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Abstract 

Under the assumption that even a single cell loss could lead to a frame loss, we obtain formulas for the frame loss probability in a 
two-hop ATM network using two discrete time queueing models: the single queue model and the tandem queue model. Our results are 
also found to be much more accurate than the independent cell loss estimation. 
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1. Introduction 

In recent years, significant advances in fast packet 
switching technology have made the development of 
local as well as wide area ATM networks possible. As 
in many legacy and other high-speed networks, the 
performance of ATM networks is essential for provid- 
ing satisfactory services to users. Due to the slotted 
nature of ATM switching operations, many discrete 
time queueing models have been proposed to charac- 
terize the output queue behaviour in ATM switches 
and multiplexers. Most of these analytical models are 
used to investigate performance measures such as cell 
loss rate, mean cell delay and cell delay variation. The 
latter are often called the Quality of Service (QoS) 
performance parameters of the ATM networks. These 
results are used for other purposes, including call admis- 
sion control or other preventive congestion control. 

When higher layer QoS parameters are required, 
the above-mentioned ATM layer QoS performance 
parameters cannot usually be employed directly. For 
example, when an ATM backbone is used for LAN 
interconnection, which has been considered as one 
of the major applications of high-speed networks, the 
upper layer (such as the LLC layer) is more concerned 
with the loss probability of upper layer PDUs (frames), 
rather than the loss probability of an individual cell. 
Consequently, the translation of the ATM layer 
performance to the upper layer QoS parameters is 
suggested. Unfortunately, such translation is not a 
straightforward task, and any simplification such as 
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the independent cell loss assumption could lead to an 
over-optimistic estimation, especially for bursty traffic 
sources [l]. Approaches which can obtain the desired 
QoS parameters, such as PDU loss probability for the 
upper layer, have thus become important issues. Never- 
theless, in contrast to the large variety of existing discrete 
time queueing models for the analysis of cell loss rate, 
there are only a few papers dedicated to the estimation 
of upper layer PDU loss probability. Both discrete time 
and continuous time queueing models are considered by 
Cidon et al. [2]. However, under the discrete time model 
only the formulas for a single source are available. In 
addition, their models cannot be used when the cell 
stream is under a peak rate constraint. Both simulation 
results and upper bounds for the loss probability of 
upper layer PDUs are obtained by Lin and Lu [l]. The 
significant difference between the simulation results 
and the estimation based on independent cell loss 
assumption is also illustrated. But again, their results 
cannot be employed when there is a peak rate constraint. 
Both papers [ 1,2] consider the single stage queue model, 
which is good for modelling the output queue of a single 
ATM link, and assume that a single cell loss always 
lead to the loss of an upper layer PDU. The latter 
implies that the corresponding ATM Adaptation Layer 
can be of type 3/4 [3]. 

Since an upper layer PDU can often be conveyed via 
a multiple-hop route in an ATM network with a mesh 
topology, any single stage queueing model should not 
be sufficient for characterizing the end-to-end frame 
loss .statistics of the network. The study of frame loss 
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probability in an appropriate discrete time tandem 
queue model is thus desired. In this paper, attention 
will be focused on the derivation of the frame loss prob- 
ability when the ATM adaptation layer is of type 3/4, 
and a two-hop ATM backbone is used for LAN inter- 
connections or other bursty data communications. Our 
AAL type 3/4 assumption is identical to the assumption 
that a PDU loss could result from a single cell loss. In 
addition, the frame traffic source is under a peak cell rate 
constraint, and cells of the same frame arrive in a burst. 
We employ two discrete time queueing models: a single 
queue model, used when the frame is conveyed across 
a single direct ATM link; and the tandem queue model, 
for the case when a two-hop route is used. The tandem 
queue model used here is similar to the model used in 
Ohba et al. [4] and D’Ambrosio and Melen [5]. However, 
our tandem queue model differs from those models 
[4,5] in the sense that cells of the same frame are now 
specifically characterized as a tagged burst of cells. In 
both of our models, background traffic is chosen to be 
Bernoulli and ON-OFF cell streams, while the traffic 
load for the frame source is assumed insignificant. 
These two queueing models will be described in details 
in Sections 2 and 3. Exact iterative formulas for the 
frame loss probability of the single queue model are 
derived in Section 2, and the formulas for that of the 
tandem queue case are presented in Section 3. In Section 
4, we illustrate the numerical results based on the itera- 
tions and compare them with simulations. The impact 
of the peak rate constraint on the frame loss probability 
is also investigated. 

2. Single queue model 

In this section we investigate the frame loss probability 
at the output queue dedicated to a single link of an ATM 
switch. We assume that time is slotted for both input 
and output channels, and the slot size is exactly equal 
to a cell transmission time. The corresponding model is 
a discrete time single server queue with buffer size M, and 
it can be characterized by the following recurrence equa- 
tion: 

Q, = min(Q,-1 +&-I, Ml - Z(Q,,-l # 0) (1) 

where I(.) is the indicator function, Z(A) = I if A is true; 
Z(A) = 0, otherwise; Q, is the number of buffered cells 
at the beginning of slot m; A, is the number of arriving 
cells in slot m. In other words, the cells that arrive at 
the beginning of the slot have to wait for at least one 
slot, even when the server is idle. 

We assume that the majority of the traffic load for the 
queue is contributed by its background traffic, which is 
assumed to be the superposition of cell streams from Ii 
Bernoulli sources and Z2 ON-OFF sources, where Ii and 
f2 are arbitrary non-negative integers. Each Bernoulli 

source is assumed to generate a cell with probability p 
for each slot. Each ON-OFF source is characterized as 
follows. It is a discrete time process alternating between 
two states: ON and OFF. When the process is at state 
OFF in the current slot, the probability that it will be at 
state ON in the next slot is given by wI . When the process 
is in state ON at the current slot, the probability that it 
will be at state OFF in the next slot is given by w2. A cell 
is generated with probability 1 when the process is in 
state ON, while no cell is generated if the state is OFF. 

Under the above traffic conditions, we derive the loss 
probability for an n-cell frame, called the faggedframe, 
generated from a target source whose total traffic load 
is insignificant when compared with the background 
traffic. In addition, the target source is assumed to be 
subject to the peak rate constraint, such that the time 
interval between any two cells of the same frame is S 
slots, S > 1 and S is an integer. We also assume that a 
frame loss event occurs when one or more cells of this 
frame are discarded due to ATM switch buffer overflow. 
In calculating the loss probability, we assumed that the 
discarded cells are chosen randomly, with equal prob- 
ability, from among those cells arriving in the same slot. 

When the target source is excluded, the above queue- 
ing model is similar to the models considered in Ohba 
et al. [4] and Hou and Wong [6]. By defining the system 
state to be (i, k), where i is the number of buffered cells 
at the beginning of the slot and k is the number of 
ON-OFF sources in the ON state, the system behaviour 
can be characterized as a discrete time Markov chain. 
Using the standard approach, we could denote the steady 
state probability for a system staying at state (i, k) as K~,~, 
and obtain the following balance equations: 

rO.j = "O,OBt,(0)rOj + Tl.OBII C"jrOj 

k=O I=0 

12 

+ CTO,lBll(i- ljrlj 

(2) 
l<i<M-2, 

l=O 

where B,,(k) is the probability of k cells arriving from 
Zi Bernoulli sources in a slot, rk,k, is the probability 
that k2 sources will be at the ON state in the next slot, 
provided that kl ON-OFF sources are at the ON state 
in the current slot. rk, kz can be shown to be: 

rk, kz = 

x (1 -w,) I,-k,-(k2-$+i 

o<i<kz, o < kl - i < 12 - k2 (3) 
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discarded when overflow occurs. For n 3 2, one can use: and: 

4, (k) = 
11 

0 
k pk(l -&k for k=O,l,...,It (4) 

For the system of equations in (2), using the iterative 
method presented in [6], we find that the solution for 7rj,k 
can be obtained efficiently. 

We are now ready to derive the iterative formulas 
for the loss probability of an n-cell tagged frame 
arriving at this queueing system in steady state. To 
make the notation easier to follow, we derive L(n), the 
zero cell loss probability of an n-cell tagged frame, 
instead of directly obtaining the frame loss probability. 
We then categorize the traffic conditions into two 
cases: the consecutive case (S = 1) and the fixed-interval 
case (S > 1). 

2.1. Consecutive case 

We first consider the case that S = 1, i.e. the cells of 
the tagged frame arrive at the queue with a rate equal to 
full bandwidth of the input channel. Obviously, we can 
obtain L(n) by first calculating the conditional zero cell 
loss probability of the tagged frame given the system 
state observed by the first cell of this frame, and then 
derive the average zero cell loss probability L(H). Thus, 
one could write: 

i=O k=O 
(5) 

where &k(n) is the probability that there is zero cell 
loss for an n-cell frame, given that the system state 
when the first cell of the frame arrives is (i, k). In 
this equation, we have employed the assumption that 
the target source traffic is insignificant compared to the 
background traffic, so that the leading cell of the tagged 
frame observes the system state with the probability 
distribution satisfying Eq. (2). 

The following iterative formulas can be then used to 
derive L&n). For n = 1: 

if 0 d i, < A4 - 1, - I2 - 1 

( 1, 

&Pr(A <M-ill 
b=O 

(6) 

( A = k, + b + l}B[, (b) 

otherwise where A is the total number of arriving cells in 
a slot, 2 is the number of cells from the background 
traffic sources that arrive at the queue within the same 
slot but reside in the buffer ahead of the cell belonging to 
the tagged frame, and: 

{ 

Y 

Pr{A<ylA=x}= ;’ 
ify<x 

1, ifY>x 
(7) 

Eqs. (6) (7) imply that arriving cells are randomly 

k,=Ob=O 

x ‘%,k2(IZ - l)BI,(b)rk,kz 

where 

iZ=min(ir+kr+b+l,M)-I(it#O) (8) 

2.2, Fixed-interval case 

In the fixed-interval case, we assume that S, the 
interval between two cells of the tagged frame, is an 
integer larger than 1. To better characterize the system 
behaviour, we now divide the time axis into intervals 
of length S, with the beginning of the interval set to be 
the slot following the slot in which the cells of the tagged 
frame arrive, and index the sth slots within the interval 
as slot-s, where s = 1,2,. . . , S. In other words, the slots 
in which cells of the tagged frame arrive are indexed as 
slot-S. We need to define the following new notation: 

l Lj k(n) : Pr{ zero cell loss for an n-cell frame whose 
first cell will arrive at end of the current interval ( system 
state at slot-s in the current interval is (i, k) } for 
s= 1,2 )‘..) S. 

l L’(n) : Pr{ zero cell loss for an n-cell frame whose 
first cell arrive at the current slot, which is indexed as 
slot-S}. 

The following iterative equations are then obtained in 
a fashion similar to Eqs. (5)-Q). For slots in which no 
cells of the tagged frame arrive, we have: 

where 

i2 = min(it + kl + b, M) - I(il # 0) (9) 

In Eq. (9), the initial condition described in Eq. (6) can 
be used for the case n = 1, SinCe L:,,,,(l) = Lj,,k,(l). 

Then, for slot-S, one can write: 

Lt,k,(n)= &&Pr{j<M-ir]A=kt+b+l/ 
k,=Ob=O 

x Lf;,& - W,,@)h,k~ 

where 

i$=min(il+k,+b+l,M)-I(il#O) (10) 
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Finally, it is straightforward to obtain: 

L(n) = F 9: ni,kLSk(n) 
i=o k=O 

(11) 

3. Tandem queue model 

In this section, we introduce an iterative numerical 
procedure to obtain the frame loss probability in a 
tandem queue model. The tandem queue model consists 
of two stages. The stage 1 queueing model is identical to 
the single queue model described in Section 2, and the 
cells of the tagged frame can arrive consecutively or at a 
fixed interval. The output process for the tagged frame 
from the stage 1 queue is then considered as the input 
process of the tagged frame for the stage 2 queue, which 
is also similar to the model described in Section 2 except 
for the cell arriving pattern of the tagged frame. The 
background traffic conditions of stage 1 and stage 2 
queues are assumed to be totally independent, i.e. they 
employ different background traffic sources and only 
those cells of the target source are conveyed across two 
queues. In addition, the buffer size of the two stages can 
be different. The only additional analytical result 
required is the cell departure process of the tagged 
frame in stage 1 queue. 

required to service those cells arriving at slot-S and 
residing ahead of the second cell of the tagged frame. 

. pr _,,.k,.l..iikl:Pr{system state at slot-S is (i’, k’), 
Y, = y\ system state at slot-r is (i,, k,)}, where 
r= 1,2 )..., s. 

l p?,,k, r: i’.k’: Pr{ system state at the slot in which the 
second’ cell of the tagged frame arrives is (i’, k’), 
the number of slots between the departure instants 
of the first and second cells of the tagged frame is 
y J system state at the slot when the first cell of the 
tagged frame arrives is (ii, k,)}. 

To proceed with the analysis for the stage 2 queue, we 
observe that the cell departure intervals of an n-cell 
tagged frame from the stage 1 queue is a sequence of 
random variables, Zj, where Zj is interdeparture time 
between thejth cell and (j + 1)th cell of the same tagged 
frame,j= 1,2,... , n - 1. In this procedure, we also need 
to derive the stage 1 system state probability observed by 
the jth cell is (i, k), denoted as rusk, for j = 1,2, . . . , n. 
After the distributions for each Zj are obtained, and 
assuming independence among Zj, the extension of the 
iterative formulas used for the single queue to 
incorporate the cell arrival patterns for stage 2 queue is 
then straightforward. In such calculations, we assume 
that the tagged frame is conveyed across the stage 1 
queue without cell losses. 

In the following, we first present the iterative formula 
for obtaining the probability distribution for Zi . Here we 
index the slot at which the first cell of the tagged frame 
arrives as slot-O, and the sth slot following slot-0 and 
slot-s and the slot at which the second cell arrives as 
slot-S. Some new notation is defined as follows: 

l Yr: the number of slots required to service those cells 
arriving during a period starting with slot-r and ending 
at slot-S, and resides ahead of the second cell of the 
tagged frame, i.e. Y, = Cfz: Y, + X,, where Y, is 
the number of slots required to service those cells 
arriving at slot-s, and X, is the number of slots 

The following iterative formulas are required to derive 
the interdeparture time for the first and second cells of 
the tagged frame. We start the derivation of the inter- 
departure time probability distribution conditioning on 
system state (i, k) at the boundary slot, slot-S. Then 
we gradually extend the iterative formula until we can 
make use of the system state observed by the first cell 
of the frame. The boundary condition at slot-S gives: 

I 

2 W’,k’,bP,#), 
b=O 

if i = i’, k = k’, i # 0 

Pfk,y,i’;k’ = ’ ‘1 

C( T i’,k’Jv- WI,@), 

(14 

b=O 

ifi=i’,k=k’,i=O 

\o 

otherwise where 

I 
1 

k’+b+l 
,ifi’+k’+b+l CM, 

T(i’, k’, b,y) = 
O<y<k’+b 

1 (13) 

M-j” if i’+k’+b+ 1 >M, 

For the slots between the arriving instants of the 
first and second cell. we obtain: 

P;,,k,.y,i’,k’ =7,x rk, kz BIB (b)Pf2~~2,y-j-l{il =O},i’.k’ 
k2 b 

for s= 1,2,...,S- 1 

where 

iz=min(ii+ki+b,M)-Z(i,#O) 

j=max(kl+b,M-i,) (14) 



2. Tsai, K.H. Yen/Computer Communications 19 (1996) 133-140 137 

As for slot-O, we observe that: 

I 

'k,+b+l 

where 

iz = min(i! + k, + b + 1, M) - I(il # 0) (15) 

Next, we assume that the first cell of the tagged frame 
arrives at the queue when the system is in a steady state. 
This implies that r,$ = ri,k. The probability distribution 
for .Zi is then given by: 

(16) 
ix0 k=Oi’=Ok’=O 

In general, the system state observed by the jth cell 
of the tagged frame is obtained as: 

while for the distribution Zj, one can derive: 

Pr{Zj =x} = 5% 5 &- &P;k,x ,i’,k’ 
i=O kzOi’=Ok’zO 

j=2,3....,n- 1 (18) 

Using the above equations, the exact probability 
distributions of all Zj can be obtained in an iterative 
fashion. By assuming independence of Zj, the procedure 
to iteratively calculate the zero cell loss probability of the 
n-cell tagged frame at the stage 2 queue is then a simple 
extension of the procedure described in Section 2.2. 

4. Numerical results 

First we consider the single queue model with a buffer 
size equal to 40. The total background traffic load is 
set equal to 0.8. Two traffic conditions are used: (Tl) 5 
Bernoulli sources, and (T2) 3 Bernoulli sources and 2 
ON-OFF sources. For the ON-OFF sources, we set 
w1 = p/2 and w2 = (1 - p)/2, where p is traffic load of 
a single ON-OFF source, in all numerical examples. 
These two traffic patterns are used to study the impact 
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Fig. 1. (a) Frame loss probability vs. frame length. Corresponding 
parameters are buffer size = 40, total load = 0.8. (b) Frame loss prob- 
ability vs. frame length. Corresponding parameters are buffer size 
M = 40, total load = 0.8. 

of background cell stream patterns on the frame loss 
probability. In both conditions, all sources contribute 
the same amount of traffic load. The length of the tagged 
frame is assumed to vary from 20 to 200 cells, while the 
peak rate is set to be 1, l/3 or l/5 of the input link 
bandwidth, i.e. S = 1, 3 and 5. In Figs. l(a) and (b), 
using different scales for the frame loss probabilities, 
both analytical results and simulation statistics are 
presented. For the simulation, we have used a modified 
version of a Broadband ISDN simulation testbed devel- 
oped in the EE Department of the National Taiwan 
University [7]. The analytical results are found to coin- 
cide with simulation statistics well, in all traffic condi- 
tions. In addition, as the peak cell rate decreases, or 
equivalently, when S increases, the frame loss probability 
always drops drastically. This indicates that the use of 
peak rate control can easily lead to satisfactory perform- 
ance results. One could note that the transmission time 
of the tagged frame is increased linearly to S, which 
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might lead to a longer waiting time at the output queue 
of the frame source node. Nevertheless, we believe that 
the overall performance is still better as long as the 
required throughput is not close to the ATM link band- 
width, since fewer frame retransmissions are required, 
as indicated in the figures. In Fig. l(b), the curve for 
infinitely large S is corresponding to the frame loss prob- 
ability obtained using the independent cell loss assump- 
tion, which is called the independent cell loss estimation 
in this paper. That is, the loss probability for an n-cell 
frame when S --) 00 is simply estimated by 1 - L(l)“, 
where L( 1) is given by Eq. (5). When the frame length 
is much larger than the queue buffer size (= 40) the ratio 
of the exact results and the independent cell loss esti- 
mation can be up to 10’. Obviously, the independent 
cell loss estimation is over-optimistic. Another interest- 
ing observation is related to the impact of background 
traffic patterns on system performance. We note that 
the existence of ON-OFF sources seems to have a 
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Fig. 2. (a) Frame loss probability vs. background traffic load. Corres- 
ponding parameters are buffer size M = 40, frame length = 80. 
(b) Frame loss probability vs. background traffic load. Corresponding 
parameters are: buffer size M = 100, frame length = 120. 

2 3 4 5 6 7 8 9 

inter@m time between the 1st and 2nd cells of frame@ slots) 

Fig. 3. Interdeparture time distribution for the first and second cells of 
the tagged frame. Corresponding parameters are buffer size M = 40, 
total load varying from 0.45 to 0.95, S = 3 and five Bernoulli sources. 

more serious effect on the frame loss probability when 
the frame loss probability is in an acceptable range (for 
example, under 0.1). This should be due to the fact that 
bursts generated by ON-OFF sources can easily cause 
buffer overflows, especially when its size is larger the 
queue buffer size, and this leads to frame losses. Only 
when the frame loss probability is exceedingly high, as 
shown in Fig. l(a), could the use of Bernoulli sources 
lead to higher frame loss probability. 

Next we plot the frame loss probability curves versus 
the traffic load in Figs. 2(a) and (b). In Fig. 2(a), the 
queue buffer size is still set equal to 40 but the frame 
length is 80 (cells). The same background traffic patterns 
as in Fig. 1 are used, while the total traffic load 
increases from 0.6 up to 0.9. In Fig. 2(b) we enlarge 
the buffer size to 100 and change the frame length to 
120 (cells). Here the parameters w1 and w2 of the 
ON-OFF sources are adjusted according to the traffic 
load. Similar to what we observed in Fig. 1, the 
increase of S can drastically decrease the frame loss 
probability under both background traffic conditions, 
and the simulation results still correspond well with the 
analytical results. 

Before presenting the results obtained from the 
tandem queue model, we first make observations on 
the departure process of the single queue model using 
the formulas presented in Section 3. Typical interdepar- 
ture time distributions for the single queue model with 
S = 3 and five identical Bernoulli background traffic 
sources are plotted in Fig. 3. The queue buffer size M 
is 40 and the traffic load varies from 0.45 to 0.95. As 
one might expect, when the background traffic load is 
close to 1, the variance of the interdeparture time 
increases and the resulting departure process is very 
different from the arrival process, which is a switched 
periodic process. 
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Fig. 4. Total frame loss probability vs. stage 1 traffic load. Correspond- Fig. 6. Total frame loss probability vs. stage 1 traffic load. Correspond- 

ing parameters are: five identical Bernoulli sources whose total load is ing parameters are: five identical Bernoulli sources whose total load is 

0.75 in stage 2. Stage 1 traffic sources are 3 Bernoulli and 2 ON-OFF 0.85 in stage 2, five identical Bernoulli sources in stage 1, buffer size 

sources (Tl), or 5 Bernoulli sources (T2). Buffer size M = 40 in both M = 100 in both stages, frame length equal to 100, 120, cell interval 

stages, frame length equal to 80, cell interval S = 3. s= 3. 

We now illustrate the accuracy of our method pre- 
sented in Section 3 using the following tandem queue 
model. In stage 1, there are 3 Bernoulli sources and 2 
ON-OFF sources or 5 Bernoulli sources, with traffic 
load varying from 0.55 to 0.9. Each of these five sources 
contributes l/5 of the stage 1 traffic load. In stage 2, five 
identical Bernoulli sources are assumed, with total traffic 
load set equal to 0.75. The queue buffer size A4 is 40 for 
both stages, the frame length is assumed to be 80 and cell 
interval S is 3. The analytical results are plotted as solid 
curves in Fig. 4, and the simulation results are found to 
be very close to the results presented. We then compare 
our results with the following estimation method. Each 
stage of the tandem queue is modelled as an independent 
single server queue, and the corresponding frame loss 

100 r’-- + 4 
**** : simulation. 
_-- : in-t single queue model 
_ : tandem queue model 
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,_,’ 

r 
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,_,’ 
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Fig. 5. Total frame loss probability vs. stage 1 traffic load. Correspond- 

ing parameters are: five identical Bernoulli sources whose total load is 

0.8 in stage 2, five identical Bernoulli sources in stage I, buffer size 

M = 40 in both stages, frame length equal to 30,40, cell interval S = 2. 
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probability for each queue is calculated using the method 
described in Section 2, with the same tagged frame 
arrival pattern. The frame loss probability is then 
obtained assuming that the frame loss events at these 
two queues are independent. In the following, such 
approximations are said to be based on the independ- 
ent single queue model and are plotted as dashed curves. 
The corresponding results are found to be less accurate, 
as one might expect. However, when the traffic load of 
stage 1 is exceedingly high or is light, the difference 
between these two models is less significant. 

A different set of system parameters is used in Figs. 5 
and 6. In both stage 1 and 2, there are five identical 
Bernoulli sources. For Fig. 5, the stage 1 traffic load 
varies from 0.55 to 0.9, while the stage 2 traffic load is 
set equal to 0.8. The queue buffer size is 40 for both 
stages, the frame length is assumed to be 30 or 40 and 
cell interval S is 2. For Fig. 6, the stage 1 traffic load 
varies from 0.7 to 0.9, while the stage 2 traffic load is 
set equal to 0.85. The queue buffer size is 100 for both 
stages, the frame length is assumed to be 100 or 120 
and cell interval S is 3. Here we observe similar pheno- 
mena as in Fig. 4, but the difference between the accu- 
racy of the independent single queue model and the 
tandem queue model becomes more significant. In 
certain cases, the independent single queue model can 
lead to almost a 100% error in frame loss probability. 
Therefore, when the calculation time is allowed and 
the peak rate is close to ATM link bandwidth, we 
still suggest using the iterative method based on the 
tandem queue model. 

In Fig. 7, the system parameters are similar to those 
used in Fig. 5, except that the frame length is set equal 
to 35 and S is 1, 3 and 5. Here, the difference between 
results obtained using the independent single queue 



140 2. Tsai. K.H. Yen/Computer Communications 19 (1996) 133-140 

Fig. 7. Total frame loss probability vs. stage 1 traffic load. Correspond- 
ing parameters are: five identical Bernoulli sources whose total load 
is 0.8 in stage 2, five identical Bernoulli sources in stage 1, buffer size 
M = 40 in both stages, frame length equal to 35, cell interval S is 1, 3, 
and 5. 

model and those obtained using the tandem queue model 
is significant only for the set of curves corresponding 
to S = 1 and 3. For S = 5, the difference is negligible. 
(For infinite S, we expect both models to yield results 
that are identical to the independent cell loss estimation.) 
Therefore, we believe that the independent single queue 
model is still useful when the peak rate for frame trans- 
mission is much smaller than the ATM link bandwidth. 

5. Conclusions 

In this paper, we present two queueing models for 
frame loss probability analysis in ATM networks and 
derive corresponding iterative formulas. Our formulas 
can provide exact frame loss probability for the single 
queue model and precise approximations for the tandem 
queue model. In both models, our approaches are found 
to yield far more accurate results when compared with 
estimation based on the independent cell loss assump- 
tion. Although only two types of traffic sources, the 
Bernoulli and ON-OFF sources, are considered, we 
believe that other types of sources can be incorporated 
when necessary. The results presented in this paper can 
thus be directly used in the end-to-end frame perform- 
ance analysis when a two-hop ATM backbone is used 
for LAN interconnection or data communications. 

Although our tandem queue model requires a more 
detailed calculation procedure, it always seems to lead 
to accurate results. We also provide an alternative 
approach to calculate the frame loss probability in a 
two-hop route, by assuming independence among the 
two stages in the tandem queue model. We found that 
when the peak rate used to transmit the tagged frame 

is much smaller than the ATM link bandwidth, or 
when the traffic load in one queue is small, then the 
independent single queue model can still yield accurate 
approximations. Otherwise, we still suggest the use of the 
detailed iterative approach, described in Section 3. 
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