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Optical Orthogonal Codes With Large
Crosscorrelation and Their Performance Bound

for Asynchronous Optical CDMA Systems
Chi-Shun Weng and Jingshown Wu, Senior Member, IEEE

Abstract—Optical orthogonal codes (OOCs) are commonly
used as signature codes for optical code-division multiple-access
(OCDMA) communication systems. Many OOCs have been
proposed and investigated. Asynchronous OCDMA systems using
conventional OOCs have very limited number of subscribers and
a few simultaneous users. Recently, we reported a new code family
with large code size by relaxing the crosscorrelation constraint
to 2. In this paper by further loosening the crosscorrelation
constraint, we adopt the random greedy algorithm to construct
a code family which has larger code size and more simultaneous
users. We also derive an upper bound of number of simultaneous
users for given code length, code weight, and bit error rate. The
study shows that it is possible to have codes approaching to this
bound.

Index Terms—Maximal system, multiuser interference, optical
code-division multiple-access (OCDMA), optical orthogonal code
(OOC), perfect difference code, random greedy algorithm.

I. INTRODUCTION

RECENTLY, there have been many papers that have
discussed OOCs for optical code division multiple access

(OCDMA) systems [1]–[13]. -OOCs are a
family of (0,1) sequences with code length, code weight

, the maximum value of off-peak autocorrelation, and
the maximum value of crosscorrelation . For the sake of
synchronization and minimizing multiuser interference (MUI),

-OOCs with are usually adopted as
signature codes. In general, the crosscorrelation of any two

-OOCs is either zero or one. Therefore, it is difficult
to design a receiver to cancel MUI. The code size, upper
bounded by , of these ideal OOCs is
sparse corresponding to the code length. To increase the code
size, some code families with nonideal correlation constraint
have been reported [10]–[13]. In [10], Chung and Kumar
constructed optimal -OOCs, where is
any prime and the family size is . In [11], Yang and
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Fuja investigated -OOCs and showed that it is
impossible to get more than codewords
whose code size is twice the upper bound of -OOCs.
In [12], Yang also constructed -OOCs and the code
size is times (for even or times (for odd the size
of the -OOCs, when is less than eight. In [13], we
have proposed -OOCs based on )-perfect
difference codes, where , , and
is a power of a prime plus one [14]. We have also shown that
the performance was improved significantly with larger code
weight given a fixed code length.

In [13], we reserved chips appropriately from the
chips of a -perfect difference code such that all the
codewords fulfilled the crosscorrelation constraint, that is,

. Because most of the crosscorrelations between any
two distinct codes in these family are 0 or 1 (while only
very small portion have value of 2), the bit error rate (BER)
performance of the systems using the -OOCs is
almost the same as that using the -OOCs. Moreover,
the code size of -OOCs is upper bounded by

which may be
ten times larger than that of ideal -OOCs. Thus, given
a code length and a code size, the code weight of the proposed
codes is larger than that of ideal codes. The numerical results
showed that the performance of -OOCs with larger
code weight is better than that of ideal codes, because the larger
code weight is more robust to interference to a certain extent.

Although the performance of the -OOCs with
larger code weight is better, the code size is reduced sharply
as the code weight increases. As a result, it is impossible to
increase the code weight of -OOCs for a given
code length and code size further. One feasible way to increase
the code size is to relax the crosscorrelation constraint fur-
ther. In this paper, we investigate -OOCs based
on the )-perfect difference set with size, where

, that is, is no longer limited to 2. To con-
struct -OOCs, it is necessary to choose-subsets
of a -perfect difference set appropriately, such that any
two distinct -subsets share at most elements and then each

-subset is corresponding to a code. The problem is the same
as how to construct an maximal system defined
as a family of -subsets of a -set such that every-subset of
the -set is contained in at most one set of the system [15],
where and . Trivially, there is an
upper bound of the system size (the number of-subsets in
the system) denoted by . Exhaustive search is a
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way to construct the largest size of such system. However, it
is infeasible due to its complexity. Fortunately, therandom
greedy algorithmcan construct asymptotically good maximal
systems [16], [17]. In this paper, we adopt this algorithm to
construct a suboptimal code family of -OOCs.
The crosscorrelation between two codes is 0 or 1 if they are
not aligned with each other. When two codes are aligned
(the probability is only , the value of crosscorrelation is
between 0 and . As a result, the crosscorrelation property
of -OOCs is only slightly different from that of

)-OOCs. Therefore, it is reasonable to anticipate that
the performances of -OOCs and -OOCs
are similar to each other. To simplify the BER performance
analysis, we assume that chips of two codes are synchronous
among users. We also take the presumption that the cross-
correlation is (which is the worst situation of interference)
when two distinct codes are aligned with each other and the
interfered chips are randomly distributed amongchips.
Based on these assumptions, an upper bound of the BER can be
derived according to the principle of inclusion and exclusion.
The numerical results show that the performance is improved
significantly with the increase of when the code weight is not
large. However, when the code weight is larger than a certain
value, the performance gets worse as the code weight increases.
This is because the larger code weight increases the interfering
probability which offsets the robustness. The results also show
that it is possible to approach the upper bound of the number of
simultaneous users given a code length and a code size.

The remainder of this paper is organized as follows. In Sec-
tion II, we describe and construct the -OOCs based
on perfect difference sets and the random greedy algorithm. In
Section III, we analyze the BER performance of the systems in
conjunction with )-OOCs and double hard-limiters
[18]. The numerical results are given in Section IV. We conclude
in Section V.

II. -OOCs BASED ONPERFECTDIFFERENCESETS

In this section, we describe the formulation of a code family
of -OOCs based on perfect difference sets.

Let be the -set of the integers modulo
. A set is a -subset of . For every

, there is exactly one ordered pair ,
, such that

(1)

A set satisfying these requirements is called a -per-
fect difference set. The existence of the -
perfect difference set, whereis a power of a prime, has been
proved and constructed by Singer [19]. We can construct a per-
fect difference code based
on the perfect difference set with the rule

if
otherwise.

(2)

The code weight and code length areand , respectively,
where and . The off-peak auto
correlation of such code is always equal to one. This property
is useful to construct a code family with crosscorrelation equal

to one by cyclically shifting such code times for syn-
chronous OCDMA [14]. However, for asynchronous OCDMA,
we have to modify the -perfect difference code [13].
A code family of -OOCs is formed by reserving
some chips from the chips of a -perfect difference
code such that all the new codes fulfill the crosscorrelation con-
straint. That is, the maximum crosscorrelation between any two
codes is not larger than . The problem is the same as how to
construct an maximal system defined as a family of

-subsets of a -set such that every-tuple of the -set is con-
tained in at most one set of the system [15], where
and . It is well known that the system size, denoted
by , is upper bounded by

(3)

or more tightly [20]

(4)

The density of the system is defined as

(5)

Trivially, holds. If , the system is
also calledSteiner system in which every -tuple of
the -set is contained inexactlyone -set of the system. To find
all parameters for is a long-standing un-
solved problem. There are an infinite number of known Steiner
systems with and and a finite number of Steiner systems
with and . Moreover, no Steiner systems with are
known [21].

The determination of the maximal value of is still
an unsolved problem [20]. Fortunately, some useful results have
been reported. In 1963, Erdös and Hanani conjectured that for
every and , [15]

(6)

They proved (6) for and every and for and
, where is a prime power. Eventually, Rödl proved

this conjecture in 1985 [22].
One way to construct a maximum size of an max-

imal system is to compare all collections of-tuples of the -set
and choose one which forms an maximal system
with largest size. The number of possible collections is ,
which is too complex to apply exhaustive search. Fortunately, it
was proved that the random greedy algorithm can almost surely
construct asymptotically good maximal systems [16], [17]. That
is, the density tends to 1 as approaches to infinity.

In this paper, we adopt the random greedy algorithm to con-
struct a family of -OOCs as follows.

1. Construct a -perfect difference set with ele-
ments according to [19], where , , and

is a power of a prime.
2. Let denote an maximal system which

is empty initially.
3. Construct a complete list of candidate-subsets of .
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Fig. 1. Three searching results of random greedy algorithm form(4; 3; 28).

4. Pick one -subset randomly from the list and eliminate it
from the list. If the -subset shares at most elements with all
selected -tuples in , then include it in , otherwise, discard
it.

5. Repeat Step 4 until there are no more candidates in the list.
6. The th subset, , in corresponds to a code

according to (2). All the codes form a family of
-OOCs.

The crosscorrelation between any two distinct codes can be
expressed as

or two codes not aligned
two codes aligned.

(7)

Since this algorithm involves randomness, the density of the
system may be far from 1 with small probability. On the other
hand, the density may be close to 1. Roughly speaking, the den-
sity is somewhere in between, but not very far from 1 [16], [17].
In Fig. 1, we apply this algorithm three times to form three dis-
tinct maximal systems of with system sizes 634,
630, and 632, respectively. The total number of candidates is
20 475. Fig. 1 shows that the size of grows quickly in the
early stage of iterative due to the small size of. However,
when the size is getting larger it grows slowly because most of
the candidates are discarded. This fact is helpful because we can
construct the most part of codes during early searching stage es-
pecially when the number of candidates is too large to search
through. Note that the optimal maximal system of
is also a Steiner system of whose size is equal to
819. In other words, the density is about 0.77, which
is not far from 1.

III. PERFORMANCEANALYSIS

We analyze the performance of the systems using double
hard-limiters with consideration of shot noise, thermal
noise, APD bulk, and surface leakage currents. We adopt

-codes as the signature codes. The receiver
structure is shown in Fig. 2 [18]. To simplify the analysis, we
assume that chips are synchronous among users because it is
the worst case and results in an upper bound [3].

The average photon arrival rateper pulse is given by

(8)

where is the APD quantum efficiency, is the received
signal power per pulse, is the Planck’s constant, andis the
optical frequency. There are only two states after the second
hard-limiter, denoted by and , respectively. The state
means that the average photon arrival rate is equal to. The
other state is that the photon arrival rate is zero (this occurs
only when the desired data bit is zero and the MUI is removed
completely by the two hard-limiters). For states, ,
the probability density function of the output after the photo
detector can be expressed as [23]

(9)

where the mean can be expressed as

(10)

where is the average APD gain, is the chip duration,
is the electron charge, is the contribution of the APD
bulk leakage current to the APD output, is the APD surface
leakage current, and the variancecan be written as

(11)

where is the excess noise factor given by

(12)

where is the APD effective ionization ratio and is the
variance of thermal noise expressed as

(13)

where is Boltzmann’s constant, is the receiver noise tem-
perature, and is the receiver load resistance.

After the photo detector, the signal is fed into the on-off
keying (OOK) decoder. If the output is larger than a constant
threshold , we declare that the output data bit is one,
otherwise, zero. To minimize the error probability, we set the
suboptimal value of the constant thresholdto be

(14)

The probability that the state (or is decoded incorrectly
as (or can be expressed as

(15)

where stands for the complementary error function,
defined as

(16)

The probability that the state (or is decoded correctly to
be (or can be expressed as

(17)

and

(18)

respectively.

Authorized licensed use limited to: National Taiwan University. Downloaded on January 23, 2009 at 01:02 from IEEE Xplore.  Restrictions apply.



738 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 21, NO. 3, MARCH 2003

Fig. 2. Receiver structure of OCDMA systems with double hard-limiters.

A. Upper Bound of Performance

Without loss of generality, we consider the userassigned
Code (based on Subset is the
desired user and the desired data bit is. The user assigned
Code (based on Subset rep-
resents any other user. If their relative cyclic shift is,

, the crosscorrelation can be expressed as

(19)

where denotes the addition modulo. The value of is given
by

(20)

where is a set formed by adding to each element of
and represents the size of a set. When , the value of

is not larger than . On the other hand, the value ofis not
larger than 1 when .

To simplify the analysis and to derive the upper bound of per-
formance, we assume that the crosscorrelation is always equal
to when two distinct codes are aligned with each other (that
is, . We also assume that the interfered chips are
randomly distributed among chips. Let and denote the
probabilities that is 1 and , respectively. Because the value
of is only when , the value of is and then

. We have the expected value ofas [4]

(21)

The probabilities that contributes 1 and pulse positions
are given by

(22)

and

(23)

respectively, where the factor 1/2 means the equiprobable 0 and
1 symbols.

If the desired data bit is 1, the state after the second hard-
limiter must be , that is

(24)

On the other hand

(25)

When the desired data bit is 0, the state after the second
hard-limiter should be if the two hard-limiters can com-
pletely eliminate MUI. However, when each of thechips in

the desired code is interfered by at least one user, the hard-lim-
iters cannot remove MUI entirely. As a result, the state will be

. In the following, we derive the probability
using the principle of inclusion and exclusion.

For any chips of mark chips of a desired code, the prob-
ability that the chips are not interfered by one other user is

(26)

Given the number of simultaneous users, the probability
that the chips are not interference by the other users
is if all the users are independent to each other.
According to the principle of inclusion and exclusion, the
probability can be expressed as

(27)

On the other hand

(28)

Therefore, the bit error probability can be written as

(29)

If , (29) can be approximated as

(30)

The first and second terms in (30) represent the noise power and
interference contributions, respectively.
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TABLE I
LINK PARAMETERS

B. Lower Bound of Performance

Because we assume that the crosscorrelation is always equal
to when two distinct codes are aligned with each other, the bit
error probability is upper bounded by (30). On the other hand,
we will derive the lower bound of performance for given codes
and noise level.

Because a family of -OOCs are formed by
choosing chips from chips of a -perfect dif-
ference code, any two -OOCs must at least
share chips of the mark chips. Thus, the
crosscorrelation is larger than or equal to , if
two distinct codes are aligned with each other. To derive the
lower bound of the BER, we assume that the crosscorrelation
between any two codes is equal to , if the two
codes are aligned. From (26) and (27), we have

(31)

where .

IV. NUMERICAL RESULTS

In this section, we present the numerical results of the sys-
tems with -OOCs. The parameters used are given
in Table I.

The bit error probabilities versus code weight with or without
double optical hard-limiters are given in Figs. 3 and 4. Note that
to simplify the calculation of the BER performance without op-
tical hard-limiter, we assume that the maximum crosscorrelation
between any two codes is one and we only take the interference
contribution into consideration. These assumptions result in the
lower bound of BER performance. Consider the systems with
double optical hard-limiters. Part of the BER induced by the
noise power is 2 10 under W. In Fig. 3, the

Fig. 3. Bit error probabilities versus the code weight underv = 757,N = 33,
andP = 0:5 �W.

Fig. 4. Bit error probabilities versus the code weight underv = 6643,N =

300, andP = 0:5 �W.

performance of the systems with double optical hard-limiters is
improved as the code weight increases. This is because the larger
code weight is more robust to interference. The performance of
codes with larger is worse than that of codes with smaller.
However, codes with larger have larger code size. Moreover,
when , the lower bound of the BER increases sharply due
to increasing with . As a result, the lowest
BER of the lower bound is about 10 under and

. In other words, given , the maximum number of
simultaneous users is about 33, no matter what value of. This
figure also shows that the performance of the system without
optical hard-limiter is not improved significantly with the in-
creasing of code weight. The phenomenon is due to the larger
the code weight, the larger the interfering probability between
any two codes. Therefore, the advantage of a large code weight
is diluted. Comparing the performances between systems with
or without double optical hard-limiters, we find that the system
with double optical hard-limiters outperforms that without any
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TABLE II
UPPERBOUND OFm(w; � + 1; 82) VERSUSw AND � UNDER

BER� 10 , N = 300 AND v = 6643

optical hard-limiters for the most part. In fact, under suitable
signal power, the performance of the system with double op-
tical hard-limiters outperforms that without optical hard-limiter
because the former could remove some interference patterns.
Fig. 4 shows the performance of )-OOCs. Fig. 4
has similar characteristics with respect to Fig. 3 except that the
performance of the system without optical hard-limiter is get-
ting worse with the increasing code weight. The reason is sim-
ilar to that in Fig. 3. However, the advantage of larger code
weight cannot offset the increasing of interfering probability.
On the other hand, because the interference increases due to
large code weight for the system with double optical hard-lim-
iters, there is an optimal value of code weight for a given code
length and number of simultaneous users. Fig. 4 shows that
the best performance is when the code weight is around 30. In
such a case, the bit error probability of -OOCs
or -OOCs is about 4.0 10 which is very
close to the lower bound. Consequently, the maximum number
of simultaneous users is around 300 given . Fig. 4 also
shows that the larger results the worse performance, espe-
cially when code weight is less than 10. However, when the code
weight is larger than 20, the phenomenon is not obvious, be-
cause a large code weight dilutes the effect of interference. The
upper bound of versus the code weight under
BER 10 , , and is listed in Table II. It
shows that the code family of -OOCs has the
largest upper bound of code size.

Fig. 5 shows the bit error probabilities versus the code weight
under , , , and three different values
of the average power per bit. Considering the value of the av-
erage power per bit is equal to 1 nW, the BER performance is
improved with the increasing of the code weight under
because the interference contribution in (30) is the dominant
term. On the other hand, the BER performance is getting worse
under because the larger values of code weight reduce
the signal power per pulse. As a result, the noise power contri-
bution in (30) is getting larger and dominates the bit error prob-

Fig. 5. Bit error probabilities versus the code weight underv = 6643,N =
300,� = 6, and three different values of the average received power per bit.

Fig. 6. Bit error probabilities versusP underv = 6643, N = 300, and
w = 24.

ability. Similarly, when the value of the average power per bit
is equal to 2 nW, the lowest BER is about 7.010 . How-
ever, because it has larger average power per bit, the effect of
the noise power is not obvious until . When the value of
the average power per bit is equal to 3 nW, the curve is almost
the same as the corresponding one in Fig. 4. This is because the
average power per bit is large enough that the noise power con-
tribution no longer dominates the bit error probabilities.

Fig. 6 shows the bit error probabilities versus the received
power per pulse under , , and . The
three curves illustrate that there exists an error floor which is
actually equal to the interference contribution in (30).

The bit error probabilities versus number of simultaneous
users are presented in Figs. 7 and 8. For the systems with
double optical hard-limiters, these figures indicate that the
performances of codes with larger crosscorrelation are worse
than those of codes with smaller one. However, when the
number of simultaneous users is large, the phenomenon is not
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Fig. 7. Bit error probabilities versus the number of simultaneous users under
v = 757, w = 13, andP = 0:5 �W.

Fig. 8. Bit error probabilities versus the number of simultaneous users under
v = 6643, w = 25, andP = 0:5 �W.

obvious due to dominating the BER. These figures also
show that the performances of the systems with double optical
hard-limiters outperform those of the systems without any
optical hard-limiters.

V. CONCLUSION

One feasible way to improve the performances of OCDMA
systems is to increase the code weight with the penalty of
decreasing the code size when the code weight is less than a
certain value. In this paper, we further relax the crosscorre-
lation constraint to get larger code size and derive the upper
and lower bounds of performances. Because the optimal
construction of a maximal system using exhaustive search is
infeasible, we adopt the random greedy algorithm to construct

-OOCs. It is proved that this algorithm almost
surely can construct asymptotically good maximal systems. An

example of constructing maximal systems shows
that the system density is around 0.77, which is not far from 1.
Moreover, most of the codes can be formed at early constructed
stage. This fact is very helpful especially when the number of
candidates is too large to search through. Because most of the
crosscorrelations between any two codes are 0 or 1 (while only
a very small portion have value of , the numerical results
show that the larger value of crosscorrelation does not decrease
the performance significantly, especially when the code weight
or number of simultaneous users is large. For the systems with
double optical hard-limiters, the results also imply that there
is an optimal value of code weight for a given code length.
We demonstrate that it is possible to approach an upper bound
of the number of simultaneous users for a given code length
and code size. Meanwhile, the code size is maintained on a
satisfactory level.
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