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Abstract-An eficient algorithm is proposed for calculating the 
dispersion characteristics of optical fibers with radially arbitrary 
refractive-index profiles. It is based on a variational finite-element 
formulation. Formulas for the derivatives of the normalized 
propagation constant w with respect to the normalized frequency 
V up to the second order are derived by using a reaction formula. 
These formulas contain the modal field $ and its derivative 
d $ / d V .  Two variational problems are then formed and solved as 
matrix equations by using the finite-element method. The first one 
is a conventional eigenvalue problem with eigen-solution { w .  $} 
and dominates the computing time. The second one is a direct 
problem for d$/dV and can be solved by a few simple matrix 
manipulations. The proposed algorithm turns out to be a rapidly 
convergent one and careful arrangement results in saving for both 
storing memory and computing time. 

I .  INTRODUCTION 
ALCULATION of the propagation constant as a function C of wavelength and the modal field distribution for optical 

fibers is a well-established problem and many different solu- 
tion methods have been proposed and studied. In transmission 
applications, one important quantity of an optical fiber other 
than the two mentioned above is the dispersion coefficient 
S in ps/nm-km. Understanding and control of the variation 
of S versus wavelength is essential in the design of optical 
fibers with more sophisticated refractive-index profiles, such as 
dispersion-shifted and dispersion-flattened fibers which have 
been under extensive study in recent years [l]. 

To calculate the propagation constant and the modal field 
distribution, one can formulate a variational problem and then 
solve it by using Rayleigh-Ritz method or finite-element 
method (FEM) [2, ch. 51. The FEM has proved to be an 
efficient technique for solving variational problems, so we 
adopt it to solve the two variational problems which we shall 
formulate later. The definition of S involves the first and 
second derivatives of the propagation constant with respect 
to wavelength, thus theoretical evaluation of S requires the 
determination of these derivatives first. However, direct nu- 
merical calculation of the first and second derivatives from 
the propagation constant versus wavelength data based on 
bimple finite differences can result in great errors [3]. Different 
procedures have then been proposed, aiming at obtaining 
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good accuracy in calculation of the dispersion coefficient 
[4]-[6]. Mammel and Cohen [4] used the Rayleigh quotient 
to obtain the first derivative of the propagation constant, but 
used direct numerical differentiation in the calculation of the 
second derivative. E. K. Sharma et al. [5] avoided numerical 
differentiations by solving three differential equations for the 
propagation constant and its first and second derivatives, 
respectively. Recently, A. Sharma and S. Banerjee [6] reported 
another method based on a matrix perturbation theory and 
showed that computational effort can be reduced compared 
with the method of [5]. 

In this paper we present a novel method based on a varia- 
tional finite-element formulation for calculating the various 
characteristics, including S ,  of optical fibers with radially 
arbitrary refractive-index profiles. First, we derive the formulas 
for the derivatives of the normalized propagation constant 
w with respect to the normalized frequency V .  By using 
a reaction formula, we show that for a given V ,  the first 
derivative dw/dV can be expressed in terms of w and modal 
field $ at that frequency, while the second derivative d2w/dV2 
can be expressed in terms of w,  $, dw/dV,  and d $ / d V .  Then, 
by formulating two variational problems, we are able to solve 
for w,  $, and d$/dV at the specified frequency using the 
FEM. Once w,  dw/dV,  and d2w/dV2 along with the material 
dispersion information are given, the dispersion coefficient S 
can be accurately calculated from its definition. Numerical 
results show that our method offers better convergence speed 
when computing S ,  as compared with the methods given in 
[5 ]  and [6]. One nice feature in the present method is that 
although two matrix equations are formed corresponding to the 
two variational problems, only one of them needs to be solved 
as an eigenvalue problem, leading to considerable saving in 
the computation. 

The main body of mathematical formulation, including 
the derivation of formulas for w and w from a reaction 
formula and two variational problems for {w ,  $} and d $ / d V ,  
is presented in Section 11. For understanding how to save 
storing memory and computing time, the solution procedure 
is described in Section I11 where some careful arrangement is 
tailored to find w, w, and finally S. For specific refractive- 
index profiles, the modal fields are known explicitly, then 
the formulas for W and w can be used to obtained results 
directly. In Section IV, analytical results for step-index fibers 
are demonstrated as an example and used to examine the 
validity of these formulas. For an arbitrary refractive-index 
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profile, solution of the propagation constant and the modal field 
resorts to numerical methods. A computer program has been 
developed to implement the solution procedure described in 
Section 111. We shall investigate numerical convergence of the 
present algorithm and analyze a type of dispersion-flattened 
fibers in Section V. 

11. FORMULATION 

Consider an optical fiber with circularly symmetrical 
refractive-index profile defined as 

where R is the radial coordinate normalized with respect to the 
radius U of the solution region beyond which it is a uniform 
cladding, n1 is the maximal refractive index within the solution 
region, 712 is the refractive index of the outer uniform cladding, 
and f ( R )  defines the shape of profile within the solution 
region. 

As the index difference tends to zero, it is well known 
that the fundamental mode of the optical fiber satisfies the 
following scalar wave equation: 

d d  Ld,(R) E - R-$(R) + [V2 f ( R )  - w2] &$(I?) 
d R [  dR ] 

= o  (2) 

where L is a linear operator defined as above. The normalized 
frequency V and the eigenvalue w are related to the free 
space wavenumber k-0 and the propagation constant @ by 
I’ = koa(n: - n;)1’2 and w = k o a [ ( @ / k ~ ) ~  - 41 in this 
paper. Note that a may be larger than the real core radius. The 
boundary condition associated with ( 2 )  at R = 1 requires that 

where K,, denotes the 71th order Bessel function of the second 
kind. 

Obviously, both the eigenvalue w and the eigenfunction $ 
vary as the frequency V changes. Here, we assume that the 
profile shape function f ( R )  is independent of V .  Let { w l ,  $I} 

and {wp,  $ 2 )  be the eigensolutions corresponding to VI and 
L>, respectively. Consider the reaction between these two 
systems, we obtain 

1 

(4) 
0 

U here L, ( /  = 1 . 2 )  is the operator L defined at frequency 
L I .  Taking integration by parts and imposing the boundary 
condition (3), we get a reaction formula 

1 
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which is valid for any VI and V2. 
For convenience, we u5e dot to denote the differentiation 

with respect to V .  Choose VI and V2 in (5) to be V + dV 
and V ,  respectively, where dV is a differential element for V .  
Then, the eigensolution of system 1 can be written as 

’U1 = w + lhdV + -w(dV)2 1 .. 

$1 = $ + ?jdV + ,$(dV)2 + ’ .  . 

+ . . ‘ 
2! 
1 ” 

while that of system 2 is {w2,+2} = { w ,  $}. Substituting 
these solutions into (5) and after some algebraic manipulations 
involving merging the terms having the same power in dV, we 
obtain from the terms of (dV)l 

vc2 w =  
wc3 - +%Cl 

where 
1 

c1 = ?J12(l). c:~ = J’ f$’RdR, and 
0 

1 

C3 = 1 $RdR. 
0 

Similarly, we obtain from the terms of (dV)2 

w =  

(7) 

where 
I 

D1 = +(1)4(1), 0 2  = J’ f+dRdR,  and 
0 

1 

0 3  = J’ $?jRdR. 
0 

Note that w can be obtained from (6) once the solution {w, $1 
is obtained for a. given V .  However, the determination of G 
by (7) requires $. One of the key points of this paper is that 
to calculate the higher order derivative of w, one needs only 
the derivative of w and $ of lower orders. 

By differentiating (2) and (3) with respect to V ,  we get the 
governing equation of $ 

( V 2 f ( R )  - w2)R?j (R)  + 
2(V f ( R )  - wzii)R+(R) = 0 

which can be expressed as 
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and the boundary condition at R = I 

It can be shown that (9) can be derived from (2), (3),  and (8), 
that is, (8) and (9) are not sufficient to determine 4 uniquely. 
For simplicity, we choose di(1) = 0 as the essential boundary 
condition (EBC). In other words, the value of yi, at R = 1 
is taken to be the same for every V ,  which is allowed for a 
linear problem. 

The work remaining to do is to solve {tu. p }  and 4. To deal 
with optical fibers with arbitrary index profile, the differential 
equations together with the boundary conditions are trans- 
formed into the variational-equation (VE) formulations, which 
are to be solved by the FEM [2], [7]. For the original eigen- 
solution {w. Ji} which satisfies (2) and (3) ,  the VE formulation 
is 

For ii which satisfies (8) and the EBC, vi(1) = 0, the VE 
formulation is 

1 
- 2 .I gdi dR + 2E7A$( l ) d i (  1) 

0 
EBC : ,$I( 1) = 0. 

It  should be recalled that the function g depends on the 

Once w,  tii, and ui are obtained, the normalized propagation 
eigensolution {w.  41) and iii. 

constant h and its derivatives can be found by 

W 2  . 2 ( W l i I V - W 2 )  
b = - - .  b =  . and 

h =  

V2 v3 
2 [ ( ' U J W  + tu2) v2 - 4 W W V  + 3 U J 2 ]  

V4 

The dispersion coefficient S can be calculated from the for- 
mula PI, PI 

x d2n s _ - - t  
('71e d x 2  

and the prime denotes the differentiation with respect to the 
wavelength A. 

111. SOLUTION PROCEDURE 
For clarity, we summarize our algorithm as shown at the 

bottom of the page. 
It is worthy to note that the error-susceptible numerical 

differentiation is fully circumvented in the evaluation of w 
and ,w by the present approach. 

The steps of our solution procedure are detailed in the 
following with the saving of the memory and computation 
efforts emphasized: 

Step 1: Obtain the matrix eigen-equation. Based on the 
FEM, (10) is transformed to a matrix equation 

[M(w)l[*l = [OI (13) 

where [ M ( w ) ]  is a symmetrical, banded matrix, [*[I] is a 
column vector of nodal unknowns, and [O]  is a null vector. 
This is an eigenvalue problem where the matrix elements are 
in general nonlinear functions of the eigenvalue w. 

Step 2: Search for the eigenvalue 7u. The eigenvalue w 
is such that the determinant of the matrix [M(w)]  is zero. 
The bisection method serves to locate the desired root w. 
During each trial in the bisection root search, we apply the 
Gauss elimination method to obtain the LU decomposition 
of the matrix [MI [7, ch. 71. Since the matrix [MI is both 
symmetrical and banded, the memory and computation time 
required can be saved significantly. It is one of the important 
features of the FEM. Note that the LU decomposition can 
be executed in place without further requirement of computer 
storage. Storing the decomposed matrices is essential for 
economy of the computation efforts as will become evident 
soon. 

givm l 7  * solve (10) =+ { w . $ }  
then with 1'. {w.$} 3 use (6) + w 

then with Lr. {w.$}.  { h..} * use (7) =+ iu 

then with \r. {w. $}. .Li/ =+ solve (11) + 7 j  
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Step 3: Solve the eigenvector [e]. In the final trial, the 
bottom diagonal element is very small such that the determi- 
nant tends to zero. The eigenvector [!PI] can be obtained by 
imposing its bottom element being unity and solving its other 
elements by back-substitution [7, ch. 71. 

Step 4: Find the first derivative of the eigenvalue w ,  w. Once 
the eigenvector [!PI is solved in Step 3, the eigen-function 
can be expressed in terms of the nodal values by known 
basis function in each element. Taking element integrals and 
summing them together, the constants C2 and C3 in (6) 
can be obtained and then the derivative U, can be calculated 
accordingly. The term dZ/dw in (6) can be calculated more 
efficiently by the relation 

Step 5: Solve the first derivative of the eigenvector [!PI, [&I.  
By applying the FEM again and choosing the same nodes and 
basis functions as in Step I, (11) is transformed to a matrix 
equation 

Here, the matrix [MI is exactly the same as that in (14), [&I 
is a column vector of nodal unknowns for 4, and [g] can be 
found from w, 20, and [e] by (8). To cope with the EBC that 
' (1  at the boundary node is zero, we delete the bottom row and 
the rightmost column of the matrix [M] and force the bottom 
element of the column vector [&] to be zero. Since the matrix 
[MI has already been LU-decomposed and stored during 
Step 3, the other elements of the column vector [&] in (15) can 
be obtained directly from a forward reduction process followed 
by a back-substitution process [7, ch. 71. 

Step 6: Find the second derivative of the eigenvalue w, 
ui. Once the lower order eigen-solutions, w,  [!PI, w, and 
[&I are obtained, we can calculate w using (7) and then the 
dispersion coefficient S using (12). In the calculation of w 
by (7), the constant 0 2  and 0 3  are evaluated by summations 
of element integrals, while the term d2 Z/dw2 can be found 
more efficiently by the formula 

In this solution procedure, almost all the computation time 
is spent in the first two steps searching for the eigenvalue. The 
operations involve matrix generation and the time-consuming 
Gauss elimination process. The number of multiplications is 
approximately proportional to the number of trials in the 
bisection search multiplied by mB2 where m is the total 
number of nodes and B is the half-bandwidth of banded 
matrices [7, ch. 71. Once the eigenvalue is solved, the vectors 
[e], [&] and the derivatives 20, w can be obtained very 
efficiently by the last four steps. The operations involve 
element integrals, vector generation, and direct substitution 
process, in all of which the number of multiplications is 
approximately proportional to mB only! 

Iv. DISPERSION IN STEP-INDEX FIBERS 

For the cases in which modal fields of optical fibers are 
known, the integrals in (6) and (7), and hence w and W, can 
be obtained directly. Since the modal fields in step-index fibers 
are well known in terms of Bessel functions, (6) and (7) lead 
to closed-form expressions. So we consider step-index fibers 
in this section. 

For step-index fibers, f ( R )  = 1. The modal field of the 
LPol mode can be expressed as 

where J,  is the nth order Bessel function of the first kind and 

U 2  = v2 - w2. (18) 

This field satisfies (2) (or (lo)), and +(1) = 1. Then, in (6), 
C1 = 1 and C2 and C3 can be integrated analytically to be 

by using the properties of Bessel functions, where Y ( u )  
-uJl(u)/Jo(u).  Substituting (19) into (6), we obtain 

V d Y  _ _  

Similarly, by differentiating (17) with respect to V ,  we 
obtain 

which can be shown to satisfy (8) (or (11)) and the EBC, 
d (1 )  = 0. It is not difficult to show that the constants in (7) 
are such that 01 = 0 and 

Substituting (19) and (22) into (7), we obtain 
W 2  d 2 Z  1 d Y  -I W 2  dl' gg u2 d 2 Y  -_ - -_ 

duZ . (23) 6 = 2 d w 2  2u d u  2u d u  2u d u  
w dI' 1 d Z  
221 d u  2 d w  

-__  - _ _  

To check the validity of (20) and (23), we start from the 
characteristic equation of the LPol mode given as 

Y ( u )  = Z(w).  (24) 

By differentiating (18) and (24) with respect to V ,  we obtain 

.dY . dZ 
du dw 

U -  =w-  

and 

uu = v - ww. 
From (25) and (26), we obtain the same formula as (20). 
Similarly, by differentiating (25) and (26) with respect to V ,  
we obtain 

(26) 
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TABLE I 
CONVERGENCE OF THE NUMERICAL SOLUTIONS AS -1- IS INCREASED 

o = x, core radius = 2..j pin, X = 1.4 p m  
core: 13 . jGe02 :  8G.3SiOa 

cladding: pure S i02  

-1- 
1 
i 
3 
4 
5 
6 
7 

Section IV 
[4], (40 points) 
[ 5 ] ,  (25 x 25) 

u 2 p - 2  = 1 - h b - / I  S (ps/nm-km) 
0.388955 0.190640 0.130230 2.762393 
0.388521 0.190809 0.130421 2.78408 1 
0.388475 0.190825 0.130442 2.786983 
0.388464 0.190828 0.130446 2.787481 
0.388464 0.190829 0.130448 2.787790 
0.388463 0.190829 0.130447 2.787720 
0.388463 0.190830 0.130448 2.787831 

0.388463 0.190830 0.130448 2.787476 
0.388452 0.190824 0.130438 2.7832 
0.388560 2.7916 

TABLE I1 
CONVERGENCE OF THE NUMERICAL SOLUTIONS AS Ay IS INCREASED 

n = 2, core radius = 2.3 pin, X = 1.75 iriii 
core: 13.5Ge02: 86.5Si02 

cladding: pure Si02 

-1- 
1 
2 
3 
4 
5 
6 
7 

[4], (40 points) 
(51, (35 x 35) 

( [ 2 / \ . 2  = 1 - 
0.797078 
0.793724 
0.793513 
0.793474 
0.793462 
0.793458 
0.793457 
0.793554 
0.793458 

/ I  b 
0.224872 
0.229491 
0.229689 
0.229731 
0.229743 
0.229747 
0.229749 
0.229750 

- b 
0.042655 
0.042060 
0.042240 
0.042257 
0.042261 
0.042262 
0.042261 
0.042261 

~ 

S (ps/nm-km) 
3.395296 
2.5 17000 
2.516869 
2.5 12909 
2.5 1 1744 
2.51 1172 
2.510856 
2.5108 
2.5169 

and 

U'& + 'k2 = 1 - 7lJG - tu2. (28) 

From (27) and (28), we obtain the same formula as (23).  We 
thus prove that (6) and (7) yield the exact results. 

v. NUMERICAL RESULTS AND DISCUSSION 

For optical fibers with other profiles, analytical eigen- 
functions are in general unavailable such that the numerical 
solutions should be resorted to. A Fortran program has been 
tailored to implement the above mentioned solution procedure 
on an IBM/PC. The program can calculate the eigenvalue w 
and its derivatives w and .Lij for arbitrary shape function f ( R ) .  
In the finite element analysis, the solution region is divided 
into _li elements, inside each of which the quadratic basis 
functions are employed to interpolate the eigenfunction and 
its derivatives and the four-point Gauss-Legendre quadrature 
is applied to calculate the element integrals. 

Before presenting numerical results, we make some remarks 
on the general features of the formulations in [SI, [6], and 
this paper. The solution method proposed in [SI needs to 
solve three differential equations. Solution of each differential 
equation takes about the same amount of computing time, 
i.e., computation effort for obtaining S is three times that for 
the original eigenvalue problem. It is rather time-consuming. 
The formulation in [6] is based on the perturbation theory 

which is basically an approximate method. Although it avoids 
the repeated solution of differential equations, it deals with 
an infinite region R E [0, m) and requires theoretically 
the whole set of eigensolutions which cannot be included 
practically. Meanwhile, the involved matrix is full which 
implies larger storing memory and larger computing time. The 
present algorithm, however, is based on an exact formulation. 
The only eigenvalue problem for the guided LPol. mode 
dominates the computation time and the evaluation of b and b 
is quite simple. It is also advantageous to deal with banded 
matrices. This algorithm seems more economical for both 
computer storage and computation time. 

A.  Convergence of the Algorithm 

To examine the convergence of our algorithm, the computer 
program is applied first to analyze two examples which have 
been considered previously in [5] and [6]. In Table I and 11, 
we list the operating frequency, the parameters of .the fibers, 
the convergence of our algorithm in calculating b, b, 6, and S 
as the number of elements ( N )  in the FEM is increased, and 
certain results adopted from [SI and [6] for comparison. In 
Table I, we also list the exact results obtained from the explicit 
formula in Section IV. The material dispersion information is 
calculated by using the Sellmeier's coefficients given in [9]. 

We tabulate the data of a step-index fiber corresponding 
to an cy-power index profile with a = 03 in Table I. In the 
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solution region, four elements ( N  = 4), or 9 nodal points 
(m  = 9 where 9 = 2 x 4 + 1 with 2 resulting from the 
use of quadratic basis functions), are sufficient to obtain five 
digit accuracy for b, b,  b, and four-digit accuracy for S. 
The rapid convergence of h is due to the stationary property 
of the eigenvalue in the variational formulation. Note that the 
accuracy for b, is the same as that for b and b. Since the 
calculation of b and b involves numerical integration instead 
of numerical differentiation, numerical error is not amplified 
as the order of derivative is increased. To achieve the same 
accuracy, the method in [5] requires material information 
and solution fields at 40 points (where 40 = 4 x 10 with 
,Y = 10 in that paper) within in the solution region. For 
the method in [6], three-digit accuracy in b and two-digit 
accuracy in S are achieved by a matrix size of 25 x 25. The 
present algorithm seems to be more efficient in the aspects of 
numerical convergence as well as solution accuracy. 

Table I1 shows the data for a graded-index fiber with Q = 2. 
Although the refractive index is nonuniform within the core, 
it makes no differences in analysis. Almost the same as in the 
case of uniform-core fiber, six elements in the solution region 
lead to nicely converged. results. Also, the numerical errors 
in calculating b, 6, and b are of the same order. As shown 
in the last two rows of Table 11, the method in [SI requires 
material information and solution fields at 40 points, while the 
method in [6] needs to deal with a matrix size of 35 x 35. 
Again, our algorithm has proved to be a quickly convergent 
one. 

B. One Further Example: Analysis of Dispersion-Flattened Fibers 

To provide low dispersion over a range of wavelength, 
IV-type and some modified refractive-index profiles, such 
as the “quadruply clad” designs, have been proposed. The 
development of these designs has been reviewed in [l]. In 
[lo] the refractive-index profile of a QC fiber with undoped 
core and three F-doped claddings was optimized to realize 
zero dispersion at both 1.30 and 1.55 pm. The sensitivity 
of the zero dispersion wavelength as influenced by the fiber 
drawing ratio was also considered. It was based on scalar 
calculation involving Bessel functions. Here, we analyze the 
same structure using our algorithm. Fig. 1 shows the diagram 
of the refractive-index profile labeled with parameters. The 
core is composed of pure SiOz. Using the linear relationship 
given in [lo,  ( l)]  and the Sellmeier’s coefficients in [9], 
extrapolation and interpolation show that Si02 doped with 
fluorine of 1.782 mole%, 0.509 mole%, and 1.131 mole% 
give the relative differences A1 N 0.63%, A2 cv O.lS%, and 
A3 N 0.40%, respectively. Let F be the radial scale factor 
which reflects different drawing ratios. When F = 1, the radial 
parameters are such that RI = 4.20 pm, R2 = 8.25 pm, and 
R3 = 15.00 pm in Fig. 1. 

Fig. 2 shows the dispersion coefficient as a function of 
wavelength for various values of F .  In general, there are 
three crossover points in the spectrum. The second zero- 
dispersion wavelength is very sensitive to the drawing ratio, 
whereas the first and the third are not. In our finite-element 
analysis, eleven elements result in nicely converged solution. 

A 

RI R2 R3 r 

Fig. 1 .  Refractive-index profile of a quadruple-clad (QC) fiber. 

I x x From [lOI(F=l) 

1.2 1.3 1.4 1.5 1 6  1.7 1.8 
WAVELENGTH h ( p m )  

Fig. 2. The dispersion coefficient versus wavelength curves of the QC fiber 
shown in Fig. 1. The solid curves for different scale factor F are obtained by 
using the algorithm proposed in this paper. The crosses are the results adopted 
from [lo] and the dotted curve is redrawn from [6] for the F = 1 case. 

The results obtained by the present algorithm (solid curves) 
agree in general quite well with those shown in [lo]. 

A more detailed comparison is made for the results with 
F = 1. In addition to the solid curve by the present finite- 
element analysis, the crosses represent the results obtained 
from [lo] which is based on the staircase analysis, while the 
dotted curve is redrawn from [6] which is based on the matrix 
perturbation theory. The results by the matrix perturbation 
theory show significant deviation as compared with those by 
the other two methods. The deviation may be attributed to 
their choice of global basis functions to expand the modal 
fields. The derivatives of global basis functions with respect 
to the radial coordinate are continuous up to arbitrary orders. 
However, the modal fields are in general continuous up to the 
first derivative only. When the index profile is discontinuous, 
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the modal fields have discontinuous second derivatives such 
that the expansion by global basis functions may be difficult. 
Obviously, this kind of difficulty is circumvented by using 
local basis functions in the present finite-element analysis. 

VI. CONCLUSIONS 
We have presented a new method for determining the 

dispersion characteristics of single-mode optical fibers with 
radially arbitrary refractive-index profiles. The basic features 
of the present method are: 1) The formulation is exact. 2 )  We 
can use the lower order derivatives of quantities with respect 
to V to calculate the higher order derivatives of w with respect 
to V .  (3) We need only to solve one eigenvalue problem, i.e., 
the one for {w, V I } .  (4) If the eigen-solution can be expressed 
in terms of closed-form formulas, the desired quantities may 
be calculated directly, as has been demonstrated for step-index 
fibers in Section IV. If i t  is not so, numerical solutions have to 
be resorted to. The derivative of q5 with respect to V ,  $, may 
be obtained by a few matrix manipulations. The FEM used in 
the numerical solution procedure has proved to be with high 
accuracy and offers rapid convergence speed, as can be seen 
from the examples in Section V. We have analyzed a type of 
dispersion-flattened fiber in Section V. The algorithm can be 
extended to the vectorial wave solution, although it is more 
involved. 
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