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Zinc oxide doping effects in polarization switching of lithium niobate
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We report a pulsed-field analysis on the 180° domain reversal proc&sstuh congruent grown
lithium niobate (LiINbQ) doped with zinc oxide at concentrati@y,o>5 mol %. The polarization
switching field is found to decrease with the ZnO doping with a threshBlg @nd internal E;,,)

field as low as 2.5 and 0.5 kvV/mm, respectively, resultant on 8 mol % ZnO doped LiNDke
substantial decrease Bf, andE; is ascribed to the suppression of nonstoichiometric point defects
by the substitution of Zfi" ions in the lattice site. ©2001 American Institute of Physics.
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Recent development of quasiphase-matchi@PM) indium oxide(In0).?? In this letter we report the use of tran-
techniques? has greatly revived the research activities insient current analysis to study the polarization switching pro-
nonlinear optics for wavelength conversiaand high speed cess onZ-cut congruent-grown LiNb§ doped with ZnO
optical signal processirfySuch success is ascribed to the (ZnO:LiNbO;). The polarization switching rate and aver-
realization of periodically poled lithium niobatPPLN),>  aged peak switching current are found to increase with the
lithium tantalate(PPLT),® potassium titanyl phosphafeand ~ ZnO doping in the crystal. By increasing the ZnO doping
more recently the commercialization of these materials. AHevel to 8 mol %, significant decrease of the threshold and
though much attention has been focused on the applicatioriaternal field down to 2.5 and 0.5 kV/mm, respectively, can
of QPM structures, little has been known to the dynamics obe realized. The substantial field reduction is ascribed to the
the polarization switching process. Difficulties in making suppression of nonstoichiometric point defects by the substi-
fine PPLN and PPLT structures are due to the high switchingution of Zré™ ions in the lattice site.
field (>22 kv/mm) induced domain-broadening effeéts. The Z-cut, 500um-thick, double-side polished
Consideration also has been given to the large internal fieldnO:LiNbO; substrates were obtained from Casix, China.
(2.5-5.0 kv/mm that causes axial anisotropy in the poling The samples were diced into 1 e cm squares and had a
process. Therefore, one must resort to sophisticated techpatterned area of 10 mn? contacted to the lithium chloride
niques such as backswitching that utilizes the nucleation aniquid electrode. The ZnO doping level investigated in this
pinning process at various poling stages to realize fine QPMtudy was varied from 5 to 8 mol %. For pulsed-field poling
structures™** of LiNbO3, a high voltage power supply made from IRCO

On the other hand, it is suggested that the high switchingmodified model C12K-20 for 12 kV and 2 mA outpwtas
and large internal fields are originated from the nonstoichioysed. The experimental set up was similar to that originally
metric defects associated with crystal growth from the condesigned by Myerst al?® in which the transient current
gruent melf Switching field reduction by a factor of 5 and flown through the LiNbQ@ substrate was measured as the
13, respectively, has been reported on near-stoichiometrigoltage drop across a series resistor. In order to stabilize the
LiNbO4** and LiTaG;.** Good control of stoichiometry can domain reversal process, a fast turn-on rectifying diode was
also reduce the internal field down t60.1 kV/mm. For  putin series with the poling apparatus such that relaxation of
LiNbO3, this field reduction occurs with enhanced photore-the inverted domain can be inhibited at the termination of the
fractive (also known as optical damageffects:* Such  puised field.
photoinduced changes in the refractive indices can lead t0  Shown in Fig. 1 is the field dependence of the switching
substantial change in the QPM condition and loss of theyrrent on 8 mol % ZnO:LiNb@in the (a) forward and(b)
conversion efficiency>®For practical nonlinear application reyverse poling, respectively. Here an applied fiet)l &s low
of stoichiometric LiNbQ, it is found necessary to dope the a5 3 kv/mm is sufficient to initiate the 180° domain reversal
crystal with magnesium oxidéMgO) to ~1.8 mol % to raise  process, whereas in the undoped case it has to be larger than
the optical damage resistante. 22 kv/imm?223 A close examination of Fig. 1 also reveals the

As for the commonly used congruent-grown LINDO  occurrence of Barkhausen spikes and non-vanishing ohmic
the switching field reduction can be activated by adding 5 rrent in the waveform® The reappearance of compressed
mol % of MgO in the crystat®~*° The operation of optical Barkhausen spikes in theiccessivéorward and reverse pol-
parametric oscillators on PPMgLN has revealed superior OPing signifies a reversible process of fusiband pinning® of
tical damage resistance to that on conventional PPLM.  tne [ateral domain motion by the localized defects. These
addition, LINbG; is known to support other kinds of optical phenomena have been consistently observed, for example, in
damage resistant impurities such as zinc oX@deO) and  he domain reversal of Rochelle 24land MgO:LiNbQ, .18
The details of the ZnO doping effects on the polarization
dElectronic mail: peng@cc.ee.ntu.edu.tw switching are further illustrated in Fig. 2 and vertically
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FIG. 1. Wave forms of the switching current durifig forward and (b) *Ein)]. Here we use an internal fielf;, to signify the

reversepoling an a 8 mol % ZnO:LiNbQ crystal at various switching field. axial anisotropy,us the lateral mobility, and Ey* Ej.)
switching field in theforward (+) and reverse(—) poling

shifted for comparison. We first note an increase of the avdlrectlon Ein=18.74 andE,=2.37 kV/mm have thus been

9
eraged peak switching current with the ZnO doping. Slncédet?l.t"c'etfj in undopiﬁd LiNbe? tth"’}t fi?rees W'thdg é_i(.:ent
the switching current measures the exchange rate of th he! ||ca |or; usmgbl € expt)onenk|a |d|ng proceddre nis ¢
spontaneous polarizatiorP(), an increase in the switching 2N&YSIS @S0 €nables us 1o make a ecisive measuig0

current suggests a faster switching rate provided the variatio nd Ey, in ZnO:LiNbO; as shown in Fig. 4. Here we note
of P, with ZnO doping is negligible. We note, within a U'at & Significant decrease B, andgy down to 2.5 and 0-50
variation of £6%, the P4 has been found insensitive to the kV/mm, respectively, can be realized on 8 mol%
nonstoichiometry in LiNb@,*? LiTaO;,*® and independent ZnO:LiNDbG;.

. 8 2 ) The dramatic decrease of switching field indeed bears
;);the doping levele.g., MgG” and hydrogeji*in the crys close relation to the ZnO doping effects on the crystal struc-

. : P ture. Recent investigation on the electro-optical properties of
In support of this analysis, we explore in Fig. 3 the o ) .
switching rate (1tf) dependence on the ZnO doping at aZnO.Ir_éTt.)Og has sug-gested a compensation _m_echanlsm of
concentration of(a) 8 and (b) 5 mol %, respectively. Re- the Z 1ons to the Li vacancy (W) ar.1d.Nb antisite (Np)
ferred to Fig. 3, an increase oft1Avith tk;e ZnO doping can defects®® This mechanism is very similar to the structure
be clearly resdlved. Moreover, we can infer from Fig. 3 aeffects paqsed by thg MgO doping in'the congruent-grown
linear dependence of i on E. This phenomenon has been and stoichiometri€ LINbO3. With an increase of ZiiMg)

known to characterize a sidewise motion of the 180° domawﬁmpmg the Zn(Mg) will initially replace the Nb; and de-
wall of Rochelle sal?® gadolinium molybdat&’ and barium ~ ¢€8S€ the ) defects in LINDQ. It is concluded that up to

titanate (BaTiQ)zg in the high-field regime. In comparison a concentration of 6.4 mol %, the Zhions are localized at
the switching rate of BaTiQ in the low-field regime is the Li site; whereas in a higher concentration7.6 mol %,

n o
known to follow anexponentialdependenc& This unique the Zif " are partially incorporated at the Nb sittThe ac-

linear dependence has thus enabled us to take advantage 3%{1 O]; ?r']gh Zn dtOp'Eg thu:: resultst (dm)? StUbStizt'?jl rl\(leduc—
recently proposed mobility mod&lto analyze the lateral do- ion of the nonstoichiometric point defects of;\and Niy;,

. . o . . and (i) an increase of the lattice constamt,§) due to the
main motion of ZnO:LiNbQ. In this model analysis, fast N . : Y .
a oton o © bQ s model analysis, fas substitution of larger Zfi" ions in the lattice site. The sig-
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FIG. 2. Switching current on ZnO:LiNbQat a doping level of 5, 6, and 8 FIG. 4. Doping effects on the threshol&{) and internal E;,) field in the
mol % with aforward andreversepoling voltage of 3.5 and 2.9 kV. polarization switching of ZnO:LiNb@.
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