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Optical Orthogonal Codes With Nonideal Cross
Correlation
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Abstract—For optical code division multiple access (OCDMA)
networks, many optical orthogonal codes (OOCs) with ideal auto-
and cross-correlation properties had been studied widely. In this
paper, we relax the cross-correlation constraint slightly and pro-
pose a new code family based on perfect difference codes. Given
the same code weight and code length, the size of new codes may
increase 10 times more than that of ideal OOCs. Although the max-
imum cross correlation of new codes is larger than one, the cross
correlation is less than or equal to one, for the most part. Con-
sequently, the performance of new codes approaches that of ideal
OOCs. Numerical results show that the performance of proposed
codes was almost the same as that of conventional OOCs under the
same code length and code weight.

Index Terms—Maximal system, multiuser interference, optical
code division multiple access (OCDMA), optical orthogonal code,
perfect difference set.

I. INTRODUCTION

RECENTLY, the construction and performance analysis
of OOCs for optical code division multiple access

(OCDMA) systems have been investigated widely [1]–[14].
A -OOC is a family of (0, 1) sequences with
code length , code weight , the maximum value of off-peak
autocorrelation , and the maximum value of cross correla-
tion . Most studies paid attention to -OOCs with

for the sake of synchronization and minimizing
interference. However, under the constraint of the ideal auto-
and cross-correlation properties, the code size is upper bounded
by [5], which is linear to the code
length, where denotes the maximal integer not larger than

. Therefore, the code size is very sparse with respect to the
code length. In order to obtain a larger code size, we should
relax the constraint.

In [5], Chung and Kumar constructed optimal
-OOCs, where is any prime and the family size is

. In [12], Yang and Fuja investigated - OOCs
and proved that it is impossible to get more than

code words whose code size is twice the upper bound
of -OOCs. In [8], Yang also constructed -
OOCs, and the code size istimes (for even ) or times
(for odd ) the size of -OOCs, when is less than
eight. To the best of our knowledge, there is no code family with
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code size larger than the code length. In this paper, we relax the
constraint of to . On the other hand, we maintain
the value of to 1 for the sake of synchronization between
the receiver and transmitter. In [15], we proposed a code family
named perfect difference codesbased on -perfect
difference sets [16] for synchronous OCDMA systems. A
perfect difference code with code weight is a
power of a prime) and code length has an
interesting property; the off-peak autocorrelation is exactly
one. For synchronous OCDMA systems, we may cyclically
shift such code times to get other codes. Thus,
the code size is the same as the code length. We also showed
that it is easy to cancel the multiuser interference (MUI).
However, from the viewpoint of asynchronous systems, these
codes are basically identical because they are cyclically shifted
with one another. In other words, we have only one code for
asynchronous systems and the code has the property of .
Therefore, we must modify the perfect difference codes to get a
larger code size. To do so, we consider the case of and
observe the cross correlation between the two identical perfect
difference codes. When the two codes are not aligned—that
is, they are cyclically shifted with each other—the cross
correlation between the two codes is exactly one. In such a
situation, it does not violate the constraint of . However,
when there is no cyclic shifting between them, the value of
the cross correlation is, which is far from the constraint. To
overcome this, we can drop some marks appropriately from

marks of each code, such that the modified code weight
becomes and the code length is still equal to. Moreover,
the cross-correlation property should satisfy the constraint of

, even when the two codes are aligned with each other.
For example, the set is a (73, 9,
1)-perfect difference set, where each element means the mark
position. We can drop the first and the last five elements from
the set, respectively, to form two subsets. Therefore, the two
subsets and form a family of (73,
4, 1, 2)-OOCs. In fact, we can obtain more than two codes
satisfying the constraint of , as long as we choose the
subsets appropriately. Therefore, the question is how many
codes we can get, so that each code is formed by reserving some

marks from the original marks of a perfect difference code,
and the cross correlation between any two distinct codes is not
larger than two. In other words, how many differentsubsets
of a set, such that any two distinct subsets share, at most, two
elements, can we obtain? Consider a setwith elements
and let be a positive integer satisfying . This
question is the same as constructing an maximal
system of -tuples (subsets of having elements each),
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such that each triple of elements is contained in at most one
-tuple of the system [17], [18]. Based on the maximal system,

we will demonstrate that it is possible to construct a family of
-OOCs, such that the family size is larger than the

code length. However, the maximal value of cross correlation
is two. This maximal value occurs only when the two codes
are aligned with each other (the probability is only ) and
they overlap at two marks. That is, for the most part, the value
of cross correlation is not larger than one. Therefore, the new
code family is essentially similar to -OOCs, but the
code size of the former is much larger than that of the latter.
For example, consider a (757, 28, 1)-perfect difference set;
we can obtain 819 four-tuples to form a family of (757, 4, 1,
2)-OOCs with family size equal to 819. In fact, we can reverse
all 819 codes to obtain another 819 codes, such that all 1638
codes also form a family of (757, 4, 1, 2)-OOCs. On the other
hand, an optimal family of (757, 4, 1)-OOCs only contains 63
code words.

Due to good property of the proposed codes, the bit error rate
(BER) of the proposed codes is almost the same as that of ideal
codes under the same code length, code weight, and number of
simultaneous users. Moreover, the code size of the former is 10
times (which depends on the values ofand ) more than ideal
codes. If it is needed to increase the number of simultaneous
users under BER 10 , there are two possible ways to achieve
it. One is increasing the code length and reducing the bit rate.
Another way is increasing the code weight and simultaneously
reducing the code size. Numerical results show that the number
of simultaneous users with the proposed (6643, 10, 1, 2)-OOCs
is 23 times more than that with the ideal (6643, 3, 1)-OOCs
under BER 10 . The code size of the proposed (6643, 10,
1, 2)-OOCs is still larger than the ideal (6643, 3, 1)-OOCs. Nu-
merical results also show that the performance of the proposed
codes is better than that of Yang’s codes.

The remainder of this paper is organized as follows. In
Section II, we construct a family of -OOCs. In
Section III, we analyze the BER performance of the systems
using the proposed codes with double hard limiters. The
numerical results are given in Section IV. We also compare
the performances of the proposed codes, the ideal OOCs, and
Yang’s codes. The conclusion is given in Section V.

II. OOCS WITH BASED ON PERFECTDIFFERENCE

CODES

Because -OOCs are based on perfect dif-
ference codes, we first introduce perfect difference sets.
Let be the -set of integers modulo .
A set is a subset of . For every

, there are exactly ordered pairs ,
such that

(1)

A set satisfying these requirements is called a -
perfect difference set. A special type of perfect difference
sets is the -perfect difference set. The existence of
the -perfect difference set, where
is a power of a prime, has been proved and constructed by

Singer [16]. We can construct a perfect difference code
based on the perfect difference set

with the rule

if
otherwise.

(2)

The code weight and code length areand , respectively,
where .

To achieve the maximal code size of -OOCs
based on perfect difference codes, we should choose-tu-
ples from a -perfect difference set, which contains

elements, such that the same elements between any two
subsets is not more than . The question is the same as

constructing an maximal system such that
every -tuple is contained in at most one set of the
system. Assume the number of-tuples in the system is .

Every -tuple contains distinct -tuples. The

total number of -tuples from elements is .

Therefore, the upper bound of is

(3)

or more tightly [18]

(4)

A special case is when , then

(5)

which is the upper bound of -OOCs. Thus, we may use
a perfect difference code to construct optimal -OOCs.
For example, the set is a (73,
9, 1)-perfect difference set. We choose three-tuples from the
set appropriately to get an maximal system with
12 subsets: ; ; ; ;

; ; ; ; ;
; ; and . The 12 subsets form

12 code words with the rule of (2), and they are optimal (73,
3, 1)-OOCs.

Because many papers have discussed the optimal -
OOCs, and the code sizes are very small with respect to the
code length, we do not consider the ideal cross-correlation case
in this paper. We will focus on the case with , that
is, -OOCs. In this situation, the code size is upper
bounded by

(6)
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In other words, the optimal code size is no longer linearly pro-
portional to the code length, and it is possible to construct a code
family whose code size is larger than the code length. Because
the upper bound in (6) is times that in (5), it
is possible to construct a family of -OOCs such that
the family size is times the size of an optimal

-OOCs.
The determination of the maximal code size is still an un-

solved problem [18]. However, many useful results had been
reported [17]–[21]. We describe some results directly related
to this paper in the following. Consider a Galois field GF
where is the power of a prime and is a positive integer.
The extended field is obtained by adding an element into
GF , that is, GF . A linear transformation

(7)

is one-to-one and forms a group, where
GF , and . The image of is
defined as the cross ratio

(8)

which is a linear transformation, and it carries , and
into 0, 1, and of GF respectively [19]. For any
four distinct elements , and of , a subset of
is called a circle if GF and there is no
set properly containing as its property. With the systems of
circles, the extended field forms a finite Möbius geometry of
MG , which has elements. Any triple of elements
in MG is included in exactly one circle and every circle
has elements [17]. Based on this construction, it is easy
to form an maximal system and the number
of -tuples (or circles) achieves the upper bound in (6). As a
result, we can construct a code family of -OOCs with

, and
by the following algorithm.

1) Construct a perfect difference set with ele-
ments according to [16], where and

.
2) Each element of an extended field GF ,

which also contains elements, is related to one element
of the perfect difference set.

3) Choose all the possible subsets withelements from
and reserve the subsets fulfilling the property of a circle,
where .

4) Each circle is related to elements of the perfect differ-
ence set. The elements form a code word with code
length and code weight , where each element rep-
resents the mark position. The codes form a family of

-OOCs.
The total number of codes is given by

(9)

TABLE I
THE (21, 3, 1, 2)-OOCS WITHOUT REVERSEDCODES

Because any three elements in MG determine a circle,
for any two distinct elements of a circle, there are

circles intersected with the circle at these two dis-
tinct elements. Moreover, a circle with elements has

nonordered pairs. Therefore, given any circle,
the total number of circles such that each circle intersects with

at two elements can be expressed as

(10)

In other words, given any one code , there are codes such
that the maximal cross correlation with is two (this only
occurs when each of them is aligned with). With respect to
the code , we class the codes asGroup 2 (in which the
maximal cross correlation with is two and only occurs once
among possible cyclic shifts with ) and the other
codes asGroup 1(in which the maximal cross correlation with

is one).
Note that we can obtain anothercodes by reversing all the
codes. It is easy to prove that all the codes also form a

family of -OOCs. Moreover, any one code reversed
from Group 1or Group 2is still in the same group. Therefore,
given any one code in the codes, there are codes in
Group 2and codes inGroup 1with respect to
the code . However, the reverse of the code , has not
yet been considered. Although the maximal cross correlation
between and is two, we do not class this reversed code
in Group 2or Group 1. Because the maximal cross correlation

does not occur only once, actually, it occurs times among

possible cyclic shifts with . As an example, the (21, 3, 1,
2)-OOCs without reversed codes are presented in Table I.

III. PERFORMANCEANALYSIS OF OOCS WITH

In this section, we analyze the performance of the systems
using double hard-limiters with consideration of shot noise,
thermal noise, avalanche photodiode (APD) bulk, and surface
leakage currents. We use the proposed codes as the signature
codes. The receiver structure is shown in Fig. 1 [22]. To
simplify the performance analysis, we assume that chips are
synchronous among users because it is the worst case and
results in the upper bound on the performance [4].
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Fig. 1. The receiver structure of OCDMA systems with double hard limiters.

The average photon arrival rateper pulse is given by

(11)

where is APD quantum efficiency, is the received signal
power, is the Planck’s constant, andis the optical frequency.
There are only two states after the second hard limiter, denoted
by and , respectively. The average photon arrival rate of
state is equal to , whereas the photon arrival rate of state
is zero (this occurs only when the desired data bit is zero and the
MUI is removed completely by the two hard limiters). For states

, the probability density function of the output
after the photodetector can be expressed as [23]

(12)

where the mean can be expressed as

(13)

Here, is the average APD gain, is the chip duration,
is the electron charge, is the contribution of the APD
bulk leakage current to the APD output, is the APD surface
leakage current, and the variancecan be written as

(14)

where is an excess noise factor given by

(15)

Here, is an APD effective ionization ratio and is the
variance of thermal noise expressed as

(16)

where is Boltzmann’s constant, is the receiver noise tem-
perature, and is the receiver load resistance.

After the photodetector, the signal is fed into anON-OFF

keying (OOK) decoder. If the output is larger than the
constant threshold, we declare that the output data bit is
one; otherwise, it is zero. To minimize the error probability, we
set the suboptimal value of the constant thresholdto be

(17)

Therefore, the probability that the state(or ) is decoded
incorrectly to be (or ) can be expressed as

(18)

where stands for the complementary error function, de-
fined as

(19)

The probability that the state (or ) is decoded correctly to
be (or ) can be expressed as

(20)

and

(21)

respectively.
The performance analyses with or without thereversed

codes are similar to each other. Thus, we only derive the per-
formance of the systems with the original codes. That is,
the total number of codes is and none of them is reversed
with each other. Without loss of generality, we consider the
user assigned the code is the de-
sired user and the desired data bit is. assigned the code

represents one of the rest users.
If their relative cyclic shift is , the cross
correlation can be expressed as

(22)

where denotes the addition modulo. The value of is given
by

if and Group 2

or otherwise
(23)

Consider Group 2and denote and as the probabil-
ities that is 1 and 2 respectively. The expected value ofis
given by [6]

(24)

Because the value of is two only when and Group
2, the value of is and then . Similarly, if

Group 1, we denote as the probability that is 1. The
value of is , which is the same as that of ideal OOCs.

The probabilities that contributes one or two pulse posi-
tions are given by

Group 2 p1 2 (25)

Group 2 p2 2 (26)

and

Group 1 p
1
2 (27)

where the factor means equiprobableON–OFFdata bits.
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Given the number of simultaneous users, the probability
that there are users fromGroup 2can be expressed as

(28)

Among the users, the probability of users interfering at
one pulse position and users interfering at two pulse positions
is a trinomial distribution with parameters , and . The
probability can be expressed as

(29)

On the other hand, among the other users from
theGroup 1, the probability of users interfering at one pulse
position is a binomial distribution with parameters
and , and it can be expressed as

(30)

The performance analysis of the system using double hard
limiters and the proposed codes is slightly different from that
of the system with ideal OOCs because each interfered user in-
terferes at one pulse position in the latter system. In the former
system, each interfered user may have contributed one or two
pulses. Therefore, we should determine the value ofand

. Because the value of is much smaller than and ,
we first determine the pattern of interfering users and then
determine that of interfering users. For example, if we
know that there are only users with one-pulse contribution
and no other users with two-pulse contribution, the performance
analysis is the same as the systems with ideal OOCs. However,
if there is exactly one user with two-pulse contribution
and users with one-pulse contribution, the probability that
the interference cannot be canceled by the second hard limiter is
the same as the probability of each one of the remaining
mark positions interfered by at least one of the users.

Let the users totally interfere at pulse positions among
the marks of the desired user. Without loss of generality, we
assume that the other noninterfered marks locate at the first

marks. Provided there areusers among users, such
that all of them interfere at the first marks. We denote
as the total number of marks interfered by theusers among
the first marks, where . Applying the
principle of inclusion and exclusion, the probability of each one
of the remaining marks is interfered by at least one of the

users can be expressed as

(31)

Therefore, the probability of given can be
expressed as

(32)

The probability that the state is after the second hard lim-
iter, given and the desired data bit , is given by

(33)

The first three conditional probabilities of the right-hand side in
(33) can be expressed as

(34)

here

(35)

When

(36)

When , the conditional probability
is similar to (36). However, the users may

contribute two, three, or four marks, i.e.,may be 2, 3, or 4.
Therefore, the conditional probability can be expressed as

(37)

Because any three elements will determine a circle and a code
mentioned previously, we observe the behavior among any two
distinct circles of the circles and the desired circle to ob-
tain the three conditional probabilities, given in (37).
Consider any circle chosen from the circles; it intersects
with the desired circle at two of the elements. In fact,
there are circles in the circles intersecting
at these two elements. Therefore, among the other cir-
cles, there are circles overlapping these
two elements. Similarly, there are
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codes interfering with the desired code at one of these two el-
ements and one of the remaining elements. There are

codes interfering with
the desired code at two of the remaining elements. There-
fore, the three conditional probabilities given in (37) are

(38)

(39)

and

(40)

respectively.
Finally, because it is hard to determine the interfering pattern

when , we consider the worst case in such a situation. That
is, we assume . Therefore, the upper bound of
the last conditional probability in (33) can be expressed as

(41)

where

(42)

Given and , the state is after the second hard limiter.
That is, the probability of the state is and is obtained
by

(43)

Therefore, the probabilities that the state is, given and
, are

(44)

and

(45)

Because (41) is the upper bound of ,
the bit error probability , given , is upper bounded by

(46)

IV. NUMERICAL RESULTS

In this section, we present the numerical results of the systems
using conventional ideal OOCs, Yang’s codes, and
the proposed codes. The parameters are given in the Table II.
To simplify the analysis of the systems with Yang’s codes, we
assume that the cross-correlation property of Yang’s codes is

TABLE II
LINK PARAMETERS

Fig. 2. The bit error probabilities versus the received power underw = 4; v =

757, andN = 50.

the same as that of ideal OOCs, i.e., . The assumption
results in the lower bound of the performance of the systems
with Yang’s codes.

First, we compare the performance among the ideal OOCs,
Yang’s codes, and the proposed nonreversed codes. Under the
code length and code weight , the maximum
number of codes of the proposed (757, 4, 1, 2)-OOCs without
reversed codes is 819, which is larger than. However, under the
same code length and code weight, the ideal OOCs only contain
63 codes and Yang’s codes have 252 codes. Fig. 2 shows the bit
error probability versus the received power per pulseunder
the number of simultaneous users . As in our predic-
tion, the bit error probabilities of the systems with the proposed
codes or the ideal OOCs are almost same. The proposed code
family has 12 times the size of the ideal OOCs. This is because
the probability is much smaller than or . Fig. 3 shows
the bit error probability versus the number of simultaneous users
under W. It also shows that the performances of the
systems with the three classes of OOCs are almost the same.
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Fig. 3. The bit error probabilities versus the number of simultaneous users
underw = 4; v = 757, andP = 0:4 �W.

Under this received power, the probability that the OOK decoder
will misdecode from state (or ) to (or ) is

, that is, .
Therefore, if the desired data bit is one, it contributes the bit
error probability with 0.5 10 , no matter how many simul-
taneous users there may be. However, Fig. 3 also shows that
the bit error probability grows with the number of simultaneous
users. It means that the major contribution to the bit error prob-
ability is when the desired data bit is zero. This is because, if
the desired data bit is one, it is free from interference due to the
design of the receiver. On the other hand, if the desired data bit
is zero, it may be interfered with by other users and then result
in bit error, especially when the number of simultaneous users is
large. Therefore, the dominant contribution to the bit error prob-
ability in (46) is the first term

, where means
the probability of . There are four curves,

, in the figure corresponding to the four conditional
probabilities in (33). Note that the lowest curve, , is the
upper bound according to (41). is also the upper bound of
the actual bit error probability. Moreover, the dominant term of

is , according to these four curves
in the figure. Therefore, we may treat as the lower bound
of the actual bit error probability. Fig. 3 shows that is very
close to . It means that is almost the same as the actual
bit error probability. We can explain why the performances are
similar to one another. For suitable received power, the bit error
probability is the summation of . How-
ever, the three conditional probabilities, ,
are much smaller than the first one, , due to the very small
value of with respect to or . Therefore, the bit error prob-
ability is almost equal to , which represents the probability
that , and the double hard limiters cannot eliminate
the MUI. The meaning of is that any one user interfered
with, at most, one pulse position. The property is the same as
the ideal OOCs. That is why the bit error probabilities of the
systems with ideal OOCs or the proposed codes are so close.

Fig. 4. The bit error probabilities versus the received power underv = 6643

andN = 200.

Fig. 5. The bit error probabilities versus the number of simultaneous users
underv = 6643 andP = 0:5 �W.

Because code weight and bit error probability are inversely
related, we increase the code weight to lower the BER. Under
the same code length , the code sizes of ideal OOCs
with and are 1107 and 553, respectively. The
code sizes of Yang’s codes with , and are
upper bounded by 1328, 1328, and 948, respectively. The code
sizes of the nonreversed codes and reversed codes with code
weight are 738 and 1476, respectively. Fig. 4 shows
the bit error probability versus the received power per pulse of
the systems using the four classes of OOCs under the number
of simultaneous users and code length .
When the received power is small, these systems are power
limited. When is large, these systems are MUI limited. It
also shows that the proposed codes with reversed codes perform
better than ideal OOCs and Yang’s codes. Moreover, the pro-
posed codes have the largest code size. Fig. 5 shows the bit error
probability versus the number of simultaneous users under the
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fixed received power W. At BER 10 , the sys-
tems with the ideal OOCs have only about eight (with ) or
25 (with ) simultaneous users. The systems with Yang’s
codes have about 52 (with ), 83 (with ), or 115 (with

) simultaneous users. On the other hand, the systems with
the two proposed codes accommodate about 190 users. Figs. 4
and 5 also show that the performances of the systems with the
two proposed codes are almost same. This is because the
reversed codes (excluding ) fromGroup 1orGroup 2are still
in the same group and the inversive codeof the desired code
does not affect the performance significantly. Consequently, the
two proposed codes have similar properties.

V. CONCLUSION

In this paper, we propose two new classes of OOCs. For the
first time, we show that it is possible to construct a code family
with code size larger than the code length. Compared with ideal
OOCs and Yang’s codes under the same code length
and code weight, the performances of the systems with the four
classes of codes are almost the same as one another. However,
the proposed codes accommodate the users 10 times (which de-
pends on the values ofand ) more than ideal OOCs for larger
code length. To increase the number of simultaneous users for
a given BER, we may increase the code weight and reduce the
code size. We show that it is possible to accommodate many
more simultaneous users with the proposed codes than ideal
OOCs and Yang’s codes. Between the two classes of proposed
codes, the code family with reversed codes has twice the code
size than that of nonreversed codes. The performances of the
two kinds of proposed codes are almost the same.
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