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Abstract

As Taiwan became a member of the WTO, the positive of the regulatory agencies
toward the financial markets is more proactive. Through efficient management, the
government is open to creating new market. This sets in motion the acceleration
of internationalization. More financial derivatives which provide the necessary risk-
management tools are expected in the future. In the environment with diverse arrays
of derivatives, the crucial issue is how to price them accurately and efficiently.

Under the assumption of perfect market, this thesis proposes a novel systematic
approach to deal with the pricing problem of complex path-dependent derivatives.
By this method, not only the pricing formula be derived for these derivatives, but
pricing can also be programmed. Besides European-style vanilla options, this thesis
investigates reset options, compounded options, rainbow options, etc. After success-
fully establishing pricing formulas for the above-mentioned options, we are convinced
of the generality and the power of our approach.

Furthermore, we compare our formula for the European-style geometric average
reset option and the one published in Journal of Derivatives by Cheng and Zhang
with Monte Carlo simulation. We find the significant difference between the Monte
Carlo result and the claim of Cheng and Zhang. Therefore their formula is incorrect.
Finally, important theoretical properties of this option is proved by Brownian bridge
in this thesis.
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Chapter 1

Introduction

1.1 Research Motivations

Recently, large volumes of trading on financial derivatives and contingent claims have
been witnessed in financial markets all over the world. These derivatives are invented
by the decomposition and synthesis of some basic financial tools, such as options and
futures, combined with some property such as the reset property. Actually, these
financial innovations result in new problems concerning pricing and hedging. These
problems will become more and more complex in the future as the investors in the
financial markets need a variety of derivatives to fit their cash flows and hedge their
positions. Knowledge of computer and mathematics plays a more and more important
role in financial engineering field.

1.2 Solutions to Varieties of Options

A call option holder has the right to buy a stock at a prespecified strike price at matu-
rity. However, investors always want to buy the option at a fair price. Consequently,
there are different kinds of path-dependent options that allow the exercise price to
change. The reset option is typical one of the considerations. For the simplest reset
option, on prespecified date, the original strike price will be reset to the prevailing
stock price if the reset option is out of the money. There still exist a variety of reset
properties: full or partial period reset, continuous or discrete monitoring, single or
multiple reset barriers, single or average stock price reset, etc. Average reset can be
classified as arithmetic average or geometric average and, on one hand, as moving-
window average or cumulative average on each other. The reset feature has been
applied to the financial derivatives for many years. In the end of 1996, the NYSE
and CBOE started to trade the S&P 500 index bear-market warrants with the fol-
lowing reset specification: In three months, if the bear-market warrant is out of the
money, the strike price will be reset upward once automatically. In 1997, Taiwan’s
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Introduction 2

Stock Exchange began to trade the reset call warrant. For example, the Bloomberg
0522TT has the following covenants: the strike price (initial=$57.25) will be reset to
$52.65 if the six-day average price of 2323TT falls below $52.65 any time during the
first three months after the issuing of warrant. At the same time, Morgan Stanley
issued a warrant on the Hong Kong Stock with the reset feature. In Taiwan and
Japan, resettable convertible bonds are very popular among the convertible arbitrage
traders as well.

Payoff($)


Terminal  Stock

Price($)


0

K


Figure 1.1: Call Option.

Payoff($)
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Figure 1.2: Put Option.

1.3 Research Structure

The main topic is a systematic approach in deriving the prices of derivatives. In
Chapter 2, we review the assumptions in pricing and introduce our approach. Some
examples are also presented in this chapter. Next, we focus on the geometric average
reset options in Chapter 3. The formula of geometric average multi-reset option also
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can be derived by the approach and find some properties of this option. We price
the quanto option, compound option and rainbow option using the same approach as
interesting applications. Finally, we make some conclusions in Chapter 5.



Chapter 2

A General Analytic Pricing
Formula

2.1 Brownian Motion

Brownian motion is a useful model in pricing derivatives. It has many properties. One
of them is the Markov property. The Markov property implies that the probability
distribution of the asset price at any future particular time does not depend on the
history. Before Brownian motion is mentioned, we introduce the Winner process first.

Definition 2.1.1
A Wiener process W (t) = (W1(t),W2(t), . . . ,Wn(t)) in n dimensions is a stochastic

process with following properties:

1. The path begins with 0 at t = 0, and W (t) is continuous with respect to t.

2. For 0 ≤ s < t, W (t) − W (s) has a stationary independent increment.

3. For 0 ≤ s < t, W (t)−W (s) follows distribution N(0, (t− s)In), where In is the

n × n identity matrix.

The process in each dimension of the Wiener process in n dimension is not only a
Wiener process in 1 dimension but although independent of the processes of other
dimensions. That means the distribution of each component conditional on history
is a standard normal distribution.

Definition 2.1.2
A (µ, σ) Brownian motion B(t) = (B1(t), B2(t), . . . , Bn(t)) in n dimensions is a

stochastic process with following properties:

1. The path with 0 at t = 0, and B(t) is continuous with respect to t.

2. For 0 ≤ s < t, B(t) − B(s) has a stationary independent increment.

4



A General Analytic Pricing Formula 5

3. For 0 ≤ s < t, B(t)−B(s) follows distribution N((t− s)µ, (t− s)Σ), where µ is

the drift vector denoted as (µ1, µ2, . . . , µn), and Σ = (Σi,j) is the volatility matrix

denoted as Σi,j = ρi,jσiσj, where σk is the volatility of Bk(t), (k = 1, 2, . . . , n),
and ρi,j = ρj,i is the correlation coefficient between Bi(t) and Bj(t).

If the Brownian motion is not degenerate, then det Σ 6= 0. Besides, Σ is symmetric
and positive definition so we can find a unique n×n matrix σ such that Σ = σσ∗ and
det σ 6= 0, where the superscript ∗ denotes the transpose of a matrix. The matrix
σ = (σi,j) is called the diffusion matrix, and σi,j is the diffusion of Bi(t) with respect
to Wj(t). The diffusion matrix σ can be viewed as a linear transformation from Rn

to Rn and the transformation is 1-1. The process can be written in matrix as follows:








B1(t)
B2(t)

...
Bn(t)








=








µ1

µ2
...

µn








t +








σ1,1 σ1,2 . . . σ1,n

σ2,1 σ2,2 . . . σ2,n
...

...
. . .

...
σn,1 σn,2 . . . σn,n















W1(t)
W2(t)

...
Wn(t)








From the above equation, the relationship between σi and σi,j is

σi =
√∑n

j=1 σ2
i,j

ρi,j =
n∑

k=1

σi,kσj,k

σiσj

Another important topic is the joint p.d.f. of Brownian motion at times t1,t2,. . . ,tn.
The theorem below can be derived easily since the p.d.f. of the n-dimension normal
distribution is

f(x) =
1

(
√

2π)n(det Σ)
1
2

e−[(x−µ)Σ−1(x−µ)∗]/2.

In the above equation, x = (x1, x2, . . . , xn) is a vector; µ is the mean vector, and Σ is
the covariance matrix.

Theorem 2.1.3 The joint probability density function of the (µ, σ) Brownian motion

B(t), f(B(t1), B(t2), . . . , , B(tn)), in n dimensions at time t1,t2,. . . ,tm, where 0 =
t0 < t1 < t2 < . . . < tm, is

f(B(t1), B(t2), . . . , B(tn))

=
m∏

i=1

(

e−{[B(ti)−B(ti−1)−µ(ti−ti−1)][(ti−ti−1)Σ]−1[B(ti)−B(ti−1)−µ(ti−ti−1)]
∗}/2

(
√

2π)n {det [(ti − ti−1)Σ]}
1
2

)i
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2.2 Behavior of Asset Prices

Suppose there are n assets (stock price or foreign exchange ratio, for example) in the
world and Ai(t) is the ith asset price at time t. Define asset price vector A(t), with
assets’ prices at time t included, is a column vector. In matrix notation, A(t) can be
written as

A(t) =








A1(t)
A2(t)

...
An(t)








.

Assume the process of each asset price in the world follows geometric Brownian mo-
tion. It means that the asset price vector satisfies

A(t) =








A1(t)
A2(t)

...
An(t)








=








A1(0) eB1(t)

A2(0) eB2(t)

...
An(0) eBn(t)








for some Brownian motion B∗(t) = (B1(t), B2(t), . . . , Bn(t)). The stochastic process
can be expressd in some Wiener process as








ln(A1(t)/A1(0))
ln(A2(t)/A2(0))

...
ln(An(t)/An(0))








=








B1(t)
B2(t)

...
Bn(t)








=








µ1

µ2
...

µn








t+








σ1,1 σ1,2 . . . σ1,n

σ2,1 σ2,2 . . . σ2,n
...

...
. . .

...
σn,1 σn,2 . . . σn,n















W1(t)
W2(t)

...
Wn(t)








.

It also can be written in differential form by Itô’s lemma:

dA(t) =








A1(t)(µ1 + σ2
1/2)

A2(t)(µ2 + σ2
2/2)

...
An(t)(µn + σ2

n/2)








dt +








A1(t)σ1,1 A1(t)σ1,2 . . . A1(t)σ1,n

A2(t)σ2,1 A2(t)σ2,2 . . . A2(t)σ2,n
...

...
. . .

...
An(t)σn,1 An(t)σn,2 . . . An(t)σn,n








dW (t).

In the risk-neutral world, people only care about the expected return rate rather than
what the risk is and how much the risk is. Moreover, there is absence of arbitrage
in efficient market. So the expected return rate must be equal to r where r is the
risk-free interest rate. Thus,

(µ1, µ2, . . . , µn) = (r − σ2
1/2, r − σ2

2/2, . . . , r − σ2
n/2)
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2.3 A Systematic Approach to Pricing

Now, we present a general analytic pricing approach for pricing a large class of op-
tions. The systematic approach applies when the payoff of a derivative is a linear
combination of ebX∗

1{X∈A}, where b is a given m-dimensional row vector, X is the
m-dimensional normal distribution, and A is a given subspace of Rm. The payoff of
many sophisticated derivatives can be expressed as a linear combination of the form
ebX∗

1{X∈A}. Therefore, they can be all priced by our approach. This approach takes
two steps:

• completing the squares, and

• change of random variables.

The first step makes the expected value E(ebX∗
1{X∈A}) the probability of another

random variable with the m-dimensional normal distribution in A multiplied by an
adjustment. The second step makes the probability of a random variable with m-
dimensional normal distribution in A be the CDF, N(·, Σ), of m-dimensional normal
distribution with mean 0 and covariance matrix Σ.

Completing the Squares

As mentioned above, X has m-dimensional normal distribution. Let µ and Σ (det Σ 6=
0) be the mean vector and the covariance matrix of X, respectively. By the definition,
the expected value of E(ebX∗

1{X∈A}) can be written as

∫

A

ebx∗ 1

(
√

2π)m(detΣ)
1
2

e−[(x−µ)Σ−1(x−µ)∗]/2dx

=

∫

A

1

(
√

2π)m(detΣ)
1
2

ebx∗−[(x−µ)Σ−1(x−µ)∗]/2dx. (2.1)

To achieve the goal, we complete the squares in the index of the exponent in (2.1).
The trick is to define a = bΣ. Then b = aΣ−1. Therefore, the index of the exponent
equals

bx∗ −
[
(x − µ)Σ−1(x − µ)∗

]
/2

= −[(x − µ)Σ−1(x − µ)∗ − 2bx∗]/2

= −[xΣ−1x∗ − xΣ−1µ∗ − µΣ−1x∗ + µΣ−1µ∗ − 2aΣ−1x∗]/2

= −[xΣ−1x∗ − (µ + a)Σ−1x∗ − xΣ−1(µ + a)∗ + µΣ−1µ∗]/2

= −[(x − (µ + a))Σ−1(x − (µ + a))∗ + µΣ−1µ∗ − (µ + a)Σ−1(µ + a)∗]/2

= −[(x − (µ + a))Σ−1(x − (µ + a))∗ + µΣ−1µ∗ − 2µΣ−1a)∗ − aΣ−1a∗]/2

= µΣ−1a∗ + aΣ−1a∗/2 − [(x − (µ + a))Σ−1(x − (µ + a))∗]/2

= bµ∗ + bΣb∗/2 − [(x − (µ + a))Σ−1(x − (µ + a))∗]/2.
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Because aΣ−1x∗ and µΣ−1a∗ are numbers. We reduce that aΣ−1x∗ = xΣ−1a∗ and
µΣ−1a∗ = aΣ−1µ∗. As a result, (2.1) can be rewritten as

ebµ∗+bΣb∗/2

∫

A

1

(
√

2π)m(detΣ)
1
2

e−[(x−(µ+bΣ))Σ−1(x−(µ+bΣ))∗]/2dx.

The adjustment factor is eµb∗+bΣb∗/2. The resulting is random variable X ′ has an
m-dimensional normal distribution N(µ + bΣ, Σ) over A. Interestingly, bµ∗ and bΣb∗

are the mean and the variance of bX∗. Hence

E(ebX∗
) = ebµ∗+bΣb∗/2 = eE(bX∗)+Var(bX∗)/2.

If X(t) is a (µ, Σ) Brownian motion, then the the adjustment is the expected value
of geometric Brownian motion ebX∗(t). We summarize our result below.

Theorem 2.3.1 Let X be an m-dimensional normal distribution random variable

with mean vector µ and covariance matrix Σ. Then

E(ebX∗
1{X∈A}) = E(ebX∗

)

∫

A

1

(
√

2π)m(detΣ)
1
2

e−[(x−(µ+bΣ))Σ−1(x−(µ+bΣ))∗]/2dx. (2.2)

The right-hand side of (2.2) is called the completed-square form.

Change of Random Variables

Theorem 2.3.1 reduces the problem of evaluating E(ebX∗
1{X∈A}) to a multiple inte-

gration of a multi-dimensional normal distribution on the same area A. However, the
area of A is usually a non-orthogonal polyhedron, making it to calculate the integra-
tion. By change of random variables, the area A can be mapped into a rectangular
area A′. Suppose Y ∗ = CX∗ and C 6= 0. Then,

ebµ∗+bΣb∗/2

∫

A

1

(
√

2π)m(detΣ)
1
2

e −[(x−(µ+bΣ))Σ−1(x−(µ+bΣ))∗]/2dx

= ebµ∗+bΣb∗/2

∫

A

1

(
√

2π)m(detΣ)
1
2

e −[(x−(µ+bΣ))C∗(C∗)−1Σ−1C−1C(x−(µ+bΣ))∗]/2dx

= ebµ∗+bΣb∗/2

∫

A

1

(
√

2π)m(detΣ)
1
2

e −[(xC∗−(µ+bΣ)C∗)(C∗)−1Σ−1C−1(xC∗−(µ+bΣ)C∗)∗]/2dx

= ebµ∗+bΣb∗/2

∫

A′

1

(
√

2π)m(detΣ)
1
2

e −[(y−(µ+bΣ)C∗)(CΣC∗)−1(y−(µ+bΣ)C∗)∗]/2

∣
∣
∣
∣

dx

dy

∣
∣
∣
∣
dy

= ebµ∗+bΣb∗/2

∫

A′

1

(
√

2π)m(detΣ′)
1
2

e −[(y−(µ+bΣ)C∗)Σ
′−1(y−(µ+bΣ)C∗)∗]/2dy,

where Σ
′
= CΣC∗. In fact, the above equation applies for any linear transformation

C, which detΣ 6= 0. We usually find a linear transformation C which satisfies the two
requirements:

1. A′ is a rectangle [−∞, d1] × [−∞, d2] × · · · × [−∞, dn].
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2. The variance of each components of Y is 1.

Then, above equation becomes

N(d − (µ + bΣ)C∗, Σ′),

where d = (d1, d2, · · · , dn).

2.4 A Simple Application

The pricing formula for some basic derivatives, like the Black-Scholes formula for
vanilla call options, can be derived easily by the systematic approach. The current
price of underlying asset is S(0) and its volatility is σ. Consider a vanilla call option
on the underlying asset with strike price K and time to maturity T . Assume the risk-
free interest rate is r. The payoff of the vanilla call option is max{S(T ) − K, 0} or
written as (S(T )−K)+. The call option value is the expected payoff multiplied by the
discount factor, so the price of call option can be expressed by a linear combination
of the form E(ebX∗1{X∈A}) as follows:

E
[
(S(T ) − K)+

]

= E
[
(S(T ) − K)1{S(T )>K}

]

= E
[
S(T )1{S(T )>K}

]
− E

[
K1{S(T )>K}

]

= S(0)E
[
(S(T )/S(0))1{(S(T )/S(0))>K/S(0)}

]
− KE

[
1{(S(T )/S(0))>K/S(0)}

]

Since S(t)/S(0) is a geometric Brownian motion in a risk-neutral world,

S(t)/S(0) = eX(t) = e(r−σ2/2)t+σW (t)

Then X(T ) = ln(S(T )/S(0)) has normal distribution with mean (r − σ2/2)T and
variance σ2T . Therefore,

A = {X(T )|eX(T ) ≥ (K/S(0))} = {X(T )|X(T ) ≥ ln(K/S(0))}.

The price of the vanilla call equals

e−rT E(S(T ) − K)+ = e−rT S(0)E(eX(T )1{X(T )∈A}) − e−rT KE(1{X(T )∈A}). (2.3)

Since X(T ) is one-dimensional, bX∗(T ) = bX(T ). The right-hand side of (2.3) can
be evaluated by applying Theorem 2.3.1 as follows:

e−rT S(0)E(eX(T )1{X(T )∈A}) − e−rT KE(1{X(T )∈A})

= e−rT S(0)erT

∫

A

1√
2πσ

√
T

e−
[x−(r+σ2/2)T ]

2

2σ2T dx − e−rT K

∫

A

1√
2πσ

√
T

e−
[x−(r−σ2/2)T ]

2

2σ2T dx

= S(0)

∫ ∞

ln(K/S(0))

1√
2πσ

√
T

e−
[x−(r+σ2/2)T ]

2

2σ2T dx − e−rT K

∫ ∞

ln(K/S(0))

1√
2πσ

√
T

e−
[x−(r−σ2/2)T ]

2

2σ2T dx
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Let Y = −X/
√

Var(X) = −X/(σ
√

T ), which is a linear transformation. Apply
the change of random variables in the first term. Then, the right hand side of (2.3)
becomes

S(0)

∫ ln(S(0)/K)

σ
√

T

−∞

1√
2π

e
−

[

y+
(r+σ2/2)T

σ
√

T

]2

/2
dy − e−rT K

∫ ln(S(0)/K)

σ
√

T

−∞

1√
2π

e
−

[

y+
(r−σ2/2)T

σ
√

T

]2

/2
dy

= S(0)N

(
ln(S(0)/K) + (r + σ2/2)T

σ
√

T

)

− e−rT KN

(
ln(S(0)/K) + (r − σ2/2)T

σ
√

T

)

,

where N(·) denotes the CDF of the standard normal distribution. This is the cele-
brated Black-Scholes formula, as desired.



Chapter 3

Pricing of Geometric Average
Reset Options

3.1 The Geometric Average Reset Option

Geometric average reset options are reset options whose strike price can be reset to
the geometric average price of underlying asset over a monitoring interval. Suppose
S(t) is the underlying asset price and the current price is S(0). Consider a general
reset option with m reset dates: 0 ≤ t1 < t2 < . . . < tm−1 < tm ≤ T . Assume
the m monitoring intervals are [t1 − `1, t1], [t2 − `2, t2], · · · , [tm − `m, tm], where `i

denotes the length of the ith monitoring interval. Define avgG(ti) as the geometric
average price of the underlying asset during the ith monitoring interval. Let K(t) be
the strike price prevailing at time t and set K(0) as K, the original strike price. The
reset procedure at time ti is:

K(ti) =

{
K(ti−1), if avgG(ti) ≥ K(ti−1)
avgG(ti), if avgG(ti) < K(ti−1)

The payoff of the call is max{S(T ) − K(T ), 0}. Obviously,

K(T ) = min{K, avgG(t1), avgG(t2), · · · , avgG(tm)}.

Similarly, the reset procedure for the put is

K(ti) =

{
K(ti−1), if avgG(ti) ≤ K(ti−1)
avgG(ti), if avgG(ti) > K(ti−1)

and the payoff of the put is max{K(T ) − S(T ), 0}. Obviously,

K(T ) = max{K, avgG(t1), avgG(t2), · · · , avgG(tm)}.

11
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3.2 Analytic Formula for Geometric Average Re-

set Options

Assume the volatility of the underlying asset is σ and the risk-free interest rate is r.
We also assume that the monitoring intervals are disjoint to simplify the presentation.
To price the geometric average reset call option with m monitoring intervals, define
a row vector X = (X1, X2, X3 . . . Xm+1), where Xi = ln(avgG(ti)/S(0)), for i =
1, 2, . . . ,m, and Xm+1 = ln(S(T )/S(0)). Obviously, X has a (m + 1)-dimensional
normal distribution with mean µ and covariance matrix Σ. In the risk-neutral world,
µ and each element Σ(i, j) in Σ can be expressed as follows1:

µ =
[
(r − σ2/2)(t1 − `1/2), . . . , (r − σ2/2)(tm − `m/2), (r − σ2/2)T

]

and
Σ(i, i) = σ2(ti − 2`i/3) if 1 ≤ i ≤ m

Σ(i, j) = Σ(j, i) = σ2(ti − `i/2) if 1 ≤ i < j ≤ m + 1
Σ(m + 1,m + 1) = σ2T

Then the payoff of the reset option can now be expressed in terms of ebX∗
1{X∈A}:

m∑

i=1

[(S(T ) − S(ti))
+ 1{K(tm)=S(ti)}] + (S(T ) − K)+1{K(tm)=K} (3.1)

=
m∑

i=1

[
S(0)ebm+1X∗

1{X∈Ai} − S(0)ebiX
∗
1{X∈Ai}

]

+S(0)ebm+1X∗
1{X∈Am+1} − K1{X∈Am+1},

where

bi = [

i−1
︷ ︸︸ ︷

0, . . . , 0, 1,

m+1−i
︷ ︸︸ ︷

0, . . . , 0,] for 1 ≤ i ≤ m + 1,
Ai = {X|K(T ) = S(0)eXi , S(T ) ≥ S(0)eXi} = {X|K(T ) = avg(ti), S(T ) ≥ avg(ti)},

for 1 ≤ i ≤ m and Am+1 = {X|K(T ) = K,S(T ) ≥ K}.
Consequently, each term in (3.1) can be reduced to a completed-square form. To

obtain an analytic formula, a linear transformation matrix C is needed to transform
the polyhedron into an rectangle like [−∞, d1]× [−∞, d2]×· · ·× [−∞, dm+1] in Rm+1.
There are two cases.

Case 1 : Area Ak (1 ≤ k ≤ m)
Each point X = (X1, . . . , Xm+1) in Ak should satisfy the following m + 1 in-
equalities:

Xk ≤ ln(K/S(0))
Xk − Xi ≤ 0 for 1 ≤ i ≤ m + 1 and i 6= k.

1see Kemna and Vorst [1990].
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Since Ak is not a rectangle, a linear transformation matrix Ck is needed to
convert the non-orthogonal polyhedron into a rectangle. Let

Yi =

{
Xk/

√

Var(Xk) for i = k

(Xk − Xi)/
√

Var(Xk − Xi) for 1 ≤ i ≤ m + 1 and i 6= k.

Equivalently,

Yi =

{
Xk/

√
Σk,k for i = k

(Xk − Xi)/
√

Σk,k + Σi,i − 2Σk,i for 1 ≤ i ≤ m + 1 and i 6= k.

For convenience, assume Ck(i, j) is the element allocated at the ith row and the
jth column in Ck. Then

Ck(k, k) = 1/
√

Σk,k, when 1 ≤ i ≤ m + 1
Ck(i, k) = 1/

√
Σk,k + Σi,i − 2Σk,i, when 1 ≤ i ≤ m + 1 and i 6= k

Ck(i, i) = −1/
√

Σk,k + Σi,i − 2Σk,i, when 1 ≤ i ≤ m + 1 and i 6= k
Ck(i, j) = 0, otherwise .

By change of random variables, the area Ak is transformed into the area A′
k,

A′
k = {Y |Yk ≤ ln(K/S(0))/

√

Σk,k and Yi ≤ 0, for 1 ≤ i ≤ m + 1 and i 6= k}.

Case 2 : Area Am+1

Each point X = (X1, . . . , Xm+1) in Am+1 should satisfy the following m + 1
inequalities:

Xi ≥ ln(K/S(0)) for 1 ≤ i ≤ m + 1.

Although Am+1 is a rectangle, but it is not required. We still need the linear
transform matrix, Cm+1. Let

Yi = −Xi/
√

Var(Xi) = −Xi/
√

Σi,i for 1 ≤ i ≤ m + 1.

Then,
Cm+1(i, i) = −1/

√
Σi,i, when 1 ≤ i ≤ m + 1

Cm+1(i, j) = 0, when i 6= j.

By change of random variables again, the area Am+1 is transformed into the
area A′

m+1,

A′
m+1 = {Y |Yi ≤ − ln(K/S(0))/

√

Σi,i, for 1 ≤ i ≤ m + 1}.
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To simplify the notation, let
Σi = CiΣCi

∗

The expected payoff can be finally expressed as follows:

S(0)
m∑

i=1

{

erT

∫

A′
i

e−[(y−(µ+bm+1Σ)C∗
i )Σ−1

i (y−(µ+bm+1Σ)C∗
i )∗]/2

(
√

2π)m+1(det Σi)
1
2

dy

− er(ti−`i/2)

∫

A′
i

e−[(y−(µ+biΣ)C∗
i )Σ−1

i (y−(µ+biΣ)C∗
i )∗]/2

(
√

2π)m+1(det Σi)
1
2

dy

}

+ S(0)erT

∫

A′
m+1

e−[(y−(µ+bm+1Σ)C∗
m+1)Σ−1

m+1(y−(µ+bm+1Σ)C∗
m+1)∗]/2

(
√

2π)m+1(det Σm+1)
1
2

dy

− K

∫

A′
m+1

e−[(y−µC∗
m+1)Σ−1

m+1(y−µC∗
m+1)∗]/2

(
√

2π)m+1(det Σm+1)
1
2

dy

So the pricing formula is

S(0)
m∑

i=1

{
∫

A′
i

e−[(y−(µ+bm+1Σ)C∗
i )Σ−1

i (y−(µ+bm+1Σ)C∗
i )∗]/2

(
√

2π)m+1(detΣi)
1
2

dy

− er(ti−`i/2−T )

∫

A′
i

e−[(y−(µ+biΣ)C∗
i )Σ−1

i (y−(µ+biΣ)C∗
i )∗]/2

(
√

2π)m+1(detΣi)
1
2

dy

}

+ S(0)

∫

A′
m+1

e−[(y−(µ+bm+1Σ)C∗
m+1)Σ−1

m+1(y−(µ+bm+1Σ)C∗
m+1)∗]/2

(
√

2π)m+1(detΣm+1)
1
2

dy

− Ke−rT

∫

A′
m+1

e−[(y−µC∗
m+1)Σ−1

m+1(y−µC∗
m+1)∗]/2

(
√

2π)m+1(detΣm+1)
1
2

dy

3.3 The Special Case of Single Reset Options

Obviously, the analytic formula for the geometric average reset option with arbitrary
monitoring intervals can be derived by the above systematic approach. We now take
the case of one monitoring interval as an example to demonstrate the power of our
approach. This is a geometric average reset option with m = 1. Assume reset date
t1 = t(t ≤ T ), monitoring interval ` and the other parameters are the same. Then the
mean vector of X is µ = ((r− σ2/2)(t− `/2), (r− σ2/2)T ). The covariance matrix of
X is:

Σ =

[
σ2(t − 2`/3) σ2(t − `/2)
σ2(t − `/2) σ2T

]

.
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The transformation matrices for integration area A1 and A2, called C1 and C2, re-
spectively, are

C1 =

[
1/
√

σ2T 0

1/
√

σ2(T − t − 5`/6) −1/
√

σ2(T − t − 5`/6)

]

,

C2 =

[
−1/

√

σ2(t − 2`/3) 0

0 −1/
√

σ2T

]

.

Therefore, A1 and A2 can be transformed into A′
1 and A′

2 by change of random
variables, where

A′
1 = {Y |Y1 ≤ 0, Y2 ≤ ln(K/S(0))/

√

σ2(T − t − 5`/6)},
A′

2 = {Y |Y1 ≤ − ln(K/S(0))/
√

σ2(t − 2`/3), Y2 ≤ − ln(K/S(0))/
√

σ2T}.
Let b1 = (1, 0) and b2 = (0, 1). The price of the option can be expressed as follows:

S(0)

∫

A′
1

e−[(y−(µ+b2Σ)C∗
1 )Σ−1

1 (y−(µ+b2Σ)C∗
1 )∗]/2

2π(det Σ1)
1
2

dy

−S(0)e−r(T−t+`/2)

∫

A′
1

e−[(y−(µ+b1Σ)C∗
1 )Σ−1

1 (y−(µ+b1Σ)C∗
1 )∗]/2

2π(det Σ1)
1
2

dy

+S(0)

∫

A′
2

e−[(y−(µ+b2Σ)C∗
2 )Σ−1

2 (y−(µ+b2Σ)C∗
2 )∗]/2

2π(det Σ2)
1
2

dy

−Ke−rT

∫

A′
2

e−[(y−µC∗
2 )Σ−1

2 (y−µC∗
2 )∗]/2

2π(det Σ2)
1
2

dy

= S(0)N(d1 − (µ + b2Σ)C∗
1 , Σ1)

−S(0)e−r(T−t+`/2)N(d1 − (µ + b1Σ)C∗
1 , Σ1)

+S(0)N(d2 − (µ + b2Σ)C∗
2 , Σ2)

−Ke−rT N(d2 − µC∗
2 , Σ2),

where

d1 = (0, ln(K/S(0))/
√

σ2(T − t − 5`/6)),

d2 = (− ln(K/S(0))/
√

σ2(t − 2`/3),− ln(K/S(0))/
√

σ2T ),

and N(·, Σ) is the CDF of normal distribution with mean vector 0 and covariance
matrix Σ.

3.4 Properties of Geometric Average Reset Op-

tions

Some special properties for reset options are discussed in this section. First, an
American-style reset call will be proved not to be exercised early if the underlying asset
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does not pay dividends. Second, the relations between the time span of monitoring
intervals and the option value are also discussed.

Theorem 3.4.1 An American-style reset call option will not be exercised early if the

underlying asset does not pay dividends.

Proof. It is well-known that an American-style vanilla call option will not be
exercised early if the underlying assets do not pay dividends. That is to say, at any
arbitrary time t before maturity date T , the following should always be satisfied:

Et[Cv] ≥ S(t) − K(t)

where Et[Cv] denotes the option price at time t and S(t) denotes the underlying asset’s
value at time t. Since the strike price of a reset call could be reset to a lower level, a
reset call is not less valuable then the vanilla call. It is observed that

Et[Cr] ≥ Et[Cv] ≥ S(t) − K(t)

where Et[Cr] denotes the option value of a reset option at time t. As a result, a reset
call will not be exercised early. 2

Most average reset options in real markets are triggered by the arithmetic average
price instead of a geometric one. Pricing arithmetic average reset options is not
easy, but it is surprisingly easy to derive the relationship between these two kinds of
options.

Theorem 3.4.2 The price of the geometric average reset call option is higher than

the price of the arithmetic average reset call option.

Proof. Let avgG(ti) and avgA(ti) denote the geometric and the arithmetic average
price of the ith monitoring interval, respectively. Since avgG(ti) ≤ avgA(ti), we have

min{K, avgG(t1), avgG(t2), . . . , avgG(tm)} ≤ min{K, avgA(t1), avgA(t2), . . . , avgA(tm)}.

Consequently,

E(S(T ) − min{K, avgG(t1), avgG(t2), . . . , avgG(tm)})+

≥ E(S(T ) − min{K, avgA(t1), avgA(t2), . . . , avgA(tm)})+.

2

Theorem 3.4.3 The price of the geometric average reset put option is lower than

the price of the arithmetic average reset put option.
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Proof. Obviously,

max{K, avgG(t1), avgG(t2), . . . , avgG(tm)} ≤ max{K, avgA(t1), avgA(t2), . . . , avgA(tm)}.

Consequently,

E(max{K, avgG(t1), avgG(t2), . . . , avgG(tm)} − S(T ))+

≤ E(max{K, avgA(t1), avgA(t2), . . . , avgA(tm)} − S(T ))+.

2

In real markets, we compute the average price of some representative prices like
closing prices instead of the continuous geometric average price during the monitoring
intervals. The relationship between the sampling frequencies and the option value can
be explored by taking advantages of Brownian bridge. We sample n points, including
the beginning and the end points, in each monitoring interval. These n points divide
the monitoring interval into n− 1 equal sub-intervals. The average of the n prices of
sampling points is denoted as avgG

n (ti). Some required properties of Brownian bridge
are explored in the following lemma.

Definition 3.4.4 Assume that a Brownian motion {B(t)} which begins at time 0
with B(0) = 0 has drift µ, and volatility σ. The sample space of the Brownian motion

satisfying the condition B(T ) = BT is called a Brownian bridge process.

Lemma 3.4.5 Define An(τ, τ + `) as
∑n−1

i=0 B(τ + i`/(n−1))/n, the discrete average

on time [τ, τ + `], where ` > 0 and τ + ` ≤ T . Then, the mean and the variance of

An conditioning on B(T ) = BT , are

E(An|BT ) = (τ + `/2)BT /T

Var(An|BT ) =

[

τ +
(2n − 1)`

6n
− (τ + `/2)2

T

]

σ2.

Proof. E(An|BT ), can be computed as follows:

E

(

1

n

n−1∑

i=0

B(τ + i`/(n − 1))|BT

)

=
1

n

n−1∑

i=0

(τ + i`/(n − 1)) BT /T

= (τ + `/2) BT /T.
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An can be expressed as

An =
1

n

n−1∑

i=0

B(τ + i`/(n − 1)) =
1

n

n−1∑

i=1

(n − i)Yi + B(τ),

where Yi = B(τ + i`/n − 1) − B(τ + (i − 1)`/(n − 1)) and Var(Yi) = σ2`/(n − 1) for
1 ≤ i ≤ n − 1. Therefore, the variance of An, Var(An), can be computed as follows:

Var(An) = Var

(

1

n

n−1∑

i=1

(n − i)Yi + B(τ)

)

=
n−1∑

i=1

Var

(
1

n
(n − i)Yi

)

+ Var(B(τ))

=
1

n2

n−1∑

i=1

(
(n − i)2σ2`/(n − 1)

)
+ τσ2

=
2n − 1

6n
`σ2 + τσ2,

Since Var(An) = E(Var(An|BT ))+Var(E(An|BT )) 2 and E(Var(An|BT )) = Var(An|BT ),

Var(An|BT ) = E(Var(An|BT ))

= Var(An) − Var(E(An|BT ))

= (τ + (2n − 1)`/(6n)) σ2 − Var((τ + `/2)BT /T )

=

[

τ +
(2n − 1)`

6n
− (τ + `/2)2

T

]

σ2.

2

By the assumption of stock behavior, it is obvious that avgG
n (ti) = SeAn(ti−`,ti).

We can analyze the relation between the sampling frequency and the average price
by the above lemma.

Lemma 3.4.6 The conditional variance of An and the conditional mean of avgG
n

become larger as the number of samples, n, increases.

Proof. The conditional mean of avgG
n , which has a log-normal distribution, is

SeE(An|BT )+Var(An|BT )/2. Since ∂Var(An|BT )/∂n = σ2`/6n2 > 0, Var(An|BT ) tends
larger as n increases. Besides, E(An|BT ) is a constant for n. Therefore, the condi-
tional mean of avgG

n increases with n. 2

2See Ross [1994]
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Theorem 3.4.7 (Sampling frequency theorem: One monitoring interval version).
Without dividends, a European-style geometric average reset put with one reset date

tends to become more valuable as the monitoring frequency increases.

Proof. Let t be the reset date. The payoff of the put can be rewritten as

(max{K, avgG
n (t)} − S(T ))+ =

{
(K − S(T )) + (avgG

n (t) − K)+ if K ≥ S(T ),
(avgG

n (t) − S(T ))+ if S(T ) > K.

Therefore, the expected payoff of the options is

E
(
max{K, avgG

n (t)} − S(T )
)+

= E
(

E
((

max{K, avgG
n (t)} − S(T )

)+ |S(T )
))

= E
(

E
([

(K − S(T )) +
(
avgG

n (t) − K
)+

]

1{K≥S(T )}

)

|S(T )
)

+ E
(

E
((

avgG
n (t) − S(T )

)+
1{S(T )>K}

)

|S(T )
)

.

Assume K ′ is a known constant. Some terms take the form (avgG
n (t)−K ′)+, which is

similar to the payoff of a call option that takes avgG
n (t) as its underlying asset and C as

its strike price, in the above formula. Recall that the price process, {ln(S(t)/S(0))},
is a Brownian motion; hence, {ln(S(t)/S(0))} conditional on S(T ) must be a Brow-
nian bridge. Note that ln(avgG

n (t)/S(0)) conditional on S(T ) is a normal random
variable. Lemma 3.4.5 says that both the mean of avgG

n (t)/S(0) and the variance of
ln(avgG

n (t)/S(0)) increase as the monitoring frequency increases. Since rho and vega
(the Greek letters) of a call are positive, the value E(avgG

n (t)−K ′)+ increases as the
sampling frequency increases. Consequently, a reset put become more valuable as the
sampling frequency increases. 2

On the other hand, a reset call might be less variable when the monitoring frequency
becomes larger. This is because the expected payoff of a reset call can be rewritten
as

E
(
S(T ) − min{K, avgG

n (t)}
)+

= E
(

E
([

(S(T ) − K) +
(
K − avgG

n (t)
)+

]

1{S(T )≥K}

)

|S(T )
)

+ E
(

E
((

S(T ) − avgG
n (t)

)+
1{S(T )<K}

)

|S(T )
)

,

which contains some terms like the payoff of a vanilla put. Since the ρ of a vanilla put
is negative, these terms might contribute less value as the monitoring frequency in-
creases. Some extreme experimental results are given in the following section to verify
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this fact. The sampling theorem can be extended to puts with multiple monitoring
intervals.

Corollary 3.4.8 (Sampling frequency theorem: Multiple monitoring intervals ver-

sion). Without dividends, a European-style geometric average reset put with the same

multiple reset dates tends to be more valuable as the monitoring frequency increases

if the monitoring intervals are disjoint.

Proof. Assume there are m geometric average reset put. The jth (j = 0, 1, · · · ,m)
put has L sampling points in the first j monitoring intervals and H sampling points
in the other m− j monitoring intervals, where the integer H is a given positive larger

than integer L. P (

j
︷ ︸︸ ︷

L, . . . , L,

m−j
︷ ︸︸ ︷

H, . . . , H) denotes the price of the jth put. We prove the
goal by showing that

P (

m
︷ ︸︸ ︷

L, . . . , L) ≤ P (

m−1
︷ ︸︸ ︷

L, . . . , L,H) ≤ · · · ≤ P (

m
︷ ︸︸ ︷

H, · · · , H).

Suppose that

Kj = max
{
avgG

L(t1), . . . , avgG
L(tj−1), avgG

H(tj+1), . . . , avgG
H(tm)

}
.

Comparing the expected payoff of the mth put with that of the (m − 1)th put, we
have

E
(
max{Km, avgG

L(tm)} − S(T )
)+

= E
(

E
((

max{Km, avgG
L(tm)} − S(T )

)+ |S(T ), S(tm−1), Km

))

≤ E
(

E
((

max{Km, avgG
H(tm)} − S(T )

)+ |S(T ), S(tm−1), Km

))

= E
(
max{Km, avgG

H(tm)} − S(T )
)+

According to Theorem 3.4.7, conditional on S(T ), S(tm−1) and Km, the value

E
((

max{Km, avgG
n (tm)} − S(T )

)+ |S(T ), S(tm−1), Km

)

increases with n. So we conclude that P (

m
︷ ︸︸ ︷

L, · · · , L) ≤ P (

m−1
︷ ︸︸ ︷

L, · · · , L,H). In the same
way, it is also true that

E
(
max{Km−1, avgG

L(tm−1)} − S(T )
)+

= E
(

E
((

max{Km−1, avgG
L(tm−1)} − S(T )

)+ |S(T ), S(tm−2), S(tm−1), Km−1

))

≤ E
(

E
((

max{Km−1, avgG
H(tm−1)} − S(T )

)+ |S(T ), S(tm−2), S(tm−1), Km−1

))

= E
(
max{Km−1, avgG

H(tm−1)} − S(T )
)+

.
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According to Theorem 3.4.7, conditional on S(T ), S(tm−2), S(tm−1) and Km−1, the
value

E
((

max{Km−1, avgG
H(tm−1)} − S(T )

)+ |S(T ), S(tm−2), S(tm−1), Km−1

)

increases with n. We conclude that

P (

m−1
︷ ︸︸ ︷

L, . . . , L,

1
︷︸︸︷

H ) ≤ P (

m−2
︷ ︸︸ ︷

L, . . . , L,

2
︷ ︸︸ ︷

H,H).

Similarly, we can also show that

P (

m−2
︷ ︸︸ ︷

L, . . . , L,

2
︷ ︸︸ ︷

H,H) ≤ P (

m−3
︷ ︸︸ ︷

L, . . . , L,

3
︷ ︸︸ ︷

H, . . . , H) ≤ · · · ≤ P (

m
︷ ︸︸ ︷

H, . . . , H)

by induction, so the proof is complete. 2

We turn to the influence of the length of monitoring interval on option values.
The price of put or call is not have clear relationship with the length of monitoring
interval. We will take examples in next section.

3.5 Experimental Results

Reset Date Exact M.C. CZ
1.00 17.254 17.189 10.866
0.75 18.141 17.990 10.553
0.50 18.226 18.133 9.139
0.25 17.847 17.936 5.567

Table 3.1: Comparison of the analytic formula in Cheng and Zhang [2000]
and the ones in our paper.

First, we compare our analytic formula with the one suggested by Cheng and
Zhang [2000]. The result is illustrated in Fig. 3.5 where “CZ” denotes the formula in
Cheng and Zhang [2000]3 and “Exact” denotes ours. We use Monte Carlo simulations,
denoted as “M.C.”, as a benchmark to verify the correctness of both analytic formula.
Suppose that the initial stock price is 100, the initial strike price is 95, the interest
rate 5%, the volatility is 30%, the time to maturity for the option is 1 year, and the
length of monitoring interval is 0.06 year in Table 3.5. “Reset Date” denotes the
the ending time of monitoring interval. Obviously, our results are consistent with
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Case 1: S0 = 100, K = 250, r = 8%,
σ = 8%, T = 4, ` = 1, Reset Date=1.
number of samples Call Put

Cont. 24.5946 81.5378
250 24.5947 81.5378
24 24.5954 81.5378
12 24.5961 81.5378
4 24.5985 81.5378
2 24.6010 81.5378

Case 2: S0 = 100, K = 100, r = 10%,
σ = 60%, T = 4, ` = 1, Reset Date=1.
number of samples Call Put

Cont. 58.2813 27.4527
250 58.2776 27.4429
24 58.2443 27.3540
12 58.2098 27.2626
4 58.0917 26.9565
2 57.9580 26.6217

Table 3.2: Verifications on Sampling Theorem.

simulation results, whereas Cheng and Zhang produce incorrect ones, the correctness
of the especially when the reset date is close to the beginning of the option.

The Table3.2 shows some evidence for sampling theorems. All the data in this
table are computed by the analytic formula. “Cont.” denotes samples in the moni-
toring interval is continuous. The data show that the price of the reset put increases
as the number of samples increases. But the reset call fails to satisfy this claims in
case 1 where the exercise price is extremely high and the volatility is extremely small.
This is consistent with our previous analysis.

3The Complete formulae are listed in Appendix. A.
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Case 1: S0 = 100, K = 100, r = 1%,
σ = 60%, T = 4, Reset Date=4.

Call Put
interval length m = 12 Cont. m = 12 Cont.

` = 0.1 47.2605 47.2831 45.1673 45.2411
` = 0.3 47.8625 47.9024 46.8209 46.9624
` = 0.5 48.2088 48.2613 47.7313 47.9254
` = 0.7 48.4482 48.5117 48.3250 48.5652
` = 0.9 48.6238 48.6973 48.7268 49.0090

Case 2: S0 = 100, K = 100, r = 10%,
σ = 60%, T = 4, Reset Date=1.

Call Put
interval length m = 12 Cont. m = 12 Cont.

` = 0.1 59.5782 59.5823 32.0651 32.0823
` = 0.3 59.3682 59.3816 31.1173 31.1690
` = 0.5 59.1194 59.1440 30.1218 30.2086
` = 0.7 58.8181 58.8569 29.0596 29.1834
` = 0.9 58.4405 58.4987 27.8982 28.0639

Table 3.3: Results of Different Monitoring Intervals.

Table 3.3 shows that the relationship between the price and the length of moni-
toring interval. There, m denotes the number of samples in the monitoring interval.
In case 1, the data suggest that both the prices of call and put increase with moni-
toring interval longer; in case 2, the data suggest that both the prices of call and put
decrease with monitoring interval longer.



Chapter 4

Pricing of Other Exotic Options

4.1 Analytic Formula for Foreign Domestic Op-

tions

A foreign domestic options are concerned with foreign exchange rates. Usually, the
case is a call option on the foreign asset evaluated in foreign currency but its strike
price is given in domestic currency. Sf (t) denotes the foreign asset’s price evaluated
in foreign currency at time t and the underlying asset has continuous dividend rate
q and volatility σSf

. The foreign exchange rate at time t is denoted as F (t) and its
volatility is σF . Assume rf is the foreign risk-free interest rate and rd is the domestic
risk-free interest rate. Consider a European-style call option on the foreign asset with
maturity date at time T and the strike price K given in domestic currency. Then the
payoff of the option is

{
Sf (T )F (T ) − K, if Sf (T )F (T ) ≥ K,
0, if Sf (T )F (T ) < K.

In other words, Sf (t)F (t) = Sd(t) can be thought as the price of foreign asset eval-
uated in domestic currency at time t. By assumption, the price process of the two
assets is [

dF (t)
dSf (t)

]

=

[
rd − rf

µ − q

]

dt +

[
σF 0
0 σSf

] [
dB1

dB2

]

,

for some Brownian motion B = (B1, B2). Or

[
dF (t)
dSf (t)

]

=

[
rd − rf

µ − q

]

dt +

[
σF,1 σF,2

σSf ,1 σSf ,2

] [
dW1

dW2

]

,

where ρ is the correlative coefficient between B1 and B2 and W = (W1,W2) is a two-
dimensional Wiener process. Besides, σ2

F = σ2
F,1 +σ2

F,2 and σ2
Sf

= σ2
Sf ,1 +σ2

Sf ,2. Define

X = (X1, X2) where X1 = ln(F (T )/F (0)) and X2 = ln(Sf (T )/Sf (0)). The joint

24
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distribution of X1 and X2 is two-dimensional normal distribution, since the process
of Sf (t) and F (t) are geometric Brownian motion as follows:

dF = F (rd − rf )dt + FσF dB1,

dSf = Sf (rf − q − ρσSf
σF )dt + SfσSf

dB2.

Then the payoff also can be expressed as

(Sf (T )F (T ) − K)1{Sf (T )F (T )≥K}

= Sf (0)F (0) [(Sf (T )/Sf (0))(F (T )/F (0)) − K] 1{[Sf (T )/Sf (0)][F (T )/F (0)]≥ln(K/[Sf (0)F (0)])}

= Sf (0)F (0)eX1+X21{X1+X2≥ln(K/[Sf (0)F (0)])} − K1{X1+X2≥ln(K/[Sf (0)F (0)])}.

The mean and covariance matrix of X are as follows:

µ = E(X) =
(

(rd − rf − σ2
F /2)T, (rf − q − ρσF σSf

− σ2
Sf

/2)T
)

,

Σ = Var(X) =

[
σ2

F T ρσF σSf
T

ρσF σSf
T σ2

Sf
T

]

.

By Theorem 2.3.1, let b = (1, 1), then the expected value of the payoff is

Sf (0)F (0)

∫

A
eX1+X2

e−{[x−(µ+bΣ)]Σ−1[x−(µ+bΣ)]∗}/2

2π(detΣ)
1
2

dx − K

∫

A

e−[(x−µ)Σ−1(x−µ)∗]/2

2π(detΣ)
1
2

dx

= Sd(0)erd−q

∫

A

e−{[x−(µ+bΣ)]Σ−1[x−(µ+bΣ)]∗}/2

2π(detΣ)
1
2

dx − K

∫

A

e−[(x−µ)Σ−1(x−µ)∗]/2

2π(detΣ)
1
2

dx, (4.1)

where
A = {X|X1 + X2 ≥ ln(K/[Sf (0)F (0)])}.

Suppose that

Y1 = (−X1 − X2)/
√

Var(X1 + X2) = (−X1 − X2)/
√

(σ2
F + σ2

Sf
+ 2ρσF σSf

)T ,

Y2 = (X1 − X2)/
√

Var(X1 + X2) = (X1 − X2)/
√

(σ2
F + σ2

Sf
− 2ρσF σSf

)T .

Next, change of random variables is needed to make A become a rectangle. Suppose
that the transformation required is

C =




−1/

√

(σ2
F + σ2

Sf
+ 2ρσF σSf

)T −1/
√

(σ2
F + σ2

Sf
+ 2ρσF σSf

)T

1/
√

(σ2
F + σ2

Sf
− 2ρσF σSf

)T −1/
√

(σ2
F + σ2

Sf
− 2ρσF σSf

)T



 .

A′, the image of A under the linear transformation C, is a half-plane as

A′ =
{

Y |Y1 ≤ ln(Sf (0)F (0)/K)/
√

(σ2
F + σ2

Sf
+ 2ρσF σSf

)T
}

.
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Then equation (4.1) becomes

Sd(0)erd−q

∫

A′

e−{[y−(µ+bΣ)C∗]Σ−1[y−(µ+bΣ)C∗]∗}/2

2π[det (CΣC∗)]
1
2

dy

− K

∫

A′

e−[(y−µC∗)Σ−1(y−µC∗)∗]/2

2π[det (CΣC∗)]
1
2

dy.

Besides,

µC∗ =




(−rd + q + σ2

Sd
/2)T

σSd

√
T

,
(rd − 2rf + q − σ2

F /2 + ρσF σSf
+ σ2

Sf
/2)T

√

(σ2
F + σ2

Sf
− 2ρσF σSf

)T



 ,

(µ + bΣ)C∗ =




(−rd + q − σ2

Sd
/2)T

σSd

√
T

,
(rd − 2rf + q + σ2

F /2 + ρσF σSf
− σ2

Sf
/2)T

√

(σ2
F + σ2

Sf
− 2ρσF σSf

)T



 ,

CΣC∗ =







1
(σ2

F−σ2
Sf

)T
√

(σ2
F +σ2

Sf
−2ρσF σSf

)σSd
T

(σ2
F−σ2

Sf
)T

√

(σ2
F +σ2

Sf
−2ρσF σSf

)σSd
T

1







,

where σSd
=

√

σ2
F + σ2

Sf
+ 2ρσF σSf

. Then the pricing formula discounted by rd is

e−qT Sd(0)N

(

ln(Sd(0)/K) + (rd − q + σ2
Sd

/2)T

σSd

√
T

)

− e−rdT KN

(

ln(Sd(0)/K) + (rd − q − σ2
Sd

/2)T

σSd

√
T

)

.

4.2 Compound Options

A compound option is an option whose underlying asset is another option. Consider
a call option with maturity date T and strike price K on the asset with volatility σ.
Then a call compound option is an option on the former call option with maturity
date TC and strike price KC , where TC < T . Assume S(t) is the price of the asset at
time t, then payoff of the call compound option can be expressed as

(S(T ) − K)1{S(TC)≥S′,S(T )≥K} − KCer(T−TC)1{S(TC)≥S′}

= S(T )1{S(TC)≥S′,S(T )≥K} − K1{S(TC)≥S′,S(T )≥K} − er(T−TC)KC1{S(TC)≥S′}, (4.2)

where S ′ is the price of the asset such that the compound option at the money at
time TC . Let X = (X1, X2), where X1 = ln(S(TC)/S(0))), X2 = ln(S(T )/S(0)). The
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mean and the variance of X are

µ = E(X) =
(
(r − σ2/2)TC , (r − σ2/2)T

)
,

Σ = Var(X) =

[
σ2TC σ2TC

σ2TC σ2T

]

.

Then equation (4.2) becomes

S(0)eX21{X1≥ln(S′/S(0)),X2≥ln(K/S(0))}

− K1{X1≥ln(S′/S(0)),X2≥ln(K/S(0))}

− er(T−TC)KC1{X1≥ln(S′/S(0))}.

Let

A1 = {X|X1 ≥ ln(S ′/S(0))} ,

A2 = {X|X1 ≥ ln(S ′/S(0)), X2 ≥ ln(K/S(0))} ,

b = (0, 1).

The excepted value of the above equation are

S(0)erT

∫

A2

e−{[x−(µ+bΣ)]Σ−1[x−(µ+bΣ)]∗}/2

2π(detΣ)
1
2

dx

− K

∫

A2

e−{[x−µ]Σ−1[x−µ]∗}/2

2π(detΣ)
1
2

dx

− e(T−TC)rKC

∫

A1

e−{[x−µ]Σ−1[x−µ]∗}/2

2π(detΣ)
1
2

}dx. (4.3)

Fortunately, although there are two integration areas, we only need one transforma-
tion. Suppose that

Y1 = −X1/
√

Var(X1) = −X1/
√

σ2TC ,

Y2 = −X2/
√

Var(X2) = −X2/
√

σ2T .

Therefore, the transformation C is

C =

[
−1/

√
σ2TC 0

0 −1/
√

σ2T

]

.

Then,

A′
1 = {Y |Y1 ≥ ln(S(0)/S ′)/

√

σ2TC},
A′

2 = {Y |Y1 ≥ ln(S(0)/S ′), Y2 ≥ ln(S(0)/K)/
√

σ2T},

Σ′ = CΣC∗ =

[
1

√

TC/T
√

TC/T 1

]

.



Pricing of Other Exotic Options 28

Finally, the pricing formula is equation (4.3) multiplied by the discount factor:

e−rT
[
S(0)erT N(v1, Σ

′) − KN(v2, Σ
′) − e(T−TC)rKCN(v3, 1)

]

= S(0)N(v1, Σ
′) − e−rT KN(v2, Σ

′) − e−rTCKCN(v3, 1).

where

v1 = d1 − (µ + bΣ)C∗ =

(
ln(S(0)/S′) + (r + σ2/2)TC

σ
√

TC
,
ln(S(0)/S′) + (r − σ2/2)TC

σ
√

TC

)

,

v2 = d2 − (µ + bΣ)C∗ =

(
ln(S(0)/K) + (r + σ2/2)T

σ
√

T
,
ln(S(0)/K) + (r − σ2/2)T

σ
√

T

)

,

v3 =
ln(S(0)/K) + (r + σ2/2)T

σ
√

T
.

4.3 Rainbow Options

A rainbow Option is an option with m underlying assets. It has maturity date T and
strike price K. For a rainbow call option, then its payoff can be expressed as

max{(max{S1(T ), S2(T ), . . . , Sm(T )} − K), 0},

where Si(t) denotes the price of the ith underlying asset at time t. It means we
can choose the favorite one among the m underlying assets to exercise. Similarly, a
rainbow put option can be expressed as below

max{(K − min{S1(T ), S2(T ), . . . , Sm(T )}), 0}.

The premium of a rainbow option must be higher than that of the vanilla option. We
can also get the pricing formula for rainbow options by our approach.

Consider a rainbow option with maturity date T and strike price K based on
two assets. For i = 1, 2, assume Si(t) and σi are the price and volatility of the ith
asset, and ρ is the correlation coefficient between the two assets. By the assumption
of price behavior, X = (X1, X2) is a two-dimensional normal distribution, where
X1 = ln(S1(T )/S1(0)) and X2 = ln(S2(T )/S2(0)). Hence, the mean and the variance
matrix of X are

µ = E(X) = ((r − σ2
1/2)T, (r − σ2

2/2)T ),

Σ = Var(X) =

[
σ2

1T ρσ1σ2T
ρσ1σ2T σ2

2T

]

.
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So the payoff of the rainbow option can be expressed as

max{max{S1(T ), S2(T )} − K, 0}
= (S1(T ) − K)1{S1(T )≥K,S1(T )≥S2(T )} + (S2(T ) − K)1{S2(T )≥K,S2(T )≥S1(T )}

= S1(0)eX11{X1≥ln(K/S1(0)),(X1−X2)≥ln(S2(0)/S1(0))}

+S2(0)eX21{X2≥ln(K/S2(0)),(X2−X1)≥ln(S1(0)/S2(0))}

−K1{X1≥ln(K/S1(0)),(X1−X2)≥ln(S2(0)/S1(0))}

−K1{X2≥ln(K/S2(0)),(X2−X1)≥ln(S1(0)/S2(0))}. (4.4)

Let

b1 = (1, 0),

b2 = (0, 1),

A1 = {X|X1 ≥ ln(K/S1(0)), (X1 − X2) ≥ ln(S2(0)/S1(0))},
A2 = {X|X2 ≥ ln(K/S2(0)), (X2 − X1) ≥ ln(S1(0)/S2(0))}.

Then the expected value of equation (4.4) becomes

S1(0)erT

∫

A1

e−{[x−(µ+b1Σ)]Σ−1[x−(µ+b1Σ)]∗}/2

2π(detΣ)
1
2

dx

+ S2(0)erT

∫

A2

e−{[x−(µ+b2Σ)]Σ−1[x−(µ+b2Σ)]∗}/2

2π(detΣ)
1
2

dx

− K

∫

A1

e−[(x−µ)Σ−1(x−µ)∗]/2

2π(detΣ)
1
2

dx

− K

∫

A2

e−[(x−µ)Σ−1(x−µ)∗]/2

2π(detΣ)
1
2

dx.

We need a transformation for each area. For area A1, suppose that

Y1 = −X1/Var(X1) = −X1/
√

σ2
1T ,

Y2 = (−X1 + X2)/Var(−X1 + X2) = (−X1 + X2)/
√

(σ2
1 + σ2

2 − 2ρσ1σ2)T .

Therefore,

C1 =

[
−1/

√

σ2
1T 0

−1/
√

(σ2
1 + σ2

2 − 2ρσ1σ2)T 1/
√

(σ2
1 + σ2

2 − 2ρσ1σ2)T

]

.

For area A2, suppose that

Y1 = (X1 − X2)/Var(X1 − X2) = (X1 − X2)/
√

(σ2
1 + σ2

2 − 2ρσ1σ2)T ,

Y2 = −X2/Var(X2) = −X2/
√

σ2
2T .
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Therefore,

C2 =

[
1/

√

(σ2
1 + σ2

2 − 2ρσ1σ2)T −1/
√

(σ2
1 + σ2

2 − 2ρσ1σ2)T

0 −1/
√

σ2
2T

]

.

Then,

A′
1 =

{

Y |Y1 ≤ ln(S1(T )/K)/
√

σ2
1T , Y2 ≤ ln(S1(T )/S2(T ))/

√

(σ2
1 + σ2

2 − 2ρσ1σ2)T

}

,

A′
2 =

{

Y |Y1 ≤ ln(S2(T )/S1(T ))/
√

(σ2
1 + σ2

2 − 2ρσ1σ2)T , Y2 ≤ ln(S2(T )/K)/
√

(σ2
2)T

}

,

Σ1 = C1ΣC∗
1 =





1
ρσ1σ2−σ2

1√
σ2
1(σ2

1+σ2
2−2ρσ1σ2)

ρσ1σ2−σ2
1√

σ2
1(σ2

1+σ2
2−2ρσ1σ2)

1



 ,

Σ2 = C2ΣC∗
2 =





1
ρσ1σ2−σ2

2√
σ2
1(σ2

1+σ2
2−2ρσ1σ2)

ρσ1σ2−σ2
2√

σ2
1(σ2

1+σ2
2−2ρσ1σ2)

1



 .

The pricing formula emerges as

e−rT [S1(0)N(v1, Σ1) + S2(0)N(v2, Σ2) − KN(v3, Σ1) − KN(v4, Σ2)] ,

where

v1 =

(

ln(S1(T )/K) + (r + σ2
1/2)T

σ1

√
T

,
ln(S1(T )/S2(T )) + (σ2

1/2 + σ2
2/2 − ρσ1σ2)T )

√

(σ2
1 + σ2

2 − 2ρσ1σ2)T

)

,

v2 =

(

ln(S2(T )/S1(T )) + (σ2
1/2 + σ2

2/2 − ρσ1σ2)T )
√

(σ2
1 + σ2

2 − 2ρσ1σ2)T
,
ln(S2(T )/K) + (r + σ2

2/2)T

σ2

√
T

)

,

v3 =

(

ln(S1(T )/K) + (r − σ2
1/2)T

σ1

√
T

,
ln(S1(T )/S2(T )) − (σ2

1/2 − σ2
2/2)T )

√

(σ2
1 + σ2

2 − 2ρσ1σ2)T

)

,

v4 =

(

ln(S2(T )/S1(T )) − (σ2
2/2 − σ2

1/2)T )
√

(σ2
1 + σ2

2 − 2ρσ1σ2)T
,
ln(S2(T )/K) + (r − σ2

2/2)T

σ2

√
T

)

.



Chapter 5

Conclusions

Although the variety of options are large, if the payoff of the option can be expressed
as a linear combination of form ebX∗

1{X∈A}, it can be priced by the systematic ap-
proach to get the pricing formula. Besides, the formula of Cheng and Zhang [2000]
is wrong. Furthermore, we get some properties of European-style geometric average
reset options, summarized below:

1. Without dividends, the European-style geometric average reset call option will
not be exercised early.

2. The European-style geometric average reset put option tends to be more valu-
able with more reset dates. But it is not true for geometric average reset call
options.
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Appendix A

Cheng and Zhang’s Analytic
Formula

The analytic pricing formula offered by Cheng and Zhang [200] for geometric average
reset options with one monitoring interval is as follows:

S(0)N(e1, e2, Σ̆) − Ke−rT N(ê1, ê2, Σ̆)

+ S(0)N(f1, f2, Σ̀) − S(0)e−r(T−t1+
l
2)+5`σ2/12N(f3, f4, Σ̀),

where e1, e2, Σ̆, ê1, ê2, f1, f2, Σ̀, f3, f4 are defined as follows:

e1 =
ln(S(0)/K) + (r + σ2/2) (t1 − `/2)

σ
√

t1 + `/3
,

e2 =
ln(S(0)/K) + (r + σ2/2) T

σ
√

T
,

ê1 =
ln(S(0)/K) + (r − σ2/2) (t1 − `/2)

σ
√

t1 + `/3
,

ê2 =
ln(S(0)/K) + (r − σ2/2) T

σ
√

T
,

Σ̆ =





1 t1−`/2√
T
√

t1+ `
3

t1−`/2√
T
√

t1+`/3
1



 ,

f1 = −e1,

f2 =
(r + σ2/2) (T − t1 + `/2)

σ
√

T − t1 + 4`/3
,
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f3 =
ln(S(0)/K) + (r + σ2/2) (t1 − `/2) − σ2 (t1 + `/3)

σ
√

t1 + `/3
,

f4 =
(r − σ2/2) (T − t1 + `/2) − σ25`/6

σ
√

T − t1 + 4`/3
,

Σ̀ =





1 5`/6√
T−t1+4`/3

√
t1+`/3

5`/6√
T−t1+4`/3

√
t1+`/3

1



 .


