized, go to the 

next step; otherwise set 

B/=Bi/, I=1 .I >.. 2 2 (29) 

and 

G, = Gij, 1 = l,..., I, (30) 

where the I sets of Bij and Gij are chosen in Step 7, 

then go to Step 5. 
Step 9. Select the set provides the smallest error value 
eA from the I sets of discrete solutions obtained in 
Step 7 as the desired solution. 

Example. A 5 x 9, (L,K) = (1,2) interpolation filter 

is designed in this example, and the desired response 

72, 0 1 2 ci r&z 

0 4X 25 0 

1 :18 18 -1 

2 19 6 -4 L---L 3 4 -2 -4 

4 0 -2 -2 

Fig. I (a) The amplitude response of a 5 x 9, (L, K) = (1,2) interpolation 

(h(nl , nl) multiplied by 26), 

filter. (b) The filter coefficients in the first quarter plane 
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is given by 

~(~l,co2) = 
4, w + 2% <271(0.2), 

0, WI + 202 Z2~(0.7). 
(31) 

The coefficients are coded with 7 bits (sign bit in- 
cluded). When I = 4 and W = 1000 are used, the 
resultant amplitude response is shown in Fig. l(a) 
and the filter coefficients in the first quarter plane 
are listed in Fig. l(b). The related results are tabu- 
lated in Table 1 accompanying with those of the al- 
gorithm in [9] (integer linear programming) and di- 
rect quantization. Notice that although the approach 
of direct quantization gives smaller integrated square 
error, but it results in significant constrained error, 
where the integrated square error is defined in (10) and 
the constrained error denotes the sum of square errors 
between constrained values and actual values over 
constrained points. Also, we present the results that 
the coefficient with minimum absolute value to be 
quantized first, but the performance is not so good. 
Moreover, through several design examples, we rec- 
ommend that the quantization is processed with the 

maximum absolute valued coefficient to be chosen 
first. 

4. Discussions and conclusions 

An effective method has been proposed for design- 
ing discrete coefficient FIR filters for sampling struc- 
ture conversion. The method associates successfully 
the Lagrange multiplier approach and a tree search 
algorithm, which makes it attractive for designing 
finite-wordlength digital filters. A measure error is 
proposed, such that the frequency-domain constraints 
for sampling structure conversion system can be in- 
corporated into the design procedures. Comparing 
with the existing methods, the proposed method is 
simple and the performance is comparable. 

From Table 1 and through several examples, we 
generally choose the coefficient with maximum ab- 
solute value to quantize first. Comparing with other 
algorithms for the choice of the coefficients, the inte- 
grated square error is 0.0098 in the proposed method 

Table 1 

The obtained results of the designed 5 x 9, (L, K) = (1,2) interpolation filter for different approaches 

Method 

Integrated 

square error 

Initial 

solution 

0.0036 

Proposed 

approach Ia 

0.0098 

Proposed 

approach IIb 

0.0117 

Direct 

quantization 

0.0084 

Algorithm in [I] 

(integer programming) 

0.0166 

Passband 

peak error 

0.1558 0.1599 0.1911 0.1562 0.1167 

Stopband 

peak error 

0.1411 0.1420 0.1829 0.1577 0.1214 

Amplitude response 

in constrained points 

H(O, 0) 4 4 4 3.8906 4 
H(0, n) 0 0 0 0.0156 0 
H(n, 5) 0 0 0 0.0156 0 

Design time on 

486 PC (s) 

6 20 20 7 

a The proposed approach I chooses the maximum absolute-valued coefficient to quantize first. 

b The proposed approach II chooses the minimum absolute-valued coefficient to quantize first. 
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which is smaller than 0.0166 if the most sensitive co- 

efficient is quantized first, 
Generally, as the statements declared in Section 1, 

the proposed approach can be applied for different 
discrete coefficient spaces including the evenly dis- 
tributed finite wordlength space and the nonuniformly 

distributed powers-of-two space. If the former is used, 
the coefficients can be implemented using both of 

floating or fixed point arithmetic, and the multiplica- 
tion operation can be replaced by a few shift operation 
if the latter approach is applied. 

For the choice of the number of bits, it is dependent 

on the design requirements. If the integrated square 
error cannot be satisfied, the number of bits of the 
quantized coefficient or the filter length should be 

increased. 
As to the choice of I, the number of discrete val- 

ues in the vicinity of the continuous optimum value 
to be quantized, the same results are obtained in the 
presented example when I = 2,4 and 8. By the expe- 
rience of several designed examples, the performance 
of I = 2 is good enough, but we usually take I = 4. 
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