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Nonlinear refraction and absorption measurements
with chirped femtosecond

laser pulses: experiments and simulations
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We report an extension of the spectrally resolved two-beam coupling technique to measure the nonlinear in-
tensity index of refraction (n2

I) and the two-photon absorption coefficient (b) by use of chirped laser pulses.
The linear chirp parameter b is incorporated into the derivation of a more general model than the previous one
[Opt. Lett. 22, 1077 (1997)]. We have also analyzed the validity of this linear chirp model through a compari-
son of the experimental results for fused silica with the numerically accurate calculation that considers higher-
order chirps obtained by second-harmonic generation frequency-resolved optical gating. The results show
that this method potentially can be used to extract the chirp. Finally, we applied this transient spectrally
resolved nonlinear transmittance spectroscopy to semiconductor-doped glasses to extract their n2

I and b.
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1. INTRODUCTION
In media with inversion symmetry (such as gases, liquids,
and noncrystalline materials), third-order optical nonlin-
earity is the lowest-order nonlinearity allowed under the
electric-dipole approximation. Third-harmonic genera-
tion, phase conjugation, saturation, self-focusing, the op-
tical Kerr effect, and two-photon absorption can all be at-
tributed to this optical nonlinearity. There has been a
great deal of research directed to investigating these phe-
nomena in various materials and in pursuing their
application.1 The nonlinear intensity index of refraction
n2

I and the two-photon absorption coefficient b are nor-
mally used to quantitatively characterize these kinds of
self-action nonlinear optical behavior. The dependence
of n2

I and b on the third-order nonlinear optical suscep-
tibility x (3) are given by n2

I 5 (3/4e0cn0
2)Re@x1111

(3)# and
b 5 (3k0/2e0cn0

2)Im@x1111
(3)#, respectively.1 Many ex-

perimental techniques have been developed to measure
the magnitude and the dynamics of third-order optical
nonlinearities. The three most commonly used methods
are four-wave mixing, optical-heterodyne-detected optical
Kerr gating, and beam distortion measurements (Z
scan).1 The first two methods directly measure the third-
order nonlinear susceptibility and usually involve a com-
plicated experimental setup. The third method utilizes
the self-focusing effect on the beam’s propagation prop-
erty to measure the nonlinear refractive index. The most
commonly used method to extract b, on the other hand, is,
the nonlinear transmittance method, which measures the
transmittance of the laser beam through the medium as a
function of the laser’s intensity.

Among these three methods for measuring x (3), the
0740-3224/99/040651-11$15.00 ©
Z-scan technique is the simplest and deserves the most
discussion.2 It measures the transmission change in a
single focused laser beam through an aperture as a func-
tion of the relative positions of the beam’s focal position
and the sample. Because of the intensity-induced change
in the refractive index, a peak-and-valley feature shows
up in the transmission measurement. A well-defined
beam profile is a necessity for extraction of the real and
the imaginary parts of x (3). This method has been ap-
plied successfully to many materials. However, the
Z-scan technique has two major limitations. First, it is
relatively insensitive. It thus requires a high laser
power density, leading to the possibility of other side ef-
fects such as laser-induced damage and other higher-
order optical nonlinearities. It is thus more often applied
to thick samples to accumulate a larger effect for obser-
vation. Second, because the beam spot on the sample
during the measurement varies, nonuniform samples
may cause serious scattering, which will affect this trans-
mission measurement.

Recently Kang et al. demonstrated a new method for
measuring both n2

I and b.3 It relies on two-beam cou-
pling between the pump and the probe pulses. The
phase change (cross-phase modulation) and the energy
loss (two-photon absorption) of the probe beam caused by
the pump beam vary the transmission of the probe beam
at a wavelength away from its central wavelength. An
analytical model of the normalized transmittance varia-
tion based on transform-limited pulses was derived and
used to fit the experimental results on fused silica and
CdS samples. Nonlinear phase shifts as small as
;1026 rad and two-photon absorption coefficients as
1999 Optical Society of America
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small as 1024 cm/GW have been demonstrated. It is a
highly sensitive technique for measuring the two nonlin-
ear optical constants.

To extend the use of this sensitive technique, we
present here our theoretical and experimental studies of
this method with chirped femtosecond laser pulses. In
Section 2 we describe the derivation of the analytical
linear-chirp model with linearly chirped Gaussian laser
pulses. In Section 3 we arrive at a fundamental under-
standing of the chirp-free and linear-chirp models
through the simulation results. The experimental setup
for the two-beam coupling method and the frequency-
resolved optical gating (FROG) apparatus are given in
Section 4. Our experimental results and their compari-
son with the theoretical simulations are presented and
discussed in Section 5. Section 6 concludes the paper.

2. THEORY
For an intense pump pulse copropagating with a weak
probe pulse in a nonlinear medium with only third-order
optical nonlinearity x (3), the equations that describe the
nonlinear interactions (nonlinear refraction and two-
photon absorption) between the strong pump and the
weak probe beams are
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Ipr (Ipu) is the intensity of the temporal envelope of the
probe (pump) beam, fpr (fpu) is the phase of the probe
(pump) beam, a is the linear absorption coefficient, vg is
the group velocity, k 5 2p/l, where l is the wavelength
in vacuum, and n2

I is the nonlinear intensity index of re-
fraction. The slowly varying envelope approximation is
assumed and group-velocity dispersion (GVD) is ne-
glected in the derivation of Eqs. (1)–(4). The former ap-
proximation is valid when the spectral width of the pulse
is much smaller than its central frequency, as it normally
is for typical femtosecond laser pulses. Ignoring GVD
can be justified only when the dispersion length (LD
5 t 2/k9) is greater than the nonlinear length (LNL
5 j0 /n2

IIpu), where k9 5 d2k/dv2, j0 5 fpc/n0v0 , and
fp is the peak phase shift induced in the measurement
(;1023 rad). For a 100-fs laser pulse (t 5 85 fs) at 800
nm propagating in fused silica (k9 5 0.0362 ps2/m at 800
nm), the dispersion length is ;20 cm. Inasmuch as n2

I

5 2.2 3 10220 m2/W for fused silica, the nonlinear length
is ;4 mm for Ipu 5 1012 W/m2, which is the typical peak
power density achieved by focusing of femtosecond mode-
locked laser pulses. Because the sample thickness L se-
lected for experiments is ;3 mm, both L and LNL are
much shorter than LD , and the GVD of the sample can be
neglected in the analysis.
Assuming a transform-limited laser pulse, E(t)
; exp(2t2/t 2), Kang et al. derived the nonlinear trans-
mittance of the probe beam as a function of the time delay
Dt between the pump and the probe pulses and the detec-
tion detuning d 5 v 2 v0 between the central frequency
of the laser v0 and the detecting frequency3:

DT
T

~Dt, d! 5
2

A3
exp~d 2t 2/6!exp@22~Dt !2/3t 2#

3 @2DF sin~2dDt/3! 2 q cos~2dDt/3!#,

(5)

where DF 5 kn2
IIpu

0L, q 5 bIpu
0L, Ipu

0 is the peak in-
tensity of the pump pulse, and L is the interaction length.
In the derivation, both DF and q are assumed to be less
than ;0.1 and linear absorption in the medium is ne-
glected. Furthermore, the pump pulse is assumed to be
invariant while it is propagating in the medium. Equa-
tion (5) can be considered a Gaussian envelope modulated
at a radial frequency of 2d /3. The effect of the two-
photon absorption is simply a phase shift of this modula-
tion.

The chirp in femtosecond laser pulses is in normally
produced laser pulses at the direct output of the model-
locked laser owing to uncompensated GVD in the laser
cavity,4 although chirp-free laser pulses can be achieved
with extracavity dispersion compensation with a prism
sequence. In performing the spectrally resolved two-
beam coupling measurement, one therefore cannot apply
the simple model of Kang et al.3 to the cases with chirped
laser pulses. Here, for the first time to our knowledge,
we derive analytically a more general nonlinear transmit-
tance model with the inclusion of linear chirp. When a
linearly chirped pulse is assumed,

E~t ! 5 E0 exp~2t2/t 2 1 ibt2 1 iv0t !, (6)

where b is the linear chirp parameter. Because a specific
spectral component of the probe pulse after it interacts
with the pump pulse is selected for detection, the follow-
ing derivation is given in the frequency domain. Accord-
ing to the nonlinear wave propagation equations for the
probe beam [Eqs. (3) and (4)], the probe electric field after
it interacts with the pump pulse in the medium is given
by

Epr~z 5 L, v! 5 FT@Epr~z 5 L, t 2 Dt !#

5 FT$Epr~z 5 0, t 2 Dt !

3 expF2i2
v0

c
n0n2

ILIpu~t ! 2 bLIpu~t !G
' FTH Epr~z 5 0, t 2 Dt !F1 2 i2DF

3 expS 22
t2

t 2D 2 q expS 22
t2

t 2D G J
5 FT@Epr~z 5 0, t 2 Dt!#

1 FT@DEpr~z 5 L, t 2 Dt !#, (7)

where DF and q are defined as above, Dt is again the time
delay between the pump and the probe pulses, and FT
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represents the Fourier transformation from the time do-
main to the frequency domain. Here we also assume
that both nonlinearity parameters are small such that the
expansion in Eq. (7) extends only to the first-order term.
The nonlinear transmittance change of the probe pulse
can be written as
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where DEpr ! Epr(z 5 0, v) is assumed. After some
derivation,

Epr~z 5 0, v! 5 Epr
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1 2 ibt 2D 1/2

expF2
d 2t 2

4~1 2 ibt 2!
G .
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In addition, DEpr can be given by
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Finally, after some algebra, the normalized transmittance
change of the probe pulse can be written as
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2dbt 4

2~3 1 b2t 4!
, (11b)

G 5 t F 9 1 b2t 4
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4b

9 1 b2t 4 S Dt 1
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tan21S 2bt 2

3 1 b2t 4D . (11e)

Equation (11a) is similar to Eq. (5), whereas the envelope
function has a time shift TS(b, d, t) that is linearly pro-
portional to d. Its width parameter G depends only on b
and t. The time-delay dependence on the sinusoidal
modulation function is, however, much more complicated,
and the time shift is also different. The second-order de-
pendence of this time-delay dependence indicates that the
modulation in the observed transient must have a chirp.
This complication is caused by the linear chirp parameter
in the phase of the probe pulse. From the complicated
equations (11), we expect that the transient nonlinear
transmittance performed with non-transform-limited la-
ser pulses will be different from the one with unchirped
pulses. According to Eqs. (11), chirp parameter b is non-
negligible when bt 2 ; 1, corresponding to a time–
bandwidth product 1.4 times that of a transform-limited
Gaussian laser pulse. This is not unusual for 100-fs la-
ser pulses directly from a mode-locked Ti:sapphire oscil-
lator. Finally, for b 5 0, Eq. (11a) can easily be reduced
to Eq. (5).

Apparently, the linear chirp model is still too simpli-
fied. It is, however, not feasible to derive a complete ana-
lytical solution to include the effect of higher-order chirps.
To further explore the effects of the higher-order chirps in
the nonlinear transmittance measurement we have thus
developed a computer program to perform accurate simu-
lations. The generalized electric field is represented as

E~t ! 5 Epr
0 expS 2

t2

t 2D exp~iv0t !exp@if~t !#, (12)

where f(t) is the total phase, which can be obtained from
the FROG measurements.5 Furthermore, the dispersion
of material was again neglected in this simulation. With
these two assumptions, the program calculates the non-
linear transmittance data,

DT

T
~v, Dt ! 5

uEpr~z 5 L, v, Dt !u2 2 uEpr~z 5 0, v!u2

uEpr~z 5 0, v!u2 ,

(13)

by substituting Eq. (12) into Eq. (13). There is no ap-
proximation similar to Eqs. (7) and (8) in the calculation.
This accurate simulation can thus verify the error in the
linear chirp model. Here we adopt a Gaussian envelope
function in Eq. (12) for the purpose of comparison with
the analytical result obtained with the linear chirp [Eq.
(11a)]. Although Ti:sapphire lasers do not necessarily
emit Gaussian pulses, the Gaussian fitting to the ex-
tracted intensity data from the FROG measurement is
very satisfactory, as shown in Fig. 7 below. Finally, uti-
lizing the extracted nonlinear phase variation in the laser
pulses from the FROG result, we can then compare the
experimental data with the prediction made by this pro-
gram. An analysis of these data is made in Section 4.
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3. SIMULATIONS: CHIRP-FREE AND
LINEAR-CHIRP MODELS
In this section we first present the chirp-free model, the
case in which no chirp is involved in the calculation, to
help in a fundamental comprehension of the experimental
results in the technique. The sophisticated nonlinear
formula of the linear-chirp model is discussed subse-
quently to illustrate the importance of linear chirp.

A. Chirp-Free Model
The analytical solution of the two-beam coupling equa-
tions for chirp-free laser pulses has been derived [Eq. (5)].
The resultant formula can be understood as the product of
two parts:

DT
T

~Dt, d! 5 f~d, t, Dt !z~d, Dt, DF, q !, (14a)

with

f~d, t, Dt ! 5
2
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expS d 2t 2
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z~d, Dt, DF, q ! 5 @~2DF!2 1 q2#1/2 sinS 2dDt

3
2 u D ,

(14c)

where

tan u 5
q

2DF
. (14d)

The envelope function f(d, t, Dt) comprises the
frequency-detuning-dependent amplitude exp(d 2t 2/6) and
the time-delay-dependent Gaussian function
exp(22Dt2/3t 2). This Gaussian dependence is a result of
the frequency-domain third-order autocorrelation
A(Dt, v)@5*2`

` E(t 2 Dt)uE(t)u2 exp(2iv t)dt# performed
in the measurement. The amplitude part, on the other
hand, reflects the dependence of the frequency detuning
on the signal strength in the nonlinear transmittance
measurements. With the detection at a wavelength
away from the central wavelength of the probe beam, the
relative variation of the signal strength induced by the
probe beam with respect to the original probe signal is
larger. This is so because the unperturbed probe signal
at a larger frequency detuning is smaller with the same
amount perturbation by the pump beam. In Fig. 1(a) we
demonstrate the dependence of frequency shift d on the
envelope function, based on Eq. (14b). Here DF 5 3.8
3 1024 rad and t is 85 fs. As is shown in this figure, the
larger the frequency detuning is, the larger the envelope
function is. Furthermore, according to Eq. (14b), the am-
plitude part depends on the absolute value of d, not on its
sign.

The origin of the modulation function z(d, Dt, DF, q)
can easily be illustrated first for the condition of absence
of two-photon absorption (q 5 0). For the chirp-free la-
ser pulses, Epr(z 5 0, t) and DEpr(z 5 L, t) can be writ-
ten as

Epr~z 5 0, t ! 5 Epr
0 exp~2t2/t 2!exp~iv0t !, (15a)
DEpr~z 5 L, t ! 5 Epr
0~i2DF 1 q !

3 expF2
2~Dt !2

3t 2 GexpF2
3
t 2 S t 1

2
3

Dt D 2G
3 exp~iv0t !

5 Epr
0~i2DF 1 q !

3 expF2
2~Dt !2

3t 2 GexpS 2
3
t 2 t82D

3 exp~iv0t8!expS 2i
2v0Dt

3 D , (15b)

where t8 5 t 1 2Dt/3. Comparing the time dependences
of these two electric fields, we see a time shift 2Dt/3 be-
tween their envelope functions. Furthermore, Eq. (15b)
indicates that there is a phase shift exp(2i2v0Dt/3) in the
carrier wave with respect to the center of the envelope
function. When the change in the transmitted probe in-
tensity is detected, the interference between Epr(z
5 0, t) and DEpr(z 5 L, t) is in effect monitored. After
the monochromator, only a specific frequency component
of the probe beam is selected, yielding a phase shift
exp(i2vDt/3) at DEpr(z 5 L, t). The total phase shift is
therefore equal to exp@i2(v 2 v0)Dt/3# 5 exp(i2dDt/3). It
is this phase shift between Epr(z 5 0, t) and DEpr(z
5 L, t) that leads to the modulation function in Eq. (5).
Figure 1(b) shows the change in normalized transmit-
tance as a function of the pump–probe time delay for dif-
ferent frequency detunings. It displays an antisymmet-
ric oscillatory behavior, and the different d values vary
only the signal amplitude not the oscillatory feature.
With two-photon absorption (q Þ 0), it in effect induces

Fig. 1. Simulated nonlinear transmittance transients with the
chirp-free model at three frequency detunings d. (a) Envelope
function f(Dt), (b) total transient signal. The induced phase
shift DF is 4 3 1024 rad.
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an imaginary phase in the probe beam. This time-delay-
dependent imaginary phase and the real phase caused by
DF lead to a complex constant i2DF 1 q in DEpr(L, v).
This complex constant thus induces a constant phase
shift in the modulation function.

B. Linear-Chirp Model
For the linearly chirped Gaussian pulses used in the two-
beam coupling measurements, Equations (11) provide an
analytical expression for the transmitted probe beam at a
frequency detuning d. In this subsection we calculate the
results of this equation with different parameters. We
choose the material parameters of fused silica in the cal-
culation as L 5 2 mm, n2

I 5 2.2 3 10220 m2/W, n0
5 1.45332, and b 5 0. Furthermore, the peak intensity
of the pump pulse is 1012 W/m2, the central wavelength is
793 nm, and t 5 85 fs. These laser parameters are cho-
sen to be close to our experimental conditions.

Similar to Eq. (5), Eq. (11a) can be regarded as the
product of an envelope function,

f~Dt ! 5 h~b, t!exp@g~b, d, t!#

3 exp$2@Dt 2 Ts~b, d, t!#2/@G~b, t!#2%,

(16)

where h(b, t) is the amplitude in Eq. (11a) with a modu-
lation function

2DF sin Q 2 q cos Q. (17)

Figure 2 shows the calculation results at two
frequency-detuning values for b 5 9 3 1025 s22. In com-
parison with the chirp-free results, the increase here in

Fig. 2. Simulated nonlinear transmittance transients with the
linear-chirp model at three frequency detunings d. (a) Envelope
function f(Dt), (b) total transient signal. Arrows denote the
peak positions of f(Dt). b 5 9 3 1025 s22, DF 5 3.8 3 1024

rad.
the negative frequency detuning shifts the peak of the en-
velope function toward the positive time-delay position for
a positive chirp [Fig. 2(a)]. The positive frequency detun-
ing, on the other hand, shifts the envelope function to the
negative time delay. This feature is evidenced by the lin-
ear dependence of Ts(b, d, t) on d in Eq. (11b). The posi-
tive b represents that the low-frequency component of the
laser pulse is ahead of the high-frequency component.
Because the low-frequency component of the probe pulse
is shifted to the rising edge, the effective peak position in
time of the probe pulse for d , 0 is then moved to an ear-
lier time with respect to the original pulse. From Eqs.
(11), the normalized transmittance signal is therefore
largest when the pump pulse is situated at the rising edge
of the probe pulse, namely, at the positive time delay,
where the maximum temporal overlap between the pump
pulse and the effective probe pulse appears. Apparently,
the larger the positive chirp is, the more the peak position
of the signal is shifted toward the positive time delay.

As in the discussion of the case without chirp, the
change in the linearly chirped probe field after interaction
with the pump beam in the sample can be written as

DEpr~z 5 L, t ! 5 Epr
0~i2DF 1 q !expF2

2~Dt !2

3t 2 G
3 expS 2

3

t 2 t82D exp~iv0t8!exp~ibt82!

3 expS 2i
2v0Dt

3 D
3 expH 2ibF4Dt

3
t 1

4

9
~Dt !2G J , (18)

where t8 5 t 1 2Dt/3. The total phase shift between
Epr(z 5 0, t) and DEpr(z 5 L, t) after the monochro-
mator is therefore equal to

expS i
2dDt

3 D expH 2ibF4Dt
3

t 1
4
9

~Dt !2G J .

Note that it does not disappear, even when d 5 0, which
is the opposite of the case without chirp, as shown in Fig.
2(b). Furthermore, the second-order time dependence in
the phase from the linear chirp leads to the second-order
dependence on Dt in the total phase shift, yielding a non-
linear period in the modulation function, as shown in Eqs.
(11) and Fig. 2(b). In comparison with the chirp-free case
[Fig. 1(b)], the transient signal in Fig. 2(b) would not nec-
essarily reach zero at Dt 5 0, and the oscillatory feature
depends on the d value.

Finally, a discussion of the effect of the linear chirp pa-
rameter b is given below. Both the envelope function and
the total nonlinear transmittance were calculated with
three positive linear chirp parameters: 0, 5 3 1025, and
9 3 1025 s22. The larger the positive chirp is, the more
the low-frequency component is shifted to the rising edge
of the laser pulse, yielding a larger time shift in the peak
position, as shown in Fig. 3(a). Notice that the larger b
is, the smaller the envelope function f(Dt) is. When lin-
ear chirp parameter b is involved in the frequency-
domain third-order autocorrelation A(Dt, v), the linear



656 J. Opt. Soc. Am. B/Vol. 16, No. 4 /April 1999 Wang et al.
chirp creates a larger spectral broadening in A(Dt, v)
than the initial linearly chirped probe pulse. This spec-
tral broadening decreases the normalized transmittance
signal with a specific spectral window for detection. Be-
cause of the combination of linear chirp and frequency de-
tuning, the total transient feature exhibits a nonsym-
metrical modulation feature, as shown in Fig. 3(b).

4. EXPERIMENT
Figure 4 shows a schematic layout of the experimental
setup. The output of a femtosecond mode-locked Ti:sap-
phire laser (Tsunami, Spectra-Physics) served as the
pulsed light source for both the pump and the probe
beams. We can fine tune the chirp by adjusting the po-
sition of one of four dispersion-compensated prisms inside
the cavity. A total average power of ;250 mW was used
in the experiment. The central wavelength of the output
beam was ;793 nm. In performing the pump–probe
transmittance measurements we split the output of the
femtosecond Ti:sapphire oscillator with a 90/10
(reflection/transmission) beam splitter into pump and
probe beams. The beam passing through mirrors
M1–M3 is the probe beam, and the one passing through
mirrors M4–M7 is the pump beam. A computer-
controlled translation stage was used to vary the time de-
lay between the pump and the probe pulses with a reso-
lution of 0.1 mm. The pump and probe beams were then
focused noncollinearly into the sample by a plano–convex
lens (f 5 11.4 cm). To minimize the time-delay error
that is due to the noncollinear overlap between the pump
and the probe pulses at the sample we selected the sepa-

Fig. 3. Simulated nonlinear transmittance transients with the
linear-chirp model for three linear chirp parameters b. (a) En-
velope function f(Dt), (b) total transient signal. Arrows denote
the peak positions of f(Dt). d 5 25 3 1013 s21; DF
5 3.8 3 1024 rad.
ration between the two parallel pump and probe beams to
be ;5 mm, which resulted in a crossing angle of ;2.5° be-
tween the pump and probe beams. The transmitted
probe beam then went to a 27-cm monochromator that se-
lected a specific detecting wavelength with a spectral
width of ;0.2 nm. A photomultiplier (R928,
Hamamatsu) detected the filtered laser’s intensity after
the monochromator as a function of the pump–probe time
delay. A chopper was placed in the path of the pump
beam for phase lock-in detection, as shown in Fig. 4. We
carried out the measurements by accumulating and aver-
aging 50–60 fast time-delay scans.

A 500-mm-thick b-barium borate crystal was substi-
tuted into the sample for an in situ second-harmonic gen-
eration (SHG) autocorrelation measurement to determine
time zero as well as the pulse duration. The autocorre-
lation trace is shown in Fig. 5(a). The extracted pulse
duration (full width at half-maximum) is 100 fs, corre-
sponding to a pulse-width parameter of 86.6 fs for a
Gaussian pulse. The spectrum of the laser pulse was
measured with a spectrometer system and is shown in
Fig. 5(b). Assuming a linearly chirped Gaussian pulse,
the chirp parameter is calculated to be 1.0 3 1026 s22.
We measured the power density of the pump pulse at the
sample by scanning a 5 mm-diameter pinhole across the
focal spot of the pump beam. The beam waist diameters
at the focal point were 78 and 108 mm along x and y axes,
respectively, of the beam’s cross section. Assuming a
Gaussian beam, the corresponding confocal parameters
are 12 and 23 mm, respectively. The peak pump power
density at the beam waist was estimated to be
;1012 W/m2. Because the pump and probe beams inter-
sect at the sample with a crossing angle of ;2.5°, the ac-
tual power density may be different from this value. Fi-
nally, we fitted the nonlinear transmittance transients of
the probe beam at several frequency detunings by a non-
linear least-squares fitting program (Origin 5.0, Microcal)
to extract the induced phase shift as well as the linear
chirp in the laser pulses.

To measure the complex time-varying electric field E(t)
we installed a SHG FROG setup to perform the measure-
ments. The setup is similar to the one used by Taft
et al.5 A 200 mm type I KDP frequency-doubling crystal
was chosen to minimize the GVD. Its corresponding
phase-matching bandwidth was calculated to be ;60 nm,
which should provide enough bandwidth for the SHG pro-

Fig. 4. Experimental layout for the transient nonlinear trans-
mittance measurements. Mirrors M1–M7 are Ag coated. BS,
beam splitter (reflection/transmission, 90/10); CH, chopper; L,
plano–convex lens (f 5 11.4 cm); S, sample; PD, photodiode de-
tector; PMT, photomultiplier tube.
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cess. Furthermore, except for the 50/50 beam splitter of
femtosecond laser pulses, all the optics are Ag-coated mir-
rors to prevent any residual dispersion effect. The cross-
ing angle at the crystal between the two beams was cho-
sen to be ;3° to minimize the time-delay error that was
due to the noncollinear overlap between the pump and
the probe pulses. The output SHG signal was then dis-
persed by a spectrometer (270M, ISA) and detected by a
photodiode array. The spectrometer system monitored
the SHG spectrum as a function of the time delay be-
tween the two beams, leading to a FROG trace. The
FROG trace was measured with a time step of 6.6 fs and
a spectral resolution of 0.1 nm and was subsequently ana-
lyzed with a phase-retrieval program (FROG 2.0, Fem-
tosoft Technologies).

5. RESULTS AND DISCUSSION
A. Model System: Fused Silica
Fused silica is an ideal optical material for many applica-
tions. Many of its linear optical properties are well char-
acterized and documented. Fused silica has commonly
been used as a window material for high-power lasers and
is the basic material for soliton-based long-haul fiber op-
tical communication, which relies on its third-order opti-
cal nonlinearity. The nonlinear refractive index of fused
silica has been determined by many research groups and
has recently been reviewed.6 We thus use this material

Fig. 5. Autocorrelation trace and spectrum of the femtosecond
laser pulses at the output of the mode-locked Ti:sapphire oscilla-
tor. Solid curves, Gaussian fitting curves. The fitted pulse-
width parameter is t, and the full width at half-maximum
DfFWHM of the laser spectrum in frequency is shown (DlFWHM
5 11.5 nm).
as our model system to check the validity of our linear
chirp model and to help us to understand the effects of
higher-order chirps.

Figure 6 shows the normalized transmittance transient
on the 2-mm fused-silica sample for femtosecond laser
pulses at two detection wavelengths (781.5 and 806.5
nm). The purpose for performing measurements at these
two wavelengths was to demonstrate the difference in the
transients caused by the chirp and to check the validity of
the linear chirp model at different frequency detunings.
To compare these experimental data with the simulation
results based on the complete-chirp model we extracted
the electric-field amplitude and phase of the laser pulses
from the SHG FROG trace. Figure 7 shows the FROG
spectrogram and the corresponding intensity and phase.
Figure 8 shows the corresponding simulation results with
comparable laser and material parameters, except that
the complete phase obtained from the FROG measure-
ment was used in the calculation.7 As Figs. 6 and 8
show, at each detection wavelength the experimental and
simulation transients have nearly the same major fea-
tures, with only slight differences. This result demon-
strates that the theoretical calculation with the complete
chirp can reproduce the experimental results; it has thus
been proved to be a helpful tool for studying the two-beam
coupling process.8

We performed the fitting with the linear chirp model on
both the experimental and the simulation results (Figs. 6
and 8), with all the parameters independently optimized.
The corresponding fitted results are listed in Tables 1 and
2. Because the bandgap for fused silica (.4.4 eV) is more
than twice the photon energy of the laser pulses (1.55 eV),

Fig. 6. Normalized nonlinear transmittance signals obtained
for 2-mm-thick fused silica at two detection wavelengths. Open
circles, experimental data; solid curves, best-fitting curves with
the linear-chirp model. Their fitted results are listed in Table 1.
Dashed curves, fitting curves for the chirp-free model.



658 J. Opt. Soc. Am. B/Vol. 16, No. 4 /April 1999 Wang et al.
Fig. 7. Intensity and phase data of the laser pulses extracted
from the SHG FROG spectrograms. (a) FROG spectrogram, (b)
corresponding intensity I(t) and phase f(t). Filled circles, in-
tensity data; open squares, phase data. Solid curve, the best
Gaussian fit to the intensity. The fitted pulse-width parameter
is 84.2 fs.

Fig. 8. Simulated results for the normalized nonlinear trans-
mittance measurements at two detection wavelengths. The
chirp was obtained by the FROG trace (described in text). Open
circles, simulation data; solid curves, the fitting curves with the
linear-chirp model. Fitting results are listed in Table 2.
the two-photon absorption effect was then neglected in
the fitting. For the two detection wavelengths, both the
time zero positions and the pulse-width parameters t ob-
tained were all within a variation of 610 fs imposed by
the error in the computer-controlled translation stage.
We also performed the fitting with the chirp-free model
[Eq. (5)] at the two frequency detunings (as shown in Fig.
6). For the detected probe wavelength at 781.5 nm, the
extracted DF is 5.7 3 1024 rad and x2 is 4.2 3 1028; for
806.5 nm, the extracted DF is 4.9 3 1024 rad and x2 is
9.6 3 1028. Notice that neither of the fittings is satisfac-
tory and that the extracted DF values differ from those
obtained with the linear-chirp model. The extracted lin-
ear chirp values, however, differ by .50% for the experi-
mental results and by ,20% for the simulation results.
This result can be explained by the fact that the higher-
order chirps are not considered in the linear-chirp model.
The fitted linear chirp b can then be understood as an ef-
fective linear chirp under the influence of other higher-
order chirps. This is why the fitted b varies for the two
different detection wavelengths. Finally, the deduced
phase shift, DF, varies less 20% for the two frequency de-
tunings, indicating that n2

I extracted by this method may
cause only a small amount of error.

To extract the nonlinear optical constants from DF and
q one has to determine the interaction length L accu-

Table 1. Results Obtained by Fitting the
Experimental Data on 2-mm Fused Silica

with the Linear-Chirp Modela

Parameter

Detection Wavelength (nm)

781.5 806.5

DF (1023 rad) 0.62 6 0.04 0.52 6 0.03
b (1025 s22) 3.6 6 0.3 5.7 6 0.4
d (1013 s21) 3.61 6 0.03 (3.538) 24.26 6 0.03 (24.017)
t (fs) 84.0 6 1.1 83.6 6 0.9
t0 (fs) 6.9 6 1.3 0.9 6 1.5
x2 (1028) 2.63 3.4

a DF is the phase shift, b is the linear chirp, d is the frequency detuning,
t is the pulse-width parameter, t0 is the time shift, and x2 is the fitting
error. The numbers in parentheses are the measured values.

Table 2. Results Obtained by Fitting
the Simulated Transients

at Two Frequency Detuningsa

Parameter

Detection Wavelength (nm)

781.61 806.43

DF (1023 rad) 0.584 6 0.004 0.620 6 0.004
b (1025 s22) 5.74 6 0.04 7.30 6 0.05
d (1013 s21) 3.655 6 0.003 (3.462) 24.140 6 0.004 (23.956)
t (fs) 88.2 6 0.1 86.9 6 0.1
t0 (fs) 8.2 6 0.2 20.2 6 0.2
x2 (10210) 1.58 2.78

a DF is the phase shift, b is the linear chirp, d is the frequency detuning,
t is the pulse-width parameter, t0 is the time zero, and x2 is the fitting
error. The numbers in parentheses are the values used in the calcula-
tion.
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rately. It may not be the same as the sample thickness
and depends on the crossing angle between the pump and
the probe beams. Because the confocal parameters for
the x and the y axes are 12 and 23 mm, respectively,
which are much longer than the thickness of our samples,
the divergence of the laser beam can be ignored. Because
the phase induced by the pump pulse is very small
(,1023 rad) here, the change in the beam propagation
properties of the pump and probe beams is then negli-
gible. We can approximate the crossing between two
Gaussian beams,

I~x, y ! 5 I0 exp~2x2/sx
2!exp~2y2/sy

2!,

as the crossing between two flat-topped beams with beam
diameters equal to 2sx in the x direction and to 2sy in the
y direction. We therefore ignore the effect of the radius
dependence of the laser intensity across the beam profile.
Along the direction between the propagation directions of
the two beams (z axis), the overlap cross-section area of
the two beams can be written as A(z). The effective in-
duced phase shift at a z position for a sample thickness of
dz is then given by

Df~z ! 5 2
v0

c
n2

I
A~z !

A0
Ipu

0dz, (19)

where A0 is the maximum overlap area. The total in-
duced phase shift is thus the integration over the whole
interaction region, i.e.,

Dftotal 5 2
v0

cA0
n2

IIpu
0E

z02L/2

z01L/2

A~z !dz, (20)

where z0 is the middle position of the sample. The inte-
gration in Eq. (19) is effectively equal to the total inter-
section volume between the two laser beams. This vol-
ume divided by the cross-section area of the laser beam at
the focal point is then equal to the effective interaction
length. Its calculated value is 0.76 mm for our experi-
mental setup. Thus for our fused-silica sample the ac-
tual interaction length should be equal to 0.76 mm in-
stead of to the sample thickness. Similarly, in extracting
the two-photon absorption coefficient one should also ap-
ply the same considerations.

Because the only material parameter that influences
the normalized transmittance transient in the two-beam
coupling measurement is n2

I, fused silica can be used as a
reference material for extraction of the nonlinear refrac-
tive indices of other materials. During the experiment
one can a first measure the transmittance transient data
by using a fused-silica sample with a well-defined thick-
ness. With the same experimental setup, the new
sample can then be inserted into the same sample posi-
tion for the measurement. The two measured transients
should be identical. After the ratio of the pump laser
powers inside the two samples is taken into account, the
ratio between their nonlinear refractive indices can then
be determined by the ratio in their nonlinear transmit-
tance data.

FROG was recently used successfully for extraction of
n2

I in several optical materials. In a single-beam experi-
ment the phase difference Df(t) caused by self-phase
modulation was calculated by extraction of the electric-
field phase before and after it interacted with the
sample.9 In a pump–probe experiment, Df(t) caused by
cross-phase modulation from the pump pulse was derived
by extraction of the electric-field phase of the probe pulse
with and without interaction with the pump pulse in the
sample.10 This use of FROG to measure the phase
change, however, has two limitations. First, it requires a
higher laser power density (.1013 W/m2) to induce
enough phase difference (.1022 rad) for complete phase
retrieval. In comparison, the transient nonlinear trans-
mittance technique described in this paper can reach a
sensitivity of ,1026 rad with a power density of only
,109 W/m2. Second, applying the phase retrieval algo-
rithm in calculating the complete phase permits no two-
photon absorption effect in the nonlinear interaction be-
tween the laser pulse and the material. Thus the use of
this technique is restricted to media with large energy
bandgaps, such as fused silica and wide-bandgap semi-
conductors. The transient nonlinear transmittance tech-
nique, however, has the capability to extract n2

I and b si-
multaneously, as we demonstrate below.

B. n2
I and b of Semiconductor-Doped Glasses

To illustrate their capability to measure two-photon ab-
sorption coefficient b, we selected two kinds of
semiconductor-doped glass (OG550 and RG610) with
which to perform the experiment. Semiconductor-doped
glasses are manufactured by addition of the semiconduc-
tor constituents or their oxides to the silicate glass melt.11

In the cooling stage, the semiconductor material is then
precipitated into nanocrystals. The electronic levels of
these semiconductor nanocrystals are affected by their
size because of the quantum-confined effect.12 One can
thus finely adjust the optical properties by varying the
sizes of these nanocrystals during the growth process.
These semiconductor-doped glasses are commonly used as
colored glass filters and also have many potential nonlin-
ear optical applications. Tuning the electronic states of
the embedded nanocrystals close to the resonant condi-
tion can thus enhance the third-order optical nonlineari-
ties by many orders of magnitude.

The doping semiconductor material for OG550 and
RG610 is CdSxSe12x . The difference between these ma-
terials lies in the average radius of the precipitated
nanocrystals. The one-photon absorption threshold of
OG550 is 2.25 eV, and that of RG610 is 2.03 eV.13 With
the laser wavelength at ;800 nm (1.55 eV), the two-
photon absorption effect is then involved in the two-beam
coupling measurement. The samples can then be used as
the testing materials for the measurement. The thick-
ness of both samples is 3 mm. Figure 9 shows the experi-
mental results for RG610 at 781.5 nm. The results fitted
with the linear-chirp model are listed in Table 3. To ex-
tract n2

I and b accurately we performed the experiment
on fused silica at the same time. The ratio value of the
fitted phase shift in RG610 and the corresponding one in
fused silica is 2.425. The interaction length of 0.76 mm
was then used in the calculation. The resultant n2

I is
equal to 5.8 3 10220 m2/W, which is comparable with the
previously published result at 1.064 mm (6.2
3 10220 m2/W).11,13 We used this number to obtain the
effective laser intensity Ipu 5 2.5 3 1012 W/m2 in the
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measurement. We could then obtain the two-photon ab-
sorption coefficient by dividing the fitted q value by the
effective pump intensity and the interaction length. The
resultant b is 3.2 3 10213 m/W, which is very close to the

Fig. 9. Normalized nonlinear transmittance signal obtained for
3-mm RG610 semiconductor-doped glass at 781.5 nm. Open
circles, experimental data; solid curve, fitting curve with the
linear-chirp model. Fitting results are listed in Table 3.

Fig. 10. Normalized nonlinear transmittance signal obtained
for 3-mm OG550 semiconductor-doped glass at 781.5 nm. Open
circles, experimental data; solid curve, fitting curves with the
linear-chirp model. Fitting results are listed in Table 3.

Table 3. Results Obtained by Fitting the Experi-
mental data at 781.5 nm on 3-mm Semiconductor-

Doped Glasses with the Linear-Chirp Modela

Parameter

Glass

RG610 OG550

DF (1023 rad) 0.88 6 0.02 1.22 6 0.03
q (1023) 0.61 6 0.01 1.22 6 0.01
b (1025 s22) 5.05 6 0.09 4.56 6 0.08
d (1013 s21) 3.73 6 0.01 (3.538) 3.45 6 0.01 (3.538)
t (fs) 91.4 6 0.3 91.7 6 0.4
x2 (1028) 0.68 0.86

a DF is the phase shift, b is the linear chirp, d is the frequency detuning,
t is the pulse-width parameter, and x2 is the fitting error. The numbers
in parentheses are the measured values.
reported value at the same wavelength (2.2
3 10213 m/W).11 The experimental results for OG550 at
781.5 nm are shown in Fig. 10. The corresponding fitted
results are shown in Table 3. From the same character-
ization approach, the extracted value of n2

I is 8.1
3 10220 m2/W, and the b value is 6.4 3 10213 m/W. We
believe that this is the first time that the two nonlinear
optical constants of the OG550 glass have been measured.

6. CONCLUSIONS
The nonlinear transient transmittance measurement
with femtosecond laser pulses is a highly sensitive
method for extracting the nonlinear optical constants n2

I

and b. The chirp-free model has provided a convenient
formula to explain the transient features measured by
transform-limited femtosecond laser pulses. The com-
monly found chirp in ultrashort laser pulses has, how-
ever, inhibited the use of chirped laser pulses in measur-
ing n2

I and b based on the chirp-free model. We have
derived a generalized model to explain analytically the
transient behavior observed in linearly chirped femtosec-
ond laser pulses. This linear-chirp model has thus suc-
cessfully provided an intuitive language for understand-
ing the major effects caused by the linear chirp embedded
in ultrashort laser pulses. The analytical formula thus
derived can be regarded as the product of two parts: the
envelope function and the modulation function. The en-
velope function is a Gaussian function with a time shift
that depends on the linear chirp parameter. Further-
more, the modulation function can be understood as a
nonlinear phase interference caused by the linear chirp.

We have performed two-beam coupling experiments,
using chirped femtosecond laser pulses on fused silica.
The experimental data can be well fitted by the linear-
chirp model. The complete intensity and phase informa-
tion obtained from the FROG measurement was used to
simulate the transient transmittance signals. The close
match between the experimental and simulation results
has confirmed that our simulation based on the complete-
chirp model can reproduce the experimental results. We
also performed nonlinear transient transmittance mea-
surements of semiconductor-doped glasses to extract their
nonlinear optical constants. We used the experimental
result for fused silica as a reference system to determine
these constants accurately.

Finally, based on our linear-chirp model, the two-beam
coupling method can potentially serve as a monitoring
system to measure the linear chirp embedded in the out-
put of ultrafast laser systems. This technique is much
simpler than other, more-complex phase retrieval tech-
niques, such as FROG, because it does not involve elon-
gated calculation and the experimental setup is much
simpler. Therefore our new technique not only provides
a new method for measuring nonlinear optical constants
by use of chirped laser pulses but also offers a new tool for
monitoring chirp. The chirp in the laser pulses can eas-
ily be reflected in the asymmetrical feature in the nonlin-
ear transmittance transient. A real-time monitoring ap-
paratus that uses the spectrally resolved two-beam
coupling method would therefore provide a convenient
tool for adjusting the dispersion-compensation element in
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femtosecond laser systems (such as the prism position for
mode-locked oscillators and the grating separation in the
compressor of ultrafast regenerative amplifiers). We in-
tend to implement this technique to retrieve and monitor
chirp in real time at the output of a femtosecond laser sys-
tem.
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