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Abstract

Fractional Fourier transform (FRFT) performs a rotation of signals in the time—frequency plane, and it has many
theories and applications in time-varying signal analysis. Because of the importance of fractional Fourier transform, the
implementation of discrete fractional Fourier transform will be an important issue. Recently, a discrete fractional Fourier
transform (DFRFT) with discrete Hermite eigenvectors has been proposed, and it can provide similar results to match
the continuous outputs. On the other hand, the two dimensional continuous fractional Fourier transform is also
proposed for 2D signal analysis. This paper develops a 2D DFRFT which can preserve the rotation properties and
provide similar results to continuous FRFT. ( 1998 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Die fraktionale Fouriertransformation (FRFT) führt eine Signaldrehung in der Zeit—Frequenz-Ebene durch, und hat
viele theoretische und praktische Anwendungen bei der Analyse zeitvarianter Signale. Wegen der Wichtigkeit der
fraktionalen Fouriertransformation ist die Implementierung der diskreten fraktionalen Fouriertransformation eine
bedeutende Aufgabe. Kürzlich wurde eine diskrete fraktionale Fouriertransformation (DFRFT) mit diskreten Hermite-
schen Eigenvektoren vorgeschlagen. Sie kann ähnliche Ergebnisse wie die zugehörigen stetigen Ausgangssignale vorweisen.
Andererseits wurde auch die zweidimensionale stetige fraktionale Fouriertransformation für 2D Signalanalyse vorge-
schlagen. Diese Arbeit entwickelt eine 2D DFRFT, die die Rotationseigenschaften beibehält und ähnliche Ergebnisse
liefert wie die stetige FRFT. ( 1998 Elsevier Science B.V. All rights reserved.

Résumé

La transformation de Fourier fractionnaire (FRFT) opère une rotation des signaux dans le plan temps—fréquence, et
offre de nombreux concepts théoriques et applications en analyse de signaux variant dans le temps. Du fait de
l’importance de la FRFT, l’implantation de la transformation de Fourier fractionnaire discrète constitue un point
important. Une transformation de Fourier fractionnaire discrète (DFRFT) basée sur les vecteurs propres de Hermite
discrets a récemment été proposée, et celle-ci fournit des résultats similaires á ceux du cas continu. D’autre part, la
transformation de Fourier fractionnaire continue bi-dimensionnelle a également été proposée pour l’analyse des signaux
2D. Cet article développe une DFRFT 2D pouvant préserver les propriétés de rotation et fournir des résultats semblables
à ceux de la FRFT continue. ( 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Fourier transform is one of the most impor-
tant mathematical tools used in physical optics,
linear system theory, signal processing, and so on
[2,16]. The generalization of Fourier transform,
Fractional Fourier transform (FRFT), was first
introduced by Namias in 1980 [11,15]. The conven-
tional Fourier transform can be regarded as a p/2
rotation in the time—frequency plane, and the FRFT
performs a rotation of signal to any angle. More-
over, fractional Fourier transform serves as an
orthonormal signal representation for chirp signal.
The fractional Fourier transform is also called
rotational Fourier transform or angular Fourier
transform in some documents. The properties of
FRFT are well summarized in [1]. Besides being
a generalization of Fourier transform, the FRFT is
also related to other time-varying signal processing
tools, such as Wigner distribution [6], short-time
Fourier transform [6], Wavelet transform and so
on [17]. The applications of FRFT are well dis-
cussed in many documents [4,5,9,10,14].

The continuous FRFT is often implemented by
optical instruments [12,13]. Because of the import-
ance of fractional Fourier transform, its digital
implementation has become an important issue in
signal processing [8,17—19,24—26]. In the history of
discrete fractional Fourier transform (DFRFT) de-
velopment, the DFRFT has been considered as the
linear combination of the four parts in many docu-
ments [17,24—26]. The four parts include the original
signal, a circular flipped version of the signal, its
DFT and a circular flipped version of its DFT.
Unfortunately, this method cannot have similar
outputs as the continuous FRFT. A rigorous dis-
cussion for the mismatches is presented in [18].
Besides the DFRFT in [25], an important method
for digital FRFT computation has been proposed
in [8,18], but the angle addition property cannot
be perfectly preserved. So signals can only be
recovered back from their transforms within
some approximation errors. In 1996, a better im-
provement of DFRFT was made in [19,20]. Pei
and Yeh have found that the DFRFT with discrete
Hermite eigenvectors can have similar results as
those of continuous FRFT [19,20]. This DFRFT
can have the mixed time and frequency character-

istics of signals, which is the same as the continuous
FRFT.

Several orthogonal transforms have been suc-
cessfully used for two dimensional signal processing.
For example, the 2D Fourier transform computes
the spectrum for a 2D signal, and 2D discrete
cosine transform (DCT) is widely used in image
compression [7]. In order to analyze the 2D time-
varying signals, the developments of 2D continuous
and discrete fractional Fourier transforms are ne-
cessary. In [22], a continuous 2D fractional Fourier
transform with various orders in the two dimensions
is defined, and it is implemented by optical instru-
ments. Until now, the development and implemen-
tation of 2D DFRFT are still not presented for 2D
time-varying discrete signal analysis.

The goal of this paper is to develop 2D discrete
fractional Fourier transform and discuss the prop-
erties of 2D DFRFT. This paper is organized as
follows. Section 2 first reviews 1D/2D continuous
FRFTs, 1D DFRFT and the theories of 2D discrete
orthogonal transforms. Then the 2D DFRFT is
developed. In Section 3, the 2D DFRFT for several
2D discrete signals are computed. The final con-
clusions of this paper are made in the last section.

2. Development of 2D DFRFT

In this section, the previous results used for
developing 2D DFRFT are reviewed, and they
include 1D FRFT, 2D FRFT, 1D DFRFT and the
theories of 2D transforms. We will use these results
to develop our 2D DFRFT.

2.1. The results of 1D continuous FRFT

By successive applications of the forward Fourier
transformF on the signal x(t) several times, we will
obtain

F2[x(t)]"x(!t),

F3[x(t)]"X(!w), (1)

F4[x(t)]"x(t).

Based upon the above notation, the Fourier trans-
form of a signal can be interpreted as a p/2 angle
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rotation of the signal in the time—frequency plane.
A generalization of Fourier transform, FRFT, is
developed and treated as a rotation of the signal to
arbitrary angles in the time—frequency plane, and it
satisfies the following rotation properties:
1. Zero rotation: R

0
"I;

2. Additivity of rotation: RaRb"Ra`b;
3. Consistency with Fourier transform: R

p@2
"F;

4. 2p rotation: R
2p
"I,

where R indicates the rotation operation in the
time—frequency plane. F is the traditional Fourier
transform operation. Parameters a and b are the
rotation angles between the transformed signal and
the time axis in the time—frequency plane.

The FRFT transform kernel is defined as follows
[1,15]:

Ka(t,u)"G
S

1!j cot a
2p

e+(t2`u2)@2 #05 a~+ut #04%# a

if a is not a multiple of p

d(t!u)

if a is a multiple of 2p

d(t#u)

if a#p is a multiple of 2p

(2)

"

=
+
n/0

e~+anH
n
(t)H

n
(u), (3)

where a indicates the rotation angle of the trans-
formed signal for FRFT. H

n
(t) is the nth order

normalized Hermite—Gaussian function with unit
variance.

H
n
(t)"

1

J2nn!Jp
h
n
(t) e~t2@2, (4)

where h
n
(t) is the nth order Hermite polynomial

[23]. Because the Hermite—Gaussian function is an
eigenfunction of the Fourier transform, Eq. (3) is
treated as the eigen-decomposition of the FRFT
kernel. And e~+an is the eigenvalue of continuous
FRFT. Using the FRFT kernel, the FRFT of the
signal x(t) by angle a is computed as

Xa(u)"P
=

~=

x(t)Ka(t, u) dt. (5)

The signal x(t) can be recovered back by an FRFT
operation with backward angle (!a):

x(t)"P
=

~=

Xa(u)K
~a(u, t) du. (6)

2.2. The results of 2D continuous FRFT

In [22], the 2D FRFT transform kernel with
various orders in two dimensions is defined as
follows:

Ka, b(s, t, u, v)"
1

2p
J1!j cot aJ1!j cotb

]exp*+(s2`u2)@2 #05 a~+su #04%# a+

]exp*+(t2`v2)@2 #05 b~+tv #04%# b+, (7)

where a and b indicate the rotation angles of the
transformed signal for 2D FRFT. Using this 2D
FRFT kernel, the 2D FRFT of the signal x(s, t) by
angle parameter (a, b) is computed as

Xa,b(u, v)"P
=

~=
P

=

~=

x(s,t)Ka,b(s, t, u, v) dsdt. (8)

The signal x(s,t) can be recovered by a 2D FRFT
operation with backward angles (!a,!b):

x(s,t)"

P
=

~=
P

=

~=

Xa,b(u, v)K
~a,~b(u, v, s, t) dudv. (9)

2.3. The results of 1D DFRFT

Discrete fractional Fourier transform must obey
the rotational properties as the continuous FRFT.
These rotation properties can be easily realized by
the power law of kernel matrix in discrete case. So
the fractional power of kernel matrix is required for
computing the DFRFT. In [24,25], a method for
computing DFRFT has been proposed by San-
thanam and McClellan. And the DFRFT in [24,25]
is divided into four parts: the original signal, its
DFT, a circular flipped version of the signal, and
a circular flipped version of its DFT. Unfortunately,
this DFRFT cannot have similar outputs as those
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Table 1
The eigenvalues assignment rule for DFRFT kernel matrix

N The eigenvalues

4m e~+ka, k"0, 1, 2,2, (4m!2),4m
4m#1 e~+ka, k"0, 1, 2,2, (4m!1),4m
4m#2 e~+ka, k"0, 1, 2,2, 4m, (4m#2)
4m#3 e~+ka, k"0, 1, 2,2, (4m#1), (4m#2)

of the continuous FRFT. A detailed discussion for
the mismatches of [25] has been presented in [18].

For the development of current improved
DFRFT we must thank B.W. Dickinson and K.
Steiglitz [3]. They introduced a commuting matrix
S to compute the real eigenvectors of the DFT
kernel matrix F:

S"C
2 1 0 0 2 1

1 2 cosu 1 0 2 0

0 1 2 cos 2u 1 2 0

F F F } F

1 0 0 0 2 2 cos(N!1)uD ,

(10)

where u"2p/N and N is the size of the DFT
kernel matrix. Matrix S commutes with matrix F,
and it satisfies the commutative property: FS"SF.
The eigenvectors of matrix S are also the eigenvec-
tors of matrix F, but their eigenvalues are distinct.
Because matrix S is a real symmetric matrix, the
eigenvalues of S are all real and the eigenvectors of
S are orthonormal to each other.

Although a method for computing the DFT real
eigenvectors is proposed in [3], the real and ortho-
gonal eigenvectors were not used for further research
and practical applications. In [19,20], Pei and Yeh
used the DFT eigenvectors obtained from matrix
S to construct the DFRFT kernel. The eigenvectors
of matrix S are treated as discrete Hermite functions
in [19]. In addition to the DFT Hermite eigenvec-
tors, the eigenvalues and an eigenvalues assignment
rule are also required for the DFRFT kernel con-
struction. The eigenvalues assignment rule is de-
veloped similar to the notation in Eq. (3), and it is
shown again in Table 1. Such an assignment rule

can make the constructed kernel consistent with an
identity transform when a"0 and a DFT while
a"p/2.

After the eigenvalues and eigenvectors of the
DFT kernel matrix are determined, the transforma-
tion kernel of DFRFT can be easily defined by
determining the fractional powers of the eigenvalues.
The transform kernel of DFRFT is computed as

Ra"F2a@p"VD2a@pV T (11)

"G
N~1
+
k/0

e~+ka�
k
�T
k

for N"4m#1, 4m#3,

N~2
+
k/0

e~+ka�
k
�T
k
#e~+Na�

N~1
�T
N~1

for N"4m, 4m#2,

(12)

where �
k
is the kth order DFT Hermite eigenvector.

V"[�
0
D�
1
D2D�

N~1
]. Matrix D is a diagonal matrix,

in which the diagonal entries have the same eigen-
values corresponding to the column eigenvectors of
matrix V in its diagonal entries.

After the transformation kernel being determined,
the DFRFT of signal x can be computed through
Eq. (13):

Xa"Ra x"F2a@px"VD2a@pV Tx. (13)

Similar to the continuous FRFT, the signal x can
also be recovered back from its DFRFT by a reverse
operation with parameter (!a):

x"R
~a Xa"VD~2a@pV TXa. (14)

Fig. 1 shows the outputs of a rectangular window
for the three methods: continuous FRFT, DFRFT
in [25] and DFRFT in [19]. The mismatches in the
results of [25] are very clear. Our DFRFT has
made great improvements and good matches with
the continuous cases.

The method in [19] can have similar results as
those of continuous FRFT, but the eigenvectors of
matrix S are not the optimal solution for DFT
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Fig. 1. The comparison of three transform methods for a rectangular window.

Hermite eigenvectors. There still exists spaces for
further researches and improvements.

2.4. Development of the 2D DFRFT

Several two dimensional unitary transforms have
been used in signal processing, such as discrete
cosine transform [7], discrete Walsh transform [7],
and so on. The (M,N)-point 2D unitary discrete
transform is computed as

X(m, n)"
M~1
+

p/0

N~1
+
q/0

x(p, q)K(p, q, m, n), (15)

where K(p, q, m, n) is the 2D transform kernel. If
K"K

1
?K

2
, then the transform kernel K(p, q, m, n)

is called separable [7], where ? denotes the tensor
product. For a 2D separable kernel, its 2D transform
can be implemented by row—column computation:

X(m,n)"
M~1
+

p/0
C
N~1
+
q/0

x(p,q)K
2
(q,n)DK

1
(p,m). (16)
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Table 2
Properties of 2D DFRFT

Unitary R*
(a,b)"R~1

(a,b)"R
(~a,~b)

Angle additivity R
(a1,b1)

R
(a2,b2)

"R
(a1`b1,a2`b2)

Time reversal R
(a,b) x(!m,!n)"X

(a,b)(!m,!n)
DFT rotation R

(a`p

2,b`p

2)
"FR

(a,b)
Periodicity R

(a`2p,b`2p)
"R

(a`2p,b)"R
(a,b`2p)

"R
(a,b)

Parity If x (m,n) is even, X
(a,b)(m,n) is even

If x (m,n) is odd, X
(a,b)(m,n) is odd

Eigenfunction R
(a,b)[�s,t]"e~+ase~+bt�

s,t
�
s,t

is the (s,t)-order Hermite-like eigenfunc-
tion

In [22], the 2D continuous FRFT transform
kernel is separable. So the 2D DFRFT is also
defined with a separable form. Thus it is defined as

R
(a,b)"Ra?Rb, (17)

where Ra, Rb are the 1D DFRFT transform kernel
proposed in [19,20]. These two parameters in
DFRFT, a and b, indicate the individual fractional
orders in two dimensions. Then the forward and
inverse 2D DFRFT are computed as

X
(a,b)(m,n)"

M~1
+

p/0

N~1
+
q/0

x(p, q)R
(a,b)(p, q, m, n), (18)

x(p,q)"
M~1
+

m/0

N~1
+
n/0

X
(a,b)(m, n)R

(~a,~b)(p, q, m, n).

(19)

The special 2D DFRFTs are discussed in the
following:
1. If a"b"p/2, the 2D DFRFT performs the

conventional 2D DFT.
2. If a"p/2 and b"0, the 2D DFRFT performs

only row DFT transforms.
3. If a"0 and b"p/2, the 2D DFRFT performs

only column DFT transforms.
4. If a"b"0, the 2D DFRFT performs the ident-

ity transform (no transform).
The 1D DFRFT proposed in [19,20] can preserve
the desired properties of FRFT, so this 2D DFRFT

can also preserve the desired properties of continu-
ous 2D FRFT: Table 2 summarizes the properties
of 2D DFRFT.

Because the transform kernel of 2D DFRFT is
defined as a separable form, the 2D DFRFT can be
implemented by row—column computation. This
method can be applied to any 2D discrete fractional
transforms, such as 2D discrete fractional Hartley
transform [21] and other discrete unitary fractional
transforms which may probably be developed in
the future.

3. Experimental results

In this section, we will apply the proposed 2D
DFRFT algorithm to compute the transforms of
several practical 2D discrete signals.

Example 1. In this example, we will compute the 2D
DFRFT for a 2D discrete rectangular window.
Fig. 2 shows the amplitudes of 2D DFRFT of
a rectangular window for various angular para-
meters. The 2D rectangular window used in this
example is a 37]37 discrete signal. f (x,y)"1, for
!4)x)4 and !4)y)4; otherwise, f (x,y)"0.
From the results shown in Fig. 2, it is obvious to
find out that the transform results are changing
from the 2D rectangular window to a 2D sinc
function while both the angular parameters change
from 0 to p/2. The upper-right and lower-left plots
of Fig. 2 are the 2D DFRFT which are performed
only the row transforms and the column transforms,
respectively.

Example 2. The 2D DFRFT for a 2D discrete
circular window with various orders are computed
in this example. Fig. 3 shows the amplitudes of 2D
DFRFT of a circular window for various angular
parameters. The 2D circular window used in this
example is a 37]37 discrete signal. f (x,y)"1, for
x2#y2)25; otherwise f (x,y)"0. Fig. 3 clearly
shows that the transform results are varying from
the 2D circular window to its 2D DFT output. The
upper-right and lower-left plots of Fig. 2 are the 2D
DFRFT which are performed only the row trans-
forms and the column transforms.
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Fig. 2. 2D DFRFT of the rectangular window in Example 1.

Example 3. In this example, we compute the 2D
DFRFT for a digital image. Fig. 4 shows the am-
plitudes of 2D DFRFT of this image. The upper-left
plot of Fig. 4 is the original image, and the lower-
right plot is the conventional 2D DFT of this image.
The parameters, a and b, used in this example are
identical. It can be found that the transform results

are varying from the original signal to its 2D DFT
while the angles vary from 0 to p/2.

4. Conclusions

The present work has developed a 2D DFRFT
which can be realized in digital computers. This 2D
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Fig. 3. 2D DFRFT of the circular window in Example 2.

DFRFT can preserve the rotation properties
and provide similar results to the corresponding
continuous case. The mixed time and frequency
characteristics of signals are revealed in the trans-
form outputs. So this 2D DFRFT can be used
for 2D digital time-varying signal analysis. More-

over, the implementation method of 2D DFRFT
can be realized by the row—column computa-
tion which is the same as other unitary transforms.
The separable scheme in the 2D DFRFT can
be applied to other 2D unitary fractional
transforms.
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Fig. 4. 2D DFRFT of the image in Example 3.

S.-C. Pei, M.-H. Yeh / Signal Processing 67 (1998) 99—108 107



References

[1] L.B. Almeida, The fractional Fourier transform and
time—frequency representation, IEEE Trans. Signal Process.
42 (November 1994) 3084—3091.

[2] R.N. Bracewell, The Fourier Transform and its Applica-
tions, 2nd ed., McGraw-Hill, New York, 1986.

[3] B.W. Dickinson, K. Steiglitz, Eigenvectors and functions
of the discrete Fourier transform, IEEE Trans. Acoust.
Speech Signal Process. ASSP-30 (February 1982) 25—31.

[4] R.G. Dorsch, A.W. Lohmann, Y. Bitran, D. Mendlovic,
Chirp filtering in the fractional Fourier domain, Appl. Opt.
33 (1994) 7599—7602.

[5] D. Dragonman, Fractional Wigner distribution function,
J. Opt. Soc. Amer. A 13 (March 1996) 474—478.

[6] F. Hlawatsch, G.F. Bourdeaux-Bartels, Linear and quad-
ratic time-frequency signal representations, IEEE Signal
Process. Mag. 9 (April 1992) 21—67.

[7] A.K. Jain, Fundamentals of Digital Image Processing.
Prentice-Hall, Englewood Cliffs, NJ, 1989.

[8] M.A. Kutay, H.M. Ozaktas, L. Onural, O. Arikan, Optimal
Filtering in fractional Fourier domains, in: Proc. IEEE
Internat. Conf. on Acoustics, Speech, and Signal Processing,
1995, pp. 937—940.

[9] A.W. Lohmann, Image rotation, Wigner rotation, and the
fractional Fourier transform, J. Opt. Soc. Amer. A 10
(1993) 2181—2186.

[10] A.W. Lohmann, B.H. Soffer, Relationships between the
Radon-Wigner and fractional Fourier transforms, J. Opt.
Soc. Amer. A 11 (June 1994) 1798—1801.

[11] A.C. McBride, F.H. Kerr, On Namias’ fractional Fourier
transforms, IMA J. Appl. Math. 39 (1987) 159—175.

[12] D. Mendlovic, H.M. Ozaktas, Fractional Fourier trans-
formations and their optical implementation: I, J. Opt.
Soc. Amer. A 10 (1993) 1875—1881.

[13] D. Mendlovic, H.M. Ozaktas, Fractional Fourier trans-
formations and their optical implementation: II, J. Opt.
Soc. Amer. A 10 (1993) 2522—2531.

[14] D. Mendlovic, H.M. Ozaktas, A.W. Lohmann, Fractional
correlation, Appl. Opt. 34 (January 1995) 303—309.

[15] V. Namias, The fractional order Fourier transform and its
application to quantum mechanics, J. Inst. Math. Appl. 25
(1980) 241—265.

[16] A.V. Oppenheim, Discrete-time Signal Processing, Pren-
tice-Hall, Englewood Cliffs, NJ, 1989.

[17] H.M. Ozaktas, B. Barshan, D. Mendlovic, L. Onural,
Convolution, filtering, and multiplexing in fractional
Fourier domains and their relationship to chirp and wavelet
transforms, J. Opt. Soc. Amer. A 11 (February 1994)
547—559.

[18] H.M. Ozaktas, O. Arikan, M.A. Kutay, G. Bozdagi, Digital
computation of the fractional Fourier transform, IEEE
Trans. on Signal Process. 44 (September 1996) 2141—2150.

[19] S.C. Pei, M.H. Yeh, Discrete fractional Fourier transform,
in: Proc. IEEE Internat. Symp. on Circuits and Systems,
May 1996, pp. 536—539.

[20] S.C. Pei, M.H. Yeh, Improved discrete fractional fourier
transform, Opt. Lett. 22 (July 1997) 1047—1049.

[21] S.C. Pei, C.C. Tseng, M.H. Yeh, J.J. Shyu, Discrete frac-
tional Hartley and Fourier transforms, IEEE Trans. Circuit
and System, Part II, to appear.

[22] A. Sahlin, H.M. Ozaktas, D. Mendlovic, Optical imple-
mentation of the two-dimensional fractional Fourier trans-
form with different orders in the two dimensions, Opt.
Commun. 120 (1995) 134—138.

[23] G. Sansone, Orthogonal Functions, Interscience, New
York, 1959.

[24] B. Santhanam, J.H. McClellan, The DRFT — A rotation in
time-frequency space, in: Proc. IEEE Internat. Conf. on
Acoustics, Speech, and Signal Processing, 1995, pp.
921—924.

[25] B. Santhanam, J.H. McClellan, The discrete rotational
Fourier transform, IEEE Trans. Signal Process. 42 (April
1996) 994—998.

[26] C.C. Shih, Fractionalization of Fourier transform, Opt.
Commun. 118 (August 1995) 495—498.

108 S.-C. Pei, M.-H. Yeh / Signal Processing 67 (1998) 99–108


