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Optical Orthogonal Codes With Nonideal Cross
Correlation

Chi-Shun Weng and Jingshown \W8enior Member, IEEE

Abstract—For optical code division multiple access (OCDMA) code size larger than the code length. In this paper, we relax the
networks, many optical orthogonal codes (OOCs) with ideal auto- constraint of\. = 1 to A, = 2. On the other hand, we maintain
and cross-correlation properties had been studied widely. In this the value of), to 1 for the sake of synchronization between

paper, we relax the cross-correlation constraint slightly and pro- . . .
pose a new code family based on perfect difference codes. GiverFhe receiver and transmitter. In [15], we proposed a code family

the same code weight and code length, the size of new codes maj)@med perfect difference codedased on (v, k, 1)-perfect
increase 10 times more than that of ideal OOCs. Although the max- difference sets [16] for synchronous OCDMA systems. A

imum cross correlation of new codes is larger than one, the cross perfect difference code with code weight(=p + 1,p is a
correlation is less than or equal to one, for the most part. Con- power of a prime) and code Iength(:k2 — k + 1) has an
I

sequently, the performance of new codes approaches that of idea . . . .
OOCs. Numerical results show that the performance of proposed interesting property; the off-peak autocorrelation is exactly

codes was almost the same as that of conventional OOCs under theone. For synchronous OCDMA systems, we may cyclically
same code length and code weight. shift such codév — 1) times to get othefv — 1) codes. Thus,

Index Terms—Maximal system, multiuser interference, optical the de_e size is the same as the C(,)de Iength. We also showed
code division multiple access (OCDMA), optical orthogonal code, that it is easy to cancel the multiuser interference (MUI).
perfect difference set. However, from the viewpoint of asynchronous systems, these
codes are basically identical because they are cyclically shifted
with one another. In other words, we have only one code for
asynchronous systems and the code has the propekty-ofl.

ECENTLY, the construction and performance analysiherefore, we must modify the perfect difference codes to get a
of OOCs for optical code division multiple accessarger code size. To do so, we consider the case.of 2 and
(OCDMA) systems have been investigated widely [1]-[14bbserve the cross correlation between the two identical perfect
A (v,w,Aq, A;)-O0C is a family of (0, 1) sequences withdifference codes. When the two codes are not aligned—that
code lengthy, code weightw, the maximum value of off-peak is, they are cyclically shifted with each other—the cross
autocorrelation\,, and the maximum value of cross correlacorrelation between the two codes is exactly one. In such a

tion A.. Most studies paid attention t@s, w, 1)-OOCs with sijtuation, it does not violate the constraintgf= 2. However,

Ae = A = 1 for the sake of synchronization and minimizingvhen there is no cyclic shifting between them, the value of
interference. However, under the constraint of the ideal autire cross correlation i&, which is far from the constraint. To
and cross-correlation properties, the code size is upper boundedrcome this, we can drop some marks appropriately from
by [(1/w)[(v — 1)/(w — 1)]] [5], which is linear to the code k marks of each code, such that the modified code weight
length, where{ | denotes the maximal integer not larger thabecomesw and the code length is still equal to Moreover,

x. Therefore, the code size is very sparse with respect to the cross-correlation property should satisfy the constraint of
code length. In order to obtain a larger code size, we shoyld = 2, even when the two codes are aligned with each other.
relax the constraint. For example, the sef0,1,3,7, 15,31, 36,54,63} is a (73, 9,

In [5], Chung and Kumar constructed optimal®™ — 1, 1)-perfect difference set, where each element means the mark
p™ + 1,2)-O0Cs, where is any prime and the family size is position. We can drop the first and the last five elements from
p™ —2.In[12], Yang and Fuja investigatéd, w, 2, 1)- OOCs the set, respectively, to form two subsets. Therefore, the two
and proved that it is impossible to get more thim — 1)/ subsets{31, 36, 54,63} and {0, 1,3,7} form a family of (73,

(w? —w) code words whose code size is twice the upper bourgl 1, 2)-O0Cs. In fact, we can obtain more than two codes
of (v,w,1)-O0Cs. In [8], Yang also constructea,w, 1,2)- satisfying the constraint of. = 2, as long as we choose the
OOCs, and the code sizestimes (for evenv) orw —1times subsets appropriately. Therefore, the question is how many
(for odd w) the size of(v,w,1)-O0Cs, whenw is less than codes we can get, so that each code is formed by reserving some
eight. To the best of our knowledge, there is no code family with marks from the originak marks of a perfect difference code,
and the cross correlation between any two distinct codes is not
. . . _ larger than two. In other words, how many differensubsets
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such that each triple of elements is contained in at most o8&ger [16]. We can construct a perfect difference cote-
w-tuple of the system [17], [18]. Based on the maximal systerlo, c1, ..., ¢, ..., c—1)} based on the perfect difference set
we will demonstrate that it is possible to construct a family ab with the rule
(v,w,1,2)-O0Cs, such that the family size is larger than the

code length. However, the maximal value of cross correlation ¢ = {
is two. This maximal value occurs only when the two codes

are aligned with each other (the probability is odlyw) and The code weight and code length areand v, respectively.
they overlap at two marks. That is, for the most part, the Val\%erev — k2 ka1 ' ’

of cross correlation is not larger than one. Therefore, the neW, ) Liave the maximal code size 66, w, 1, A,)-OOCs
code family is essentially similar t¢v, w,1)-O0Cs, but the . .4 o perfect difference codes, we should cch(mﬂ;e-

code size of the former is much larger than that of the latt les from a(u, k, 1)-perfect difference set, which contains

For example, consider a (757, 28, 1)-perfect difference set;
. ) :"elements, such that the same elements between any two
we can obtain 819 four-tuples to form a family of (757, 4, 1, Y

w subsets is not more thak.. The question is the same as

2)-0O0Cs with family size equal to 819. In fact, we can rever e : -
! structing anm(w, A\, + 1,%k) maximal system such that
all 819 codes to obtain another 819 codes, such that all l%#;ry EJ)\ Ifl)_tuéﬁ;’ is c;ntair)led i:n(l at moyst one :et of the

codes also fqrm a fam”y of (757, 4, 1, 2)-00Cs. On th? oth stem. Assume the number aftuples in the system ig".

hand, an optimal family of (757, 4, 1)-OOCs only contains 6 . w o

code words. Everyw-tuple containg o+ 1) distinct(A. + 1)-tuples. The
Due to good property of the proposed codes, the bit error rate ‘ . k

(BER) of the proposed codes is almost the same as that of idté)gi"fll number ofA; + 1)-tuples fromk elements ig Ae+1 )

codes under the same code length, code weight, and numbeflgrefore, the upper bound @fis

simultaneous users. Moreover, the code size of the former is 10

1, ifieD
0, otherwise.

)

times (which depends on the valuesiaindw) more than ideal < k )

codes. If it is needed to increase the number of simultaneous T < Ae+1 — k(k—1) ... (k= A) ©)
users under BER 1077, there are two possible ways to achieve N < w ) w(w—1)...(w—A)

it. One is increasing the code length and reducing the bit rate. Ac+1

Another way is increasing the code weight and simultaneously
reducing the code size. Numerical results show that the numB&
of simultaneous users with the proposed (6643, 10, 1, 2)-O0Cs Elk—1 ko1
is 23 times more than that with the ideal (6643, 3, 1)-O0CE < { { { x { Z
under BERS 10 ?. The code size of the proposed (6643, 10, w=Ac+1
1, 2)-O0Cs is still larger than the ideal (6643, 3, 1)-OOCs. Nu- > V — A H .. JH . 4
merical results also show that the performance of the proposed w— A
codes is better than that of Yand’s, w, 1, 2) codes.

The remainder of this paper is organized as follows. |

Section Il, we construct a family ofv,w,1,2)-O0Cs. In V{ V{_ 1H {1 VQ _kH {1 V_ 1H
— S =

jmore tightly [18]

wlw-—1

n A special case is wheh. = 1, then

Section I, we analyze the BER performance of the systemsl’ <
using the proposed codes with double hard limiters. The )
numerical results are given in Section IV. We also compare

the performances of the proposed codes, the ideal OOCs, W?ﬁch is the upper bound ¢f, w, 1)-O0Cs. Thus, we may use

Yang's(v,w, 1,2) codes. The conclusion is given in Section Vy perfect difference code to construct optiralw, 1)-0OCs.

For example, the sef0,1,3,7,15,31,36,54,63} is a (73,
9, 1)-perfect difference set. We choose three-tuples from the
set appropriately to get am(3,2,9) maximal system with
Because (v,w,1,2)-O0Cs are based on perfect dif-12 subsets:{0,1,3}; {7,15,31}; {36,54,63}; {0,7,36};
ference codes, we first introduce perfect difference setdl,15,54}; {3,31,63}; {0,15,63}; {1,31,36}; {3,7,54};
Let W be thew-set of integersd, 1,...,v — 1 modulov. {0,31,54}; {3,15,36}; and {1,7,63}. The 12 subsets form
AsetD = {di,do,...,dy} is ak subset of. For every 12 code words with the rule of (2), and they are optimal (73,
a # 0 (mod v), there are exactly ordered pair§d;, d;),i # j, 3, 1)-OOCs.
such that Because many papers have discussed the optimal, 1)-
OOCs, and the code sizes are very small with respect to the
d; — d; = a(mod v). (1) code length, we do not consider the ideal cross-correlation case
in this paper. We will focus on the case with = 2, that

A set D satisfying these requirements is called @k, A)- s, (v,w, 1,2)-00Cs. In this situation, the code size is upper
perfect difference set. A special type of perfect differenggounded by

sets is the(v, k,1)-perfect difference set. The existence of
the (¢*> + ¢ + 1,¢ + 1,1)-perfect difference set, where T E|k—-1]|k-2
is a power of a prime, has been proved and constructed by = lwl|lw=1

w—1 w | w—1 w |w—1

II. OOCsWITH A, = 2 BASED ON PERFECTDIFFERENCE
CODES

= O(v*?). (6)

w w— 2
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In other words, the optimal code size is no longer linearly pro- TABLE |
portional to the code length, and it is possible to construct a code THE (21, 3, 1, 2)-006 WITHOUT REVERSEDCODES

family whose code size is larger than the code length. Becaus R T ——
the upper bound in (6) is(k — 2)/(w — 2)] times that in (5), it T C' {0 1 4 T {I10010000000000000000]
is possible to construct a family ¢f, w, 1, 2)-OOCs such that 2 ¢> { 0 1 14 } {110000000000001000000}
the family size i (k — 2)/(w — 2)| times the size of an optimal 3 ¢ {01 16 } {110000000000000010000}
(v, w,1)-O0Cs. 4 ct {04 14} {100010000000001000000}

The determination of the maximal code size is still anun- % C€° { 0 4 16 } {100010000000000010000}
solved problem [18]. However, many useful results had beer g g, E (1) }14 }2 % Eégggggggggggggigéggggi
reported [17]-[21]. We describe some results directly related g s {14 16 } {010010000000000010000}
to this paper in the following. Consider a Galois field GF) 9 ¢ { 1 14 16 } {010000000000001010000}
where g is the power of a prime and is a positive integer. 10 ¢ { 4 14 16 } {000010000000001010000}
The extended field is obtained by adding an element into
GF(¢"), thatis,F' = GF(¢") U {oc}. A linear transformation

] Because any three elements in NiGr) determine a circle,
n="T(§) = P (") for any two distinct elements of a circle, there dfe— w)/

(w — 2) circles intersected with the circle at these two dis-
tinct elements. Moreover, a circle witw elements has
w(w — 1)/2 nonordered pairs. Therefore, given any circlg,

the total number of circles such that each circle intersects with

is one-to-one and forms a group, whefe,3,~.6F C
GHq"),{n,&} C F,andadé — B~ # 0. The image of¢ is
defined as the cross ratio

(€,&9,83,8y) = §-& [S=6 (8) O' at two elements can be expressed as
§—&/) &—&
which is a linear transformation, and it carriés &3, and&y T, = w(w — 1) k- w (10)
into 0, 1, andx of GF(g) U {oc} respectively [19]. For any 2 w— 2

four distinct elementg, &, &3, andé, of S, a subsets of F

is called a circle if(¢1, &, £3,€4) € GF(q) and there is no Inother words, given any one codg, there arel; codes such
set properly containing as its property. With the systems ofthat the maximal cross correlation wit" is two (this only
circles, the extended fielH forms a finite Mébius geometry of 0ccurs when each of them is aligned with). With respect to
MG (¢, ), which hasg” + 1 elements. Any triple of elementsthe codeC?, we class thel> codes asGroup 2(in which the
in MG (¢.r) is included in exactly one circle and every circlénaximal cross correlation wit'! is two and only occurs once
hasq + 1 elements [17]. Based on this construction, it is eagymongy possible cyclic shifts witl'!) and the othe?’ — 11
to form anm(q+1, 3, ¢" + 1) maximal system and the numbercodes asroup 1(in which the maximal cross correlation with
of w-tuples (or circles) achieves the upper bound in (6). As@" is one).

result, we can construct a code family(of w, 1, 2)-OOCs with Note that we can obtain anoth&rcodes by reversing all the
w=qg+1l,k=q¢g +1,andv=k2—k+1=¢> +¢q"+1 7 codes. Itis easy to prove that all tB&" codes also form a

by the following algorithm. family of (v, w, 1,2)-O0Cs. Moreover, any one code reversed
from Group 1or Group 2is still in the same group. Therefore,
given any one cod€" in the 2T codes, there argl’ codes in
P+ q +1 Group 2and2(T — 1 — T») codes inGroup 1with respect to
: 1 1
2) Each element of an extended fieii= GF(g") U {~c}, the codeC*. However, the reverse of the codg, C}, has not

which also containg elements. is related to one elemenY€t been considered. Although the maximal cross correlation
of the perfect difference set ' betweenC! andC?! is two, we do not class this reversed code

3) Choose all the possible subsets wittelements fromF in Group 2or Group 1 Because the maxmil cross correlation
and reserve the subsets fulfilling the property of a circleloes not occur only once, actually, it occu(Jri) times among

wherew = ¢ + 1. v possible cyclic shifts withC*. As an example, the (21, 3, 1,

4) Each circle is related t@ elements of the perfect differ- 2)-00Cs without reversed codes are presented in Table I.
ence set. Thev elements form a code word with code

length+» and code weighty, where each element rep-

1) Construct a(v, k, 1) perfect difference set witlh ele-
ments according to [16], where = ¢" + 1 andv =

resents the mark position. The codes form a family of |||, PERFORMANCEANALYSIS OF OOCS WITH A = 2
(v,w,1,2)-O0Cs.
The total number of codes is given by In this section, we analyze the performance of the systems
k1| k9 using double hard-limiters with consideration of shot noise,
T= {_ {_ {—JH thermal noise, avalanche photodiode (APD) bulk, and surface
wlw—1]w-2 leakage currents. We use the proposed codes as the signature
_ {Q”-Fl {Q”-Fl -1 {qr‘kl —QHJ codes. The receiver structure is shown in Fig. 1 [22]. To
g+1 [g+1-1 | g+1-2 simplify the performance analysis, we assume that chips are
o =1 synchronous among users because it is the worst case and
=49 - 2-1 ©) results in the upper bound on the performance [4].
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Fiber-Optic — Optical Optical Optical Photo-
Network Fabric 1 Hard-Limiter Correlator Hard-Limiter ™ detector
N-1 Other Channels OOIl{
Output bits Decoder
Fig. 1. The receiver structure of OCDMA systems with double hard limiters.
The average photon arrival rakeper pulse is given by whereerfc( - ) stands for the complementary error function, de-
Puor fined as
_ Nrw
A= W (12) 9 oo
I erfc(z) = —/ exp(—u?) du. (29)
wheren is APD quantum efficiencyPy is the received signal Vv )

power,h is the Planck’s constant, arfds the optical frequency. The probability that the stat&; (or S,) is decoded correctly to
There are only two states after the second hard limiter, denotssh, = 0 (or b, = 1) can be expressed as

by S; and Sy, respectively. The average photon arrival rate of . . .

stateS; is equal to), whereas the photon arrival rate of state Pr(b, =1]51) =1 = Pr(b, = 0[ 51) (20)
is zero (this occurs only when the desired data bit is zero and
MUI is removed completely by the two hard limiters). For states Pr(b, =0]S0) =1 —Pr(b, = 1] So) (21)
S;,t € {0, 1}, the probability density function of the outph
after the photodetector can be expressed as [23]

1

respectively.
The performance analyses with or without thereversed

—(yi—p)? /202 codes are similar to each other. Thus, we only derive the per-
Py, () = el /2 (12) - : :
: /2n52 formance of the systems with the origir#l codes. That is,
the total number of codes 5 and none of them is reversed
where the meap; can be expressed as with each other. Without loss of generality, we consider the
1 = GT.(A+ I Je) + T.1, Je. (13) u_serU1 assigned the ch@l = {cé_, c_}, s c,,l;__l} is the de-
sired user and the desired data bibid/? assigned the code
Here, G is the average APD gairf; is the chip duratione C2 = {c2,c2,...,c2_,} represents one of the reBt- 1 users.

is the electron chargel, /¢ is the contribution of the APD If their relative cyclic shiftisj, j € {0,1,...,v — 1}, the cross
bulk leakage current to the APD output, is the APD surface correlation can be expressed as

leakage current, and the varianggcan be written as v—1
- 1.2
0—12 = GQFeTc(i)\ + Ib/C) + TcIs/C + O—tQh (14) I] - z_% i CZ@J (22)
whereF, is an excess noise factor given by where® denotes the addition modulo The value of ; is given
by
F.=kegG+(2—1/G)(1 — kepr). 15 )
nG +(2 = 1/G)1 = Ken) (13) L2 ifj=0 and C®€ Group?
Here, k. is an APD effective ionization ratio and} is the 7710 or 1, otherwise (23)
variance of thermal noise expressed as ConsiderC? ¢ Group 2and denotey; andp, as the probabil-
ol = 2kpT,T./(*Ry) (16) ities that/; is 1 and 2 respectively. The expected valud ois
given by [6]

wherek g is Boltzmann’s constant,. is the receiver noise tem-
perature, and?y, is the receiver load resistance.
After the photodetector, the signal is fed into an-OFF

keying (OOK) decoder. If the output; is larger than the gecause the value @f is two only whenj = 0 andC?2 € Group
constant threshold, we declare that the output data bitis 2 the value o is 1/v and therp; = (w? — 2)/v. Similarly, if

one; otherwise, it is zero. To minimize the error probability, Wg:2 ¢ Group 1, we denotey, as the probability that; is 1. The

w?
E(l;) =p1+2p2 = o (24)

set the suboptimal value of the constant threslfdil be value ofp is w? /v, which is the same as that of ideal OOCs.
g _ Mool + F1% an . The probabmtles that/? contributes one or two pulse posi-
o1 + oo tions are given by
Therefore, the probability that the stae (or Sp) is decoded q=Pr(l; =1|C* € Group 2) = p; /2 (25)
incorrectly to beh, = 0 (or b, = 1) can be expressed as g2 = Pr(l; = 2| 0% € Group 2) = ps /2 (26)

1 _ and
Pr(b, =0]S1) = Pr(b, =1|50) = Qerfc <N1 9)

«/2012

¢y =Pr(l; =1|C* € Group 1) = p} /2 27)
(18) where the factot /2 means equiprobablen—orFrF data bits.
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Given the number of simultaneous uséfs the probability Therefore, the probability of, = w — ¢ givenl; + I} can be

that there arer, users fromGroup 2can be expressed as expressed as
<TQ><T—1—TQ> Pr(ky = w —t|l +1;)
72 N—1-n L+,
Pr(ns | N) = T . (28) :ZPr(kt:w—ﬂl)Pr(lHl—i—lD
N-—-1 =0
I 41 I I
Among thens users, the probability dfi users interfering at = Z Pr(k, = w—t|0) < 1 Jlr 1)
one pulse position arld users interfering at two pulse positions =0
is a trinomial distribution with parameters, ¢;, andg.. The w—t\'/t L+~
probability can be expressed as X <T> <E> (32)
Pr(ly, 1y | na, N) = ! _ The_ probability that th(_a state & after the sgcond hard lim-
I (ne — 1y — 1o)! iter, givenN and the desired data Hit= 0, is given by
i1 ng—Il1—1
X gi'qy (1— g1 — @)™~ (29) Pr(S:|N,b=0) = PYSi,l = 0| N,b=0)
On the other hand, among the othér— 1 — n, users from + P&(S1,1, =1|N,b=0)
the Group 1, the probability ofl; users interfering at one pulse + P3(S1,ly =2|N,b=0)
position is a binomial distribution with paramete¥s— 1 — no +P3(Sy,1, > 3|N,b=0). (33)

andg}, and it can be expressed as
The first three conditional probabilities of the right-hand side in

Pr (1] [n9, N) = <N—1 - 712) (1 gyt (30) (33) can be expressed as

! 1
i PL(S1,lb=i|N,b=0) i=0,1,2
The performance analysis of the system using double hard _ ZPr(Sl,b =i|n2,N,b=0)Pr(ny | N)
limiters and the proposed codes is slightly different from that -~
of the system with ideal OOCs because each interfered user in- (34)

terferes at one pulse position in the latter system. In the former
system, each interfered user may have contributed one or trye

pulses. Therefore, we should determine the value ahdl; + Pr(S1,ly = i|n2, N,b = 0)

l{. Because the value @f is much smaller tham; and ¢/, , )

we first determine the pattern &f interfering users and then - Z Pr(Si[l, 13,1 =i,b=0)

determine that of; + I} interfering users. For example, if we bl

know that there are onliy 4} users with one-pulse contribution x Pr(ly,ly =i |no, N)Pr(l} |n2, N).  (35)

and no other users with two-pulse contribution, the performang\%

analysis is the same as the systems with ideal OOCs. However,

if there is exactly one user with two-pulse contributign= 1) Pr(S1 |11, =¢,b=0)

andl; +1; users with one-pulse contribution, the probability that =Pr(ky =w—2i|l, +1)). (36)

the interference cannot be canceled by the second hard limiteris N - )

the same as the probability of each one of the remaining2 When: = 2, the conditional probability’r(Sy [1y,11,1y =

mark positions interfered by at least one of the- 7, users. 2,0 = 0) is similar to (36). However, thé, = 2 users may
Let the!l, users totally interfere at pulse positions among contribute two, three, or four marks, i.¢.may be 2, 3, or 4.

thew marks of the desired user. Without loss of generality, weerefore, the conditional probability can be expressed as

assume tEatl';he q’t(?e(; nk:)ninftrfewdt markésllo?/ate atthefirit Pr(Sy |1, 1,1 =2,b=0)

w—t marks. Provided there al@isers among +1{ users, suc N o y _ _

that all of them interfere at the first — + marks. We denotg, =Prky =w—2[l + ll)/Pr(t =2|l2=2)

as the total number of marks interfered by thesers among +Pr(ks =w =3l +1)Pr(t = 3[ly = 2)

the first(w — ¢) marks, wherd < k, < w — ¢. Applying the +Pr(ky=w—4|l; +1)Pr(t =41 =2). (37)

principle of inclusion and exclusion, the probability of each ong . . .
. L ecause any three elements will determine a circle and a code
of the remainingyv — ¢ marks is interfered by at least one of the

] users can be expressed as mentioned previously, we observe the behavior among any two
u xp distinct circles of thel; circles and the desired circle to ob-

eni € {0,1},

Pr(k, = w —t|1) tain the three conditional probabilities, givén = 2 in (37).
' b1 . . Consider any circl&? chosen from th& circles; it intersects
—1- Y (-1t <w - t) <1 o ) with the desired circle! at two of thew elements. In fact,
t w—t there argk — w)/(w — 2) circles in thel: circles intersecting

=1

at these two elements. Therefore, among the diher 1 cir-

w—t—1 - {
_ Z (—1) <w - t) <1 _ ¢ ) ] (31) Ccles, there arék - _w)/(w — 2) — 1 circles overlapping these
o ¢ w—t two elements. Similarly, there apéw — 2) - (k — w)/(w — 2)

T

Authorized licensed use limited to: National Taiwan University. Downloaded on January 23, 2009 at 00:56 from IEEE Xplore. Restrictions apply.



WENG AND WU: OOCs WITH NONIDEAL CROSS CORRELATION

1861

codes interfering with the desired code at one of these two el- TABLE I
ements and one of the remainimg— 2 elements. There are LINK PARAMETERS
((w — 2_)(w —-3)/2) - (k —w)/(w— _2)_ codes interfering with Nome Symbol  Valuo
the desired code at two of the remaining- 2 elements. There- Light wavelengih 1.3um
fore, the three conditional probabilities given= 2 in (37) are APD 7 0.6
Eew _ Quantum efficiency
Pr(t=2|l,=2) = w—2 (38) APD gain G 100
-1 APD effective kegs 0.02
2(w — 2) - % ionization ratio
2= leakage current
and APD surface I, 10nA
W . k—w leaka, t
3 w=3 ge curren
Pr(t=4|l, =2) = L1 (40) chip duration T, 0.1ns
respectively. bit rate 71"; = {,;
Finally, because it is hard to determine the interfering pattern Receiver noise T, 300K
whenl; > 3, we consider the worst case in such a situation. That temperature
is, we assume = min(w, 2l,). Therefore, the upper bound of Receiver load resistor Ry 103002

the last conditional probability in (33) can be expressed as
P2(S1,l, > 3|N,b=0)
= > Pr(S1.l2|ny, N,b=0)Pr(nz| N)

ng,la >3
= > > Pr(Si|h,1,12,b=0)
n2, 2231,
x Pr(ly,l2 | ne, N)Pr(l} | n2, N)Pr(na | N)

(41)
where
PI‘(Sl | ll, /1,12, b = 0)
= Pr(kmin(,u,’?b) = w — min(w,2ls) |11 + li) . (42)

GivenN andb = 1, the state i, after the second hard limiter.
That is, the probability of the state & andb = 1 is obtained

by
Pr(S1|N,b=1)=1. (43)
Therefore, the probabilities that the stateStg given N and
b (e {0,1}), are
Pr(So|N,b=0)=1—-Pr(51|N,b=0) (44)
and
Pr(So|N,b=1)=1—-Pr(S1|N,b=1). (45)
Because (41) is the upper boundr¥f(S1, 1> > 3| N, b = 0),
the bit error probabilityPr, given N, is upper bounded by
P =Pr(b, =1]51)Pr(S1|N,b=0)Pr(b=0)
+ Pr(b, =1|50) Pr(So | N,b=0)Pr(b=0)
+ Pr(b, =0|51) Pr(S1 [ N,b=1)Pr(b=1)
+ Pr(b, = 0| 50) Pr(So | N,b=1)Pr(b=1). (46)

IV. NUMERICAL RESULTS

10° ¢

Bit error probability

107

—¢&— ideal OOCs
~-%— Yang's codes
—o — without reversed codes

10—5 s L L 1 ! L 1 L s | . L L L 1

0.1 0.15 0.2 0.25 0.3
nw
Received power per pulse

Fig.2. The biterror probabilities versus the received power uader4, v =
757, andN = 50.

the same as that of ideal OOCs, i.&.,= 1. The assumption
results in the lower bound of the performance of the systems
with Yang's codes.

First, we compare the performance among the ideal OOCs,
Yang’s codes, and the proposed nonreversed codes. Under the
code lengthy = 757 and code weightv = 4, the maximum
number of codes of the proposed (757, 4, 1, 2)-O0Cs without
reversed codesis 819, which is larger thaRowever, under the
same code length and code weight, the ideal OOCs only contain
63 codes and Yang's codes have 252 codes. Fig. 2 shows the bit
error probability versus the received power per putgeunder
the number of simultaneous use¥s = 50. As in our predic-
tion, the bit error probabilities of the systems with the proposed
codes or the ideal OOCs are almost same. The proposed code

In this section, we present the numerical results of the systefamily has 12 times the size of the ideal OOCs. This is because

using conventional ideal OOCs, Yand’s, w, 1,2) codes, and

the probabilityg, is much smaller thap; or ¢{. Fig. 3 shows

the proposed codes. The parameters are given in the TablgHg bit error probability versus the number of simultaneous users
To simplify the analysis of the systems with Yang’s codes, wenderPy, = 0.4 4W. It also shows that the performances of the
assume that the cross-correlation property of Yang's codessistems with the three classes of OOCs are almost the same.
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: =757 -%— Yang's codes El w00 b &— without reversed codes 80 ]
—8 — without reversed codes | - F | © - with reversed codes 3
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Number of simultaneous users Received power per pulse
Fig. 4. The bit error probabilities versus the received power under6643

Fig. 3. The bit error probabilities versus the number of simultaneous us@¥dN = 200.
underw = 4, v = 757, and Py = 0.4 pW.

Under this received power, the probability that the OOK decod ~ 1¢2 L o
will misdecode from stat&, (or S;) to b, = 1 (or b, = 0) is f ]
1072, that is,Pr(b, = 0]S1) = Pr(b, = 1|Sp) = 1077,
Therefore, if the desired data bit is one, it contributes the k
error probability with 0.5 107, no matter how many simul-
taneous users there may be. However, Fig. 3 also shows t& ;¢ [
the bit error probability grows with the number of simultaneou & :
users. It means that the major contribution to the bit error pro % g
ability is when the desired data bit is zero. This is because, g 10° ,
the desired data bit is one, it is free from interference due to tl PR —o— ideal OOCs .
design of the receiver. On the other hand, if the desired data . }!/* / -~ Yang's codes ]
is zero, it may be interfered with by other users and then res| Lo ? © & without reversed codes |
in bit error, especially when the number of simultaneous users 3 ¢ with reversed codes E
large. Therefore, the dominant contribution to the bit error prot 10" ————— el i

ability in (46) is the first termPr (b, = 1|S;1)Pr (S, | N,b = 0 500 1000 1500
0)Pr(b = 0) =~ (1/2)Pr (S| N,b = 0), wherel/2 means Number of simultaneous users

the probability ofb = 0. There are four curves’:/2,i €

{07 1,2, 3}’ in the figure corresponding to the four conditionafig- 5. Thg bit error probab[lities versus the number of simultaneous users

- s . 3 . underv = 6643 and Py, = 0.5 pW.

probabilities in (33). Note that the lowest curvg;/2, is the

upper bound according to (41Fg is also the upper bound of

the actual bit error probability. Moreover, the dominant term of Because code weight and bit error probability are inversely
(1/2) Pr (S1 | N,b = 0)is P2/2, according to these four curvesrelated, we increase the code weight to lower the BER. Under
in the figure. Therefore, we may treBf /2 as the lower bound the same code lengthr = 6643), the code sizes of ideal OOCs

of the actual bit error probability. Fig. 3 shows that is very with w = 3 andw = 4 are 1107 and 553, respectively. The
close toP2/2. It means thaf’s is almost the same as the actuatode sizes of Yang’s codes with = 5,w = 6, andw = 7 are

bit error probability. We can explain why the performances atgper bounded by 1328, 1328, and 948, respectively. The code
similar to one another. For suitable received power, the bit ermizes of the nonreversed codes and reversed codes with code
probability is the summation aP%/2,i € {0,1,2,3}. How- weightw = 10 are 738 and 1476, respectively. Fig. 4 shows
ever, the three conditional probabilitieB /2,7 € {1,2,3}, the bit error probability versus the received power per pulse of
are much smaller than the first o2 /2, due to the very small the systems using the four classes of OOCs under the number
value ofg, with respect tay; or ¢f . Therefore, the bit error prob- of simultaneous user® = 200 and code lengthy = 6643.

ability is almost equal t&>¢ /2, which represents the probabilityWhen the received powe?y is small, these systems are power
thatb = 0,1, = 0, and the double hard limiters cannot eliminatémited. When Py is large, these systems are MUI limited. It
the MUI. The meaning of; = 0 is that any one user interferedalso shows that the proposed codes with reversed codes perform
with, at most, one pulse position. The property is the same lastter than ideal OOCs and Yang’'s codes. Moreover, the pro-
the ideal OOCs. That is why the bit error probabilities of thposed codes have the largest code size. Fig. 5 shows the bit error
systems with ideal OOCs or the proposed codes are so clos@robability versus the number of simultaneous users under the

10
£

obabili
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fixed received powePy = 0.5 yW. At BER < 107%, the sys-  [12] G.-C. Yang and T. E. Fuja, “Optical orthogonal codes with unequal
tems with the ideal OOCs have only about eight (witk= 3) or auto- and cross-correlation constraintisEE Trans. Inform. Theory

pp. 96-106, Jan. 1995.

25 (withw = 4) SlmUIta_neous users. _The systems with \_(ang’sm] S. V. Maric M. D. Hahm, and E. L. Titlebaum, “Construction and
codes have about 52 (with = 5), 83 (withw = 6), or 115 (with performance analysis of a new family of optical orthogonal codes for
w = 7) simultaneous users. On the other hand, the systems with  CDMA fiber-optic networks,”IEEE Trans. Commun.vol. 43, pp.

the two proposed codes accommodate about 190 users. Figs,,

485-489, Feb./Mar./Apr. 1995.
W. C. Kwong, P. A. Perrier, and P. R. Prucnal, “Performance comparison

and 5 also show that the performances of the systems with the * of asynchronous and synchronous code-division multiple access tech-
two proposed codes are almost same. This is becauge-the niques for fiber-optic local area network$ZEE Trans. Communywvol.

reversed codes (excludiigt) from Group lor Group 2are still

39, no. 11, pp. 1625-1634, Nov. 1991.
[15] C.-S.Weng and J. Wu, “Perfect difference codes for synchronous fiber-

in the same group and the inverSi\_/e Q@Of the desired code optic CDMA communication systemsJ: Lightwave Technqlvol. 19,
does not affect the performance significantly. Consequently, the  no. 2, pp. 186-194, Feb. 2001.
smi ; [16] J. Singer, “A theorem in finite projective geometry and some applica-
two proposed codes have similar properties. tions to number theory,Trans. Amer. Math. Socvol. 43, pp. 377-385,
1938.
V. CONCLUSION [17] P.Erdésand H. Hanani, “On alimittheorem in combinatorical analysis,”

Publ. Math. Debrecenvol. 10, pp. 10-13, 1963.

In this paper, we propose two new classes of OOCs. For thgs] J. Schénheim, “On maximal systems hbftuples,” Studia Sci. Math.
first time, we show that it is possible to construct a code family Hungar, vol. 1, pp. 363-368, 1966.

with code size larger than the code length. Compared with ideaf”!

H. Hanani, “On some tactical configuration§anad. J. Math.vol. 15,
pp. 702-722, 1963.

OOCs and Yang'év, w, 1, 2) codes under the same code length[20] ——, “A class of three-designs,J. Combin. Theoryser. A, vol. 26, pp.
and code weight, the performances of the systems with the four ~1-19, 1979.

classes of codes are almost the same as one another. Howe\%]r],

J. L. Blanchard, “A construction for Steiner 3-designgd,”Combin.
Theory ser. A, vol. 71, pp. 60-66, 1995.

the proposed codes accommodate the users 10 times (which @) T. onhtsuki, “Performance analysis of direct-detection optical asyn-
pends on the values &fandw) more than ideal OOCs for larger chronous CDMA systems with double optical hard-limiters]”

code length. To increase the number of simultaneous users fi
a given BER, we may increase the code weight and reduce t

Lightwave Technalvol. 15, pp. 452—457, Mar. 1997.
3] H. M. Kwon, “Optical orthogonal code-division multiple-access
€ system—~Part |I: APD noise and thermal noid&EE Trans. Commun.

code size. We show that it is possible to accommodate many vol. 42, no. 7, pp. 2470-2479, July 1994.
more simultaneous users with the proposed codes than ideal
OOCs and Yang's codes. Between the two classes of proposed
codes, the code family with reversed codes has twice the code

size than that of nonreversed codes. The performances of *-- Chi-Shun Weng was born in Tainan, Taiwan,
two kinds of proposed codes are almost the same. R.O.C., in 1976. He received the B.S. degree
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