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Optical interference in nonlinear photonic crystals
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A model to analyze the interaction of the parametric fields being generated in a two-dimensional nonlinear
photonic crystal has been developed. The analysis provides details of the interference of the generated
wave(s) both inside and in the region just outside the crystal. The results are verified by second-harmonic
generation in a LiNbO3 crystal that has been poled with a tetragonal inverted domain structure. © 2007
Optical Society of America
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Nonlinear photonic crystals have a homogeneous
space-independent linear susceptibility ��1� but have
a periodic or quasi-periodic two-dimensional (2D)
spatial distribution of ��2� [1]. This 2D structure pro-
vides greater flexibility in the quasi-phase matching
(QPM) [2] of wavelength conversion processes in a
single crystal. As a consequence, simultaneous con-
version of multiple wavelengths, multistep cascaded
conversions, and conversion of broadband sources
can be performed with good conversion [3–6]. Re-
cently a general method for designing 2D nonlinear
photonic crystals was proposed, allowing complete
flexibility in designing photonic structures for simul-
taneous phase matching of arbitrary conversion pro-
cesses [7].

Most of the analyses on nonlinear photonic crystals
have focused on the QPM aspect, using an analogy to
the 1D case and employing reciprocal lattices to pic-
ture the QPM process. Analysis of the propagation of
coherent optical waves in these structures has been
ignored. Intuitively, a 2D inverted domain structure
can be viewed as having rows of 1D inverted domains
aligned parallel to each other, each producing its own
nonlinear wave signal [8]. This yields rows of coher-
ent signal beams spaced exactly by the crystal’s
transverse domain period (Fig. 1). As these beams
propagate, their diffraction results in optical interfer-
ence among the beams. Since this happens inside the
crystal, the interference occurs simultaneously with
the nonlinear generation process. A full analysis of
this has never been done. It is therefore interesting
to develop a formalism to understand the nature of
this interference. In this Letter we report for the first
time to our knowledge a general mathematical de-
scription from the optical generation point of view op-
tical interference in a nonlinear photonic crystal. We
confirm the results of the analysis by a second-
harmonic generation (SHG) experiment in a 2D crys-
tal that has a tetragonal inverted domain structure.

We note that in nonlinear photonic crystals the in-
put beam does not cause interference. The interfer-
ence is of the signal waves that are being generated
in the structure. As such, the effect is unique to non-

linear photonic crystals.
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In our analysis we use real space representation to
describe the propagation of the nonlinear signal
waves through the medium. Diffraction of the waves
is included to obtain a complete description of the
field pattern both inside and outside the crystal. Both
the fundamental and its second-harmonic (SH) elec-
tric fields are linearly polarized along the z axis (see
Fig. 1), so they can be expressed in scalar form
E1�r� , t�=U1�r��exp�−i�t� and E2�r� , t�=U2�r��exp�−i2�t�,
where the subscripts 1 and 2 stand for the fundamen-
tal and the SH, respectively, � is the fundamental
frequency, and U1�r�� and U2�r�� are complex ampli-
tudes. The SH nonlinear polarization is given by
P̃2�r� , t�=P2�r��exp�−i2�t�, where P2�r��=��2��r���U1�r���2,
and ��2��r�� is the local second-order nonlinear suscep-
tibility.

An analytical expression for U2�r�� can be obtained
when U1�r�� has a Gaussian profile:

U1�x,y,z� �
U0

�1 + x2/b2�1/2e−�y2+z2�/w2
e−i tan−1�x/b�eik1x,

�1�

where r� has been replaced by the Cartesian coordi-
nates r� = �x ,y ,z�; w�x�=w0�1+x2 /b2�1/2, and b
=k1w0

2 /2. k1 is the propagation constant of the funda-
mental in the nonlinear material, w0 is its beam

Fig. 1. (Color online) Periodical 2D QPM crystal depicted
as the combination of several 1D QPM channels separated
by unpoled channels of the same width. Black squares rep-

resent inverted domains.
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waist, and we assume b is much greater than the
length of the medium.

When E1 and E2 travel through a thin slab of thick-
ness dx, the small increment in U2�r�� is [9]

dU2�r�� =
i�0�2��2

2k2
P2�r��dx, �2�

where k2 is the SH propagation constant in the non-
linear material and �0 is the permeability of the ma-
terial. When propagating from r�� to r�, this small in-
crement evolves to become [10]

dU2�r�,r��� =
i�0�2��2

2k2
dx�� Fy exp�iGy

+ i�k2
2 − Gy

2�x − x���dGy, �3�

where Fy is defined as

Fy �
1

2�
� P2�r��e−iGyy�dy� �4�

and Gy is the reciprocal lattice constant in the y di-
rection. Here we neglect the diffraction effect in the z
direction because the domain polarization is uniform
in z.

Integrating Eq. (3) over x then gives

U2�r�� =
i2�0�2

k2
�

−�

x � Fy�Gy,x��exp�iGyy

+ i�k2
2 − Gy

2�x − x���dGydx�. �5�

Equation (5) can be recognized as the integration of
the wave vectors that are associated with the travel-
ing Gaussian light waves and with the domain struc-
ture that is a 2D nonlinear grating in ��2� [1]. Nu-
merically solving Eq. (5) gives the SH field amplitude
at any point in the x–y plane. Figure 2 shows the cal-
culated SH intensity distribution in the x–y plane
generated in a 6 mm long crystal with a tetragonal
domain structure for a fundamental beam entering
at normal incidence. The crystal used has a poled do-
main period of 29.5 �m in both the x and y directions
designed for QPM SHG of 1990 nm at room tempera-

Fig. 2. (Color online) Simulated SH intensity distribution
in the x–y plane. x is the distance from the input face of a
nonlinear photonic crystal. The dashed line indicates the

exit end of the crystal.
ture in the forward �G10� direction. The fundamental
beam has a Gaussian waist of 100 �m located at the
center of the crystal. The corresponding Rayleigh
length is 67 mm. The Rayleigh length for light gener-
ated from a single channel of width 14.75 �m is
	770 �m. This is small compared with the crystal
length. Hence the diffraction of the signal waves gen-
erated from each channel must be tracked during the
simulation in the crystal. Figure 2 shows that the SH
signal begins as separate beams generated from each
1D channel along the x axis. These beams diffract as
they grow and interfere with each other, creating an
oscillatory transverse profile that evolves along the
length of the crystal. The period of the interference
pattern is equal to the transverse period of the non-
linear photonic structure. The resulting profile at the
exit end of the crystal is not Gaussian and is clearly
different from the Gaussian profile from a conven-
tional SHG process. This interference due to the
overlapping of coherent beams obviously affects the
transverse beam profile at the output end of the crys-
tal, and one can expect that this interference will also
influence the phase-dependent generation process in
an important way to result in a reduced conversion
efficiency in the 2D structure as compared with the
1D case [11].

A SHG experiment was performed to validate this
analysis. Pulsed radiation at 1990 nm from an optical
parametric oscillator [12] was focused into the center
of a PPLN crystal fabricated to have a 2D tetragonal
distribution of poled domains with a period of
29.5 �m. The focused beam waist was 100 �m, and
the incident IR intensity was 2 MW/cm2, which
avoids pump depletion. The transverse spatial profile
of the generated SH energy was image relayed with a
4� magnification and recorded by scanning in the y
direction across the magnified image a silicon photo-
detector equipped with a 10 �m wide slit aperture.
We used crystals of three different lengths, l=1, 2,
4 mm, to mimic three different distances inside the
crystal in the simulation and recorded the images of
the output at the exit end of each crystal. The mea-
sured profiles shown in Fig. 3 are in substantial
agreement with the simulated results. As can be
seen, interference begins to show at x= 	1 mm (el-
evated baseline) and already becomes significant at
x=2 mm.

Once outside the crystal, the optical interference is
seen as that of a multibeam interference. Interfer-
ence patterns persist near the crystal as a continua-
tion of the interference from inside the crystal. The
interference evolves into several component beams
propagating into the far field, of x�12 mm in this ex-
ample. The direction of each of these beams is given
by a wave vector that satisfies the condition k2,mn
=2k1+Gmn, consistent with the reciprocal lattice
analysis employed in the literature [1]. In our ex-
ample the G11 and G1,−1 directions are not phase
matched. The SH intensity in these directions is
much weaker, and the beams could hardly be seen.
Yet as shown in Fig. 3 their contribution to the inter-
ference in the near field is still very significant.
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Contrary to the 1D case, translation of a 2D non-
linear photonic crystal has a significant effect on the
intensity pattern of the generated field because of the
periodic poling pattern in the y direction. Figure 4
shows the measured and the simulated SH signal at
the exit end of two crystal lengths generated under
the same experimental conditions described above.
Here, the position of the apertured silicon photode-
tector was fixed while the crystal was translated in
1 �m steps in the y direction. Translating a 1 mm
long crystal leads to a signal with the same periodic-

Fig. 3. Transverse SH intensity distribution at x=1, 2,
4 mm from the input end of the crystal. The black dots are
experimental points and the solid curves are simulated re-
sult. The horizontal scale is for y in the image space, which
is magnified four times by image relay relative to y in
Fig. 2.

Fig. 4. Experimental (circles and squares) and simulated
(solid curve) SH intensity at a fixed y position when the
crystal is translated a relative distance y0 in the y direc-
tion. The lower trace is for a 1 mm long crystal. The upper
trace is for a 2 mm long crystal. They share the same ver-
tical axis. y0=0 is chosen as the location where the simu-

lated signal is largest from the 2 mm crystal.
ity as the channel period, and the signal reaches its
peaks or valleys according to whether the detector is
aligned to a poled or unpoled channel, respectively
(see Fig. 1). Since the 1 mm crystal length is about
the same as the Rayleigh length of 0.77 mm of each
channel, the effect of interference results only in a
small rise from the bottom of the valley in the signal,
as can be seen in both the experiment and in the
simulation. The interference effect is much more pro-
nounced in the case of a 2 mm long crystal. In fact, in
this case constructive interference results in an un-
anticipated larger signal corresponding to the detec-
tor aligned to an unpoled channel compared with
when aligned to a poled channel. This type of inter-
ference phenomenon certainly is quite unique to non-
linear photonic crystals or similar types of structure.

The above examples serve to demonstrate that the
analysis we have developed gives a general quantita-
tive description of the interference effect of the SH
field in a nonlinear photonic crystal. While the simu-
lation is for SHG in a tetragonal domain structure,
the approach can easily be generalized to many QPM
processes such as cascaded harmonic generation and
optical downconversion, and for arbitrary 2D and 3D
domain patterns with an appropriate substitution of
the description for E2 and ��2� into the model.
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