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1. INTRODUCTION

The segmented-routing channels, or simply the segmented channels, in a
row-based FPGA [El Gamal et al. 1989] consist of vertical and horizontal
routing segments. Each input or output of the logic modules connects to a
dedicated vertical segment; programmable switches are located at each
crossing of the vertical and horizontal segments (cross switches) and also
between pairs of adjacent horizontal segments on the same track (horizon-
tal switches), such that the routing in a row-based FPGA can be performed
by programming these switch elements [Greene et al. 1990; EI Gamal et al.
1991]. Researches on how to design a segmented channel that maximizes
the routability and satisfies performance requirements have been reported
[Zhu and Wong 1992; Burman et al. 1992; Pedram et al. 1994], and this is
denoted as a segmentation design problem.

A K-segment channel routing is a routing that assigns each connection to
a track such that no segment is occupied by more than one connection and
each connection occupies at most K segments. Greene et al. [1990] state
that the K-segment (K > 1) channel-routing problem is equivalent to the
problem of numerical matching with target sums [Garey and Johnson
1979], and hence strongly NP-complete for K = 2. Exhaustive search
[Greene et al. 1990; Roychowdhury et al. 1993]; bounded search [Roy
1993]; and heuristic algorithms [Zhu and Wong 1992] have been proposed
to solve the K-segment channel-routing problem.

In this paper we develop a weighted bipartite-matching algorithm for the
segmented channel-routing problem. We do not choose and assign connec-
tions one by one but clique by clique. The set of connections forming a
maximum clique is chosen first. The routing of each clique of connections is
done by finding a minimum weighted matching. If some connections cannot
be assigned by the above step, postprocessing is used to reroute these
connections. Also, in order to pick out the cases that are unroutable, we
propose some criteria to check the unroutability of a case. Generally, given
a set of connections to be routed over a range of columns, the number of
tracks must be large enough such that each of the overlapping connections
can be assigned to a different track, and the number of switches must also
be sufficient such that as many nonoverlapped connections as possible can
be assigned to the same track. Accordingly, a simple but powerful un-
routability check method is proposed to tell whether the tracks and the
switches between a range of columns are sufficient to complete the connec-
tions in this range.

The remainder of this paper is organized as follows: Section 2 describes
some preliminary concepts and basic definitions. The routing and postpro-
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cessing algorithms are presented in Section 3. The unroutability check
algorithm is stated in Section 4. Results on a set of benchmarks are
reported in Section 5. Finally, a conclusion is drawn in Section 6.

2. PRELIMINARIES AND DEFINITIONS

In this paper we refer to Roychowdhury [1993] for the following definitions.
The input to a segmented channel-routing problem, as depicted in Figure 1,
is a segmented channel consisting of a set T of T tracks and a set C of M
connections. A symbol O represents a horizontal switch and @ represents a
cross switch. Each track extending from column 1 to column N is divided
into a set of adjacent segments separated by horizontal switches.

For a segment s, left(s) and right(s) denote the leftmost and rightmost
columns in which this segment is present. Similarly, a connection ¢ is
uniquely characterized by the span of its leftmost and rightmost columns,
left(c) and right(c). When a connection ¢ is assigned to a track ¢, the one
or more segments in track ¢ that are present in the columns spanned by ¢
are considered occupied. More precisely, a segment s in track ¢ is occupied
by the connection ¢ if right(s) = left(c) and left(s) = right(c). For a
K-segment channel routing, ¢ can be assigned to ¢ only if ¢ occupies at most
K segments. A connection c is assignable (to a track t) if there exists such a
track ¢ to which ¢ may be assigned and if the segments in track ¢ that are
present in the columns spanned by ¢ are not occupied by another connec-
tion. Connections c¢; and c; overlap if their spans overlap. Connection c;
collides with c; on a track ¢ if, when they are assigned to ¢, some of their
occupied segments will overlap. For the segmented channel-routing prob-
lem, we restrict each connection that may be assigned to a single track

only. The main objective of a K-segment channel routing is to find a full
assignment of connections to tracks, i.e., to complete the assignment of
connections to tracks such that each of the connections occupies at most K
segments. Another objective is to reduce the number of switches used in the
routing.

Given a set C of M connections with density D, which is the maximum
number of connections over a column, a clique is a subset of C such that
any c¢; and c; in it overlap each other. A maximal clique Q is a clique, in
which there is no ¢; € Q such that {c¢;} U Q forms a new clique. A
maximum clique is a maximal clique Q with the maximum cardinality, i.e.,
Q! = D. Note that any two connections in a clique cannot be assigned to
the same track for they will occupy some same segments. A clique and the
set of tracks form the two sets of nodes of a bipartite graph G. To find a full
assignment of the clique Q is to find a maximum matching of the bipartite
graph such that the cardinality of the maximum matching is equal to 1QI.
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Fig. 1. The model of a segmented channel routing.

3. THE ROUTING ALGORITHM

To solve the segmented channel-routing problem efficiently, we apply the
weighted bipartite matching algorithm to route and remove cliques of
connections one by one. The weighted matching problem can be solved in
time complexity O(n®) for a complete bipartite graph with 2n nodes
[Papadimitriou and Steiglitz 1982]. The routing algorithm is as follows:

Algorithm. C_route(C,T)
{ Do until C is empty:
{ Q = Remove_Max_Clique(C);
G = Construct_Bipartite_Graph(Q, T);
(Routed, Unrouted) = Weighted_Bipartite_Matching (G);
Total_Routed = Total_Routed U Routed;

Total_Unrouted = Total_Unrouted U Unrouted,
}
if (Total_Unrouted is empty)

return(feasible);
else

return(Postprocessing(Total_Unrouted));

}
Every time a maximum clique Q of the remaining connections is picked

out, a weighted bipartite graph for Q is constructed. The weight of edge e;;
is defined as follows:

a*w;+ Prwy+ yrws if¢; is assignable to ¢;

weight(e;) = { . (1)

otherwise,

where
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collision_number(c;, t;)

wy; = . . )
remained_connection(C)

segment_length(c;, t;) — connection_length(c;)
wy = ,
? segment_length(c;, t;)

and

switch_number(c;, t;)
Ws = K-1

In the above equations, collision_number(c;, ¢t;) is the number of
remaining connections that collide with ¢; on track ¢;
remained_connection(C) is the total number of remaining connections in
C; segment_length(c;, t;) is the total length of segments occupied by c;
when c¢; is assigned to ¢;; and connection_length(c;) is the length of c¢;;
switch_number(c;, t;) is the number of switches that need to be pro-
grammed when c; is assigned to ;. «, B, and vy are ratio parameters; w,
denotes the degree of popularity on track ¢; for the remaining connections;
and w, and w3 denote the segment-length waste and switch usage, respec-
tively. In order to save resources of segments and switches, a connection
should be assigned to a track such that segment-length waste and switch
usage are lower. Also, a connection should be assigned to a track with lower
cost of w; such that fewer remaining connections will be affected. Weighted_
Bipartite_Matching finds a minimum weighted match. If connection c; is
matched with track ¢; and weight(e;) # =, ¢; can be assigned to ¢; and is
put into the Routed set. Otherwise, c¢; cannot be assigned and has to be put
into the Unrouted set. The Total Unrouted set is used to save all the
connections not yet assigned. If Total_Unrouted is empty, this case is
routable. Otherwise, a Postprocessing procedure is called to reroute the
connections in Total_Unrouted again.

Postprocessing

When the routing of some connections cannot be completed in the routing
step, we have to reroute them one-by-one using the Postprocessing step.
But first we need some definitions. If a connection has been assigned to a
track but is also assignable to another track, we say this connection is
movable. When a connection c; is rerouted, it has to squeeze one connection
c; assigned to a track ¢; that is, we have to remove c; from ¢ when assigning
c; to t. Of course, this would only be done if the removal of ¢; implies that c;
becomes assignable to t. If c¢; is movable, the rerouting of c; is done.
Otherwise, c¢; has to squeeze another connection again. We do not consider
the case where a connection would squeeze more than one connection on a
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track at a time, because this is too complex. The idea of squeezing can be
implemented by the following algorithm.

Algorithm. Postprocessing(Total Unrouted)

{ Do until Total_Unrouted is empty:
{ ¢ = remove a connection from Total_Unrouted,

Queue = 0;
Put all movable connections into Queue and mark these connections as
roots;

Do while Queue is not empty and ¢ is not yet in Queue:

{ ¢, = remove a connection from Queue;
A = the connections that have never been in Queue and can squeeze c;
link all connections in A to c,;
put all connections in A into Queue;

}

if ¢ is not in Queue
return(infeasible);
else

reassign the connections in the squeeze path for c;
}

return(feasible);

}

To reroute an unrouted connection c¢, all movable connections that
become the roots of the squeeze paths are put into a Queue first. The
connections, which have not been in Queue but can squeeze one connection
¢, in Queue, are linked to ¢, and put into Queue. If the unrouted connection
¢ is in Queue, the squeezing path for ¢ is found. Otherwise, ¢ cannot be
rerouted by this approach.

Time Complexity

Procedures Construct_Bipartite_Graph, Weighted_Bipartite_Matching, and
Postprocessing are the main parts of Algorithm C_route. Let ¢4, qo, - - -,
g ., be the cardinalities of cliques that are processed step by step in C_route.
For each step, say q,, each weight(e;;) in Construct_Bipartite_Graph can
be calculated at O(M) time. There are O(T'?) edges in a bipartite graph.
Thus, Construct_Bipartite_Graph takes O(MT?) time. Also, Weighted_
Bipartite_Matching takes O(T?®) time. So to process m steps it takes
O(mMT? + mT?) time, which is less than O(M?T? + MT?).

Suppose n connections need to be rerouted in Postprocessing. Each
connection takes O(MT) time to find the movable connections and to
construct a squeeze path. Hence, Postprocessing takes O(nMT) time,
which is less than O(M?T). Thus the time complexity for Algorithm
C_route is O(M2T? + MT?).
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Critical Path

Our algorithm is designed for the K-segment channel routing problem. It
does not consider the problem of critical path in a routing case. There are
two possible methods of adjusting our algorithm to handle the problem of
critical path. The first one is to route the connections in a critical path by
first setting the y value to be much larger than the « and B values. Then
C_route is used to route the remaining connections if they are routable. The
second method uses C_route to route all connections as before, but the
weight of each edge created by the connections in a critical path is set as
follows: its y value must be larger than the « and B values.

4. UNROUTABILITY CHECK

In the C_route algorithm introduced in Section 3, if the returned signal in
C_route is feasible then, of course, this case is routable. But if C_route
cannot find a feasible routing, it is not sufficient to say that it is un-
routable. In this section we present the sufficient conditions for an un-
routable case and develop an algorithm to check whether the case is really
unroutable.

To describe the following lemmas, we assume that a K-segment channel-
routing problem includes a set C of M connections, a set T of T' tracks, and
the density of C is D. Let Q be a clique of C and G be the bipartite graph
built from Q and T. If the cardinality of the maximum matching for G is
equal to 1QI, Q can be completely assigned. We call such a G fully
matchable.

LEMMA 1. Given a clique @ of C, if its bipartite graph G is not fully
matchable, C is unroutable.

PrROOF. G not being fully matchable means that Q is unroutable. Be-
cause Q C C, C is unroutable. [

Let x = left(c) and Q, be the clique that consists of the connections
spanning over column x, and g, = 1Q,|. As shown in Figure 2, when we
scan the connections from column x to the left until a certain column x’,
which is the rightmost column of a certain connection ¢’, we find &,
rightmost points appearing between x — 1 and x’, and these %, connections
form a clique Q... Suppose there exists a set T, of ¢, tracks having switches
between x and x’, we then have the following lemma.

LEMMA 2. If C is routable, then T — q, + t, = k,.

Proor. First, if each track in 7' has no switch between x — 1 and «’,
any two connections chosen from Q, and Q, will collide with each other on
this track. In this case, if 1Q,| + 1Q,| > T, then C is unroutable. Second,
since a track in T, allows at most two connections, one from Q, and the
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Fig. 2. Routability with the necessary condition 7' — q, + ¢, = k,.

other from Q. , to be assigned, if 1Q,| + 1Q,| — IT,l > T, C is unroutable.
Hence we have proven this lemma. [J

More precisely, let m, be the cardinality of the maximum matching for
the bipartite graph built from &, connections and ¢, tracks. If C is routable,
then T — q, + m, = k.. Lemma 2 is also applicable to the case of column
x = right(c), and the difference is that it scans the connections from
column x to the right and counts the connections whose leftmost points
have been scanned.

Lemma 2 only considers the case where the k,-counted connections form
a clique. If some complete connections were to appear between x — 1 and
x', it may be the case that two counted connections were assigned to the
same track. To deal with this case, we have to change Lemma 2 by
considering the following two conditions. Condition (1): there is no complete
segment that appears between x — 1 and x’. Condition (2): there exist
complete segments that appear between x — 1 and x'. Considering Condi-
tion (1), since all counted connections cannot be assigned to the same track
in T,, Lemma 2 is still suitable. Considering Condition (2), we have to
partition %k, connections into two parts: one consisting of k., connections
that do not appear complete between x — 1 and x’; the other consists of %,
connections that appear complete between x — 1 and x'. Let s, be the
number of segments that appear complete between x — 1 and x'. In order
to check unroutability, we need to know that how many %, connections can
be assinged to the s, segments. This problem is similar to the K-segment
channel-routing problem, and thus is NP-complete. However, we can calcu-
late the maximum number of connections to be assigned to each track,
which is formed by these s, segments independently. Then, we obtain an
upper bound of the above problem by totalizing these maximum numbers.
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The maximum number can be calculated easily if we sort in increasing
order the %, connections by their rightmost columns, and then assign them
to a track according to the sorting order. Let the total be s’, and

ky, — 8, ifk,>¢
k'x2={ et e (2)

0 ifk,=¢,.

Thus, there are at least k., + k., counted connections that cannot be
assigned to the same track in T,. Note that Condition (1) is a special case of
Condition (2) for s, = 0. Now we have the following lemma:

LemMA 3. If C is routable, then T — q, + t, = k,, + k,

Given connections C and tracks T, the Unroutability_check algorithm
uses Lemma 3 to check whether C is unroutable. The cardinalities of each
clique of connections Q, can be calculated column by column in linear time
if connections in C are sorted [Rheinboldt 1980]. In order to save time, only
the columns whose 1Q,! is larger than (D — CLIQUE_CONSTANT) are
processed. In our experiments, almost no unroutable cases are found when
CLIQUE_CONSTANT is set to 8. Scanning from column x to the left,
whenever a connection ¢’ and its rightmost column x’ is found, Lemma 3 is
used to check the unroutability. If there exist x and x’ such that 7' — ¢,
+t, <k, + k'y,, Cis unroutable. Otherwise, Algorithm Unroutability_
check fails to check whether C is unroutable.

Algorithm. Unroutability_check(C, T)

{ To calculate 1Q,| of each column x for C;
For each column x such that 1Q,| > (D — CLIQUE_CONSTANT) do:

{ if (Q, is a maximal clique and x is the leftmost column of a certain
connection)

scan from x to the left to find x’ columns and use Lemma 3 to check
unroutability;

if (Q, is a maximal clique and x is the rightmost column of a certain
connection)

scan from x to the right to find " columns and use Lemma 3 to check
unroutability;
}
if (one of above checks does not satisfy Lemma 3)
return(unroutable);
else
return(fail to check);
}

For each column x and maximal clique Q,, it takes O(MT') time to assign
k., connections to each of ¢, tracks after a column «x’ is found. Since there
are at most O(M) of maximal cliques and the number of x' columns that
each maximal clique Q, needs to scan is O(M), the time complexity of
Algorithm Unroutability check is O(M3T).
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Table I. Routability Analysis Results for the K-Segmentation Models

C_route Unroutability_check DR
K=2 K=3 K=2 K=3 K=2 K=3
Segmented

channel RC sec. RC sec. ucC sec. ucC sec.
D1 207 61.8 185 68.1 92 9.5 115 10.1  99.7% 100.0%
D2 258 54.2 257 60.9 42 3.5 43 3.6 100.0% 100.0%
D3 203 76.3 186 88.5 95 30.0 113 28.6 99.3% 99.7%
D4 211 98.1 203 119.9 80 74.6 94 67.6 97.0% 99.0%
D5 174 68.1 180 72.8 126 8.1 120 12.1 100.0% 100.0%
D6 250 49.6 211 60.6 50 10.2 89 7.2 100.0% 100.0%
D7 208 180.0 217 2015 87 188.1 78 186.1 98.3% 98.3%
Geometric 164 169.5 165 188.1 133 82.7 135 83.9 99.0% 100.0%
Normal 267 47.8 292 62.6 23%* 33.6 4 27.1 96.7% 98.7%

Poisson 250 140.1 250 152.6 45 174.0 44  167.0 98.3% 98.0%
Average 219 946 214 1073 77 44.9 84 59.3 98.8% 99.4%

*This includes 7 unroutable cases which are found by Lemma 1.

5. EXPERIMENTAL RESULTS

Our C_route and Unroutability_check algorithms were implemented in the
C language and tested on the 300 set connections created by Zhu and Wong
[1992]. All experiments ran on a SUN Sparc 10 workstation with 32 MB
main memory. The parameters of the channel model, N = 100 and T =
36, are close to the Actel’s ACT2 family A1280 FPGA [Actel Corporation
1991]. The ratio parameters «, 3, and y in our experiments are 0.5, 0.4,
and 0.1, respectively. Zhu and Wong’s 2-segmentation models and 3-seg-
mentation models were used; ten types of connection distributions, D1
through D7, geometric, normal, and Poisson, were tested. Table I shows the
2-segment and 3-segment channel-routability analysis results using
C_route and Unroutability_check on each distribution of 300 test cases. RC
is the number of cases that can feasibly be routed by C_route. UC is the
number of cases that can be checked as unroutable by Unroutability_check.
The total time to run the 300 cases for each distribution is also shown in
the table. The last two columns show the discrimination ratios obtained
from the results of these two algorithms, i.e., the ratio of RC + UC cases
over 300 cases for each distribution. The discrimination ratio is denoted as
DR. The average discrimination ratios are 98.8% and 99.4% for 2-segment
and 3-segment channel routing, respectively.

Table II and Table III compare the 2-segment channel-routing and
3-segment channel-routing results, respectively, of Zhu and Wong’s routing
algorithm with our C_route algorithm. Column 2 shows the number of test
cases, excluding the UC cases for each distribution. FC is the number of
cases that fail to be routed. The failure ratios of our routing algorithm are
all less than or equal to those of Zhu and Wong’s. For the 2-segment
channel routing, ours is less than 25% of theirs on the average. For the
3-segment channel routing, ours is less than 17% of theirs on the average.
The disadvantage of our approach is that our runtime is longer than theirs.
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Table II. Comparing Zhu and Wong’s 2-Segment Channel Routing Algorithm with Others

Zhu and Wong C_Route Failure ratio
Segmented No. of
channel cases FC sec. FC sec. Zhu and Wong C_route
D1 208 8 4.5 1 33.4 3.8% 0.5%
D2 258 1 3.3 0 43.0 0.4% 0.0%
D3 205 9 9.0 2 35.2 4.4% 1.0%
D4 220 21 15.3 9 49.0 9.5% 4.1%
D5 174 5 44 0 26.5 2.9% 0.0%
D6 250 11 4.4 0 36.8 4.4% 0.0%
D7 213 30 23.0 5 77.0 14.1% 2.3%
Geometric 167 11 14.7 3 50.1 6.6% 1.8%
Normal 277 17 8.2 10 41.1 6.1% 3.6%
Poisson 255 17 24.4 5 91.6 6.7% 2.0%
Average 223 13 11.1 4 48.4 5.9% 1.5%

Table III. Comparing Zhu and Wong’s Algorithm on 3-Segment Channel Routing

Zhu and Wong C_Route Failure ratio
Segmented No. of
channel cases FC sec. FC sec. Zhu and Wong C_route
D1 185 0 5.3 0 30.7 0.0% 0.0%
D2 257 0 4.5 0 47.3 0.0% 0.0%
D3 187 21 12.9 1 35.3 11.2% 0.5%
D4 206 7 17.7 3 50.9 3.4% 1.5%
D5 180 0 5.5 0 30.2 0.0% 0.0%
D6 211 10 5.2 0 34.9 4.7% 0.0%
D7 222 28 34.4 5 93.3 12.6% 2.3%
Geometric 165 12 20.4 4 50.4 7.3% 0.0%
Normal 296 9 10.6 4 60.7 3.0% 1.4%
Poisson 256 13 28.6 6 101.1 5.1% 2.3%
Average 217 10 14.5 2 53.5 4.7% 0.8%

The results of postprocessing are shown in Table IV. Columns 3 to 6 show
the number of cases routed with the help of postprocessing for Zhu and
Wong’s and our algorithms. The ratios are the numbers of routed cases over
the cases numbers shown in Table II and Table III. Although the benefit
obtained by postprocessing is small, it is helpful when the failure ratio of
the main routing algorithm is quite small also. This also means that our
weighted bipartite matching approach is efficient.

We speculated that our routing algorithm would work badly if N were
larger than the average length of the connections. So we tested our
algorithm for the channel models using different N values. First, we used
Zhu and Wong’s program to generate 3-segmentation models for N = 100,
200, - - -, 2000. The results for N = 2000 are shown in Table V. RC; and
RC, are the numbers of cases which can feasibly be routed by, respectively,
Zhu and Wong’s algorithm and our C_route. UC is the number of cases that
can be checked unroutable by Unroutability_check. DR is the discrimina-
tion ratio. DF is the difference for the failure ratio, which is the value of
Zhu and Wong’s failure ratio minus our failure ratio. Our C_route is still
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Table IV. Results of Postprocessing on the K-Segmentation Models

Routed by postprocessing Ratio

Zhu and Wong C_route Zhu and Wong C_route

Segmented
channel K = 2 K =3 K =2 K =3 K =2 K =3 K =2 K =3

D1 0 0 0 0 0.0% 0.0% 0.0% 0.0%
D2 0 0 0 0 0.0% 0.0% 0.0% 0.0%
D3 0 0 0 0 0.0% 0.0% 0.0% 0.0%
D4 1 1 8 1 0.5% 0.5% 3.6% 0.5%
D5 0 0 0 0 0.0% 0.0% 0.0% 0.0%
D6 0 0 0 0 0.0% 0.0% 0.0% 0.0%
D7 12 3 12 8 5.6% 1.4% 5.6% 3.6%
Geometric 0 0 2 4 0.0% 0.0% 1.2% 2.4%
Normal 3 1 6 0 1.1% 0.3% 2.2% 0.0%
Poisson 0 0 2 2 0.0% 0.0% 0.8% 0.8%
Average 1.6 0.5 3.0 1.5 0.7% 0.2% 1.3% 0.7%
Table V. Routability Analysis for the 3-Segmentation Models with N = 2000
Average
Segmented connection

channel length RC, RC, UcC DR DF
D1 986 173 173 127 100.0% 0.0%
D2 1334 249 249 51 100.0% 0.0%
D3 646 140 152 147 99.7% 7.8%
D4 483 192 204 90 98.0% 5.7%
D5 978 187 186 113 99.7% -0.5%
D6 989 219 238 62 100.0% 8.0%
D7 319 162 172 126 99.3% 5.7%
Geometric 20 130 137 140 92.3% 4.4%
Normal 700 279 284 7 97.0% 1.7%
Poisson 20 111 115 172 95.7% 3.1%
Average 628 184 191 104 98.2% 3.6%

efficient and generates better results than Zhu and Wong’s for this large N
value. Some of results with different N values are shown in Table VI. The
averages of DF are always at least 3% larger than Zhu and Wong’s. And the
averages of DR are all larger than 97%.

6. CONCLUSIONS

We presented a weighted bipartite-matching algorithm for the segmented
channel-routing problem. Our approach routes the connections clique by
clique, where the connections in each clique are routed using the weighted
bipartite-matching method. An approach to successfully judging un-
routability is also presented. The average discrimination ratios of the 300
routing cases are 98.8% and 99.4% for the 2-segmentation and 3-segmenta-
tion models, respectively. Applying our segmented channel-routing algo-
rithm to the nonunroutable cases, the average of our failure ratios is less
than 21% of Zhu and Wong’s algorithm.
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Table VI. Routability Analysis for the 3-Segmentation with Different N Values

N = 400 N = 800 N = 1200 N = 1600

Segmented
channel DR DF DR DF DR DF DR DF

D1 100.0% 0.0% 100.0% 0.0% 100.0% 0.0%  100.0% 0.0%
D2 100.0% 0.0% 100.0% 0.0% 100.0% 0.4%  100.0% 0.0%
D3 100.0% 3.2% 100.0% 6.3% 99.7% 4.2% 99.3% 3.5%

D4 99.3% 2.5% 99.3% 2.5% 99.3% 1.2% 99.7% 3.3%
D5 100.0% 0.5% 100.0% 0.5% 99.7% 0.0%  100.0% 0.0%
D6 99.0% 21.4% 99.3% 11.7% 99.7% 13.3% 99.0% 17.3%
D7 98.3% 8.5% 98.7% 7.2% 97.7% 8.9% 98.7% 2.7%

Geometric  97.7% 5.9% 99.3% 2.7% 91.3% 5.6% 94.0% 5.1%
Normal 99.3% 3.1% 98.0% 3.8% 97.0% 4.4% 96.7% 2.4%
Poisson 97.3% 7.2% 93.0% 3.2% 95.0% —0.6% 94.7% 4.2%
Average 99.1% 5.3% 98.8% 3.8% 97.9% 3.7% 98.2% 3.8%
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