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The simplest American and Real Option

approximations: Geske–Johnson

interpolation in maturity and yield

SAN-LIN CHUNG and MARK SHACKLETONy*

Department of Finance, National Taiwan University, Taiwan
and yAccounting & Finance, Lancaster University, LA1 4YX, UK

The American early exercise feature of the Real Option to invest in a new project
is important in capital budgeting and project valuation. Closed form solutions
for American, and therefore Real, Options are known for two special cases;
an infinite horizon generates the Merton (Bell Journal of Economics, 4, 141–83,
1973) solution while a zero dividend yield on the project generates Black-Scholes
(Journal of Political Economy, 81, 637–59, 1973) prices since early exercise is never
optimal. Geske–Johnson (Journal of Finance, 39, 1511–24, 1984) approximation is
extended to a bivariate case by assuming various forms of separability for option
prices as a function of time to maturity and yield to produce fully explicit and
asymptotically correct approximations. These methods are compared with another
simple approximation method due to Barone-Adesi and Whaley (Journal of Finance,
42, 301–20, 1987) and MacMillan (Advances in Futures Options and Research, 2,
117–42, 1987) and the estimated error these expressions contain compared to an
accurate numerical benchmark technique.

I . INTRODUCTION

Since Black and Scholes (1973) solved the European case,

American option pricing has remained a challenge in

finance. Discussion of differing pricing techniques has per-

sisted in the literature for more than 25 years because no

convenient solution form is known to the early exercise,

free boundary problem other than the Merton solution

(1973) for American options of infinite maturity and the

European case that represents the optimal American

strategy when underlying dividends are zero.

The American option pricing problem is important in

capital budgeting when evaluating investments because

many projects have future flexibility that can significantly

augment the value above the no flexibility value. Examples

of operating flexibility include real options to open new or

close existing business lines (see Dixit and Pindyck (1994)

for the large literature has developed in this area).

Analytical approximations to the American pricing

problem include Johnson (1983), Barone-Adesi and

Whaley (1987), MacMillan (1986) (BAWM hereafter)

and Ju and Zhong (1999) (approximating the differential

equation) and Omberg (1987) and Ju (1998) (utilizing

boundary approximations). This note shows that although

BAWM prices converge to the Merton perpetual solution,

they can do so from the wrong side. In contrast the

proposed method in this note will converge to the

Merton perpetual solution correctly.

Geske and Johnson (1984) (GJ hereafter) provided

both an analytic solution and approximation scheme

to the American option pricing problem. In their explicit

solution however, the hedge portfolio (stock and

bond weights) that replicate the option are derived

from an infinite series of terms whose elements although

eventually becoming insignificant, require increasing

computational power to evaluate due to multiple integrals
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of higher order.1 As a result, their more useful practical
contribution was to consider American options as the
limit of a series of options with increasing exercisability
(decreasing inter-exercise time) and apply Richardson
extrapolation to estimate the series limit from the first
few terms. Their resultant two-point scheme uses two
prices to estimate the American price; a twice-exercisable
option and a once exercisable (Black–Scholes) option
for which a closed-form exists. Although simple, this
Geske–Johnson scheme works remarkably well for short
times to maturity. However it breaks down for long time
to maturity and does not converge to the Merton price
(infinite time to maturity).

This note contributes to the literature on American and
Real options approximations in two ways. First, based on
the GJ method, it establishes a new asymptotically correct
approximation scheme for long maturity options or options
where the yield on the underlying is low. Second the
approximation scheme can be used to infer an asympto-
tically correct formula that describes the path of the early
exercise boundary for long maturities or options where the
underlying yield is low.

Section II puts American options onto a surface, for
which limiting cases are known, Section III shows how
GJ approximation can be used to yield new approxi-
mation forms. The assumptions utilized in the work of
Barone-Adesi and Whaley (1987) and MacMillan (1986)
are summarized in Section IV which also compares
the equations that give the asymptotic properties of the
exercise boundaries under the method discussed. Section V
shows numerical results and Section VI concludes.

II . AMERICAN PRICES IN TIME
AND YIELD

Under a risk neutral geometric Brownian motion process
S for a project’s price or value (with volatility � and
continuous dividend yield � and risk free rate r), no
arbitrage or risk neutrality implies that the price of any
option claim2 C must satisfy a partial differential equation

dS

S
¼ r� �ð Þdtþ �dWQ

1

2
�2 @

2C

@S2
þ r� �ð ÞS

@C

@S
� rC �

@C

@T
¼ 0

where C S,X , �, r, �,Tð Þ is a function of the current
value S, exercise price X, dividend yield �, interest rate r,

volatility � and time to maturity T. Notation is simplified
by suppressing the dependency on S,X, r, �ð Þ and by high-
lighting the two variables of interest alone T , � so CT

� : It is
assumed that the project cash yield � is lower than the risk
free rate r or equivalently that the risk neutral drift r� �ð Þ

of the project value is positive. This is because the solution
method presented is only asymptotically correct for small
but positive � (� can be thought of as a return shortfall
below the rate of return or this required rate less the capital
growth gain).
The three boundary conditions for a call on the project

are given in the limit as the project value goes to zero, at
the optimal exercise threshold K Tð Þ (also a function of �)
as well as a further smooth pasting condition.3

Under special restrictions, two solutions are known
for American call option prices; the perpetual Merton
T ! 1ð Þ and zero dividend (� ! 0) Black Scholes
solutions (see Merton, 1973). This means that limiting
solution forms are actually known for two edges of a grid
in T , �: Table 1 has the zero dividend Black Scholes
values along the top row and Merton values in the left
most column. The right hand column and bottom row
contain payoffs, C0

� ¼ CT
�� ¼ S � Xð Þ

þ (where the critical
dividend yield �� is defined later).
Although the interior true American option price surface

CT
� has unknown form but limits that converge to known

forms, if an assumption is made as to the shape or form of
the surface separation in time and yield, GJ interpolation
is possible using Black Scholes and Merton prices.

Black Scholes limit

Zero dividend Black Scholes call prices CT
�!0 are given by

CT
�!0 ¼ SN d1ð Þ � Xe�rTN d2ð Þ

d1, 2 ¼
ln ðS=XÞ þ r� 1

2
�2

� �
T

�
ffiffiffiffi
T

p

As expiry approaches T ! 0ð Þ because d1, 2 will both
diverge to þ1 or �1 (depending on the sign of lnðS=XÞ),
the call option clearly tends to the payoff S � Xð Þ

þ.
As expiry becomes increasingly distant T ! 1ð Þ the

moneyness of the option becomes irrelevant (ð1=�
ffiffiffiffi
T

p
Þ�

lnðS=XÞ ! 0Þ and Xe�rT
! 0) so the call always tends

towards the project value S because d1 always becomes
positive in the limit.

lim
T!0

CT
0 ¼ S � Xð Þ

þ lim
T!1

CT
0 ¼ S

1 In fact, for out-of-the-money options, (fourth and) higher order multivariate normal terms are consequential.
2C here represents a call, results for puts can be derived from Put Call Symmetry (see Carr and Chesney, 1996).
3 The call boundary conditions are

lim
S!0

CT
� Sð Þ ¼ 0 CT

� Kð Þ ¼ K � Xð Þ
þ @CT

�

@S

�����
K

¼ 1
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Merton limit

Perpetual American call option prices CT!1
� are given by

the Merton formula

CT!1
� ¼

K 1ð Þ � Xð Þ
S

K 1ð Þ

� ��

S < K 1ð Þ

S � X S > K 1ð Þ

8><
>:

K 1ð Þ ¼
�

�� 1
X � ¼

1

2
�

r� �ð Þ

�2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� �ð Þ

�2
�
1

2

� �2

þ
2r

�2

s

For the project call as the underlying yield becomes large
� ! 1ð Þ, the option elasticity become large � ! 1ð Þ and
the critical exercise threshold decreases to the exercise
threshold K 1ð Þ ! Xð Þ: This implies that the Merton call
option reverts to its immediate payoff S � Xð Þ

þ and the
option will be exercised immediately if in the money or
will have zero value if out of the money.

As the underlying yield becomes very small � ! 0ð Þ, the
elasticity of the option decreases to one � ! 1ð Þ but it does
so at such a rate that the exercise price in the Merton
formula becomes irrelevant and the project option reverts
to the project value itself.4

lim
�!1

C1
� ¼ S � Xð Þ

þ lim
�!0

C1
� ¼ S

Note also that there is a finite dividend yield �� (as a func-
tion of remaining parameters S,X, r, �) for which the

Merton call should be exercised immediately for its payoff
value (if positive). This critical dividend yield solves C1

� ¼

S � Xð Þ
þ

lim
T!1

�� !

rX

S
þ
1

2
�2 X

S � X
S > X

1 S4X

8><
>:

When volatility � is low, this critical yield tends towards
a cash return consideration which says that the critical
threshold K 1ð Þ is determined by a condition comparing
the yields on the project and the exercise price ��S?X

� �
.

If the option is at or out of the money S4Xð Þ there is no
finite dividend yield that can trigger exercise of a Merton
option �� ! 1ð Þ.
Subsequently, when parameter values of S,X , r, �ð Þ ¼

120, 100, 10%, 20%ð Þ are chosen, a critical yield of ��¼
18 1

3
% will become apparent.

Zero volatility limit

As well as considering American prices expanded as a func-
tion of � and T , it is useful to consider their behaviour for
small volatilities (near �¼ 0). This is because American
option prices strictly increase as a function of volatility
so the zero case provides a lower bound for all other
American prices. A formula for the intrinsic value of an
American option is derived for use in Section IV.

4The perpetual can also be expressed as

K 1ð Þ � Xð Þ
S

K 1ð Þ

� ��

¼
X

�� 1

� �1��
S

�

� ��

Table 1. American Call options CT
� by final maturity T and dividend yield � and limiting cases (in boxes);

Merton perpetuals (T ! 1, C1
� left column), Black Scholes (� ¼ 0, CT

0 top row) and Payoffs
(C0

� ,C
T
1 ¼ (S�X)þ right column and bottom row). The top left hand box has a value equal to the

stock price C1
0 ¼ S. The critical dividend yield �� is defined at the end of Section II

Time to final maturity, T

CT
� 1 �� 4 �� 2 �� 1 �� 0

0 C1
0 C4

0 C2
0 C1

0 C0
0

..

.

Dividend 1% C1
1% C4

1% C2
1% C1

1% C0
1%

..

.

yield 2% C1
2% C4

2% C2
2% C1

2% C0
2%

..

.

� 4% C1
4% C4

4% C2
4% C1

4% C0
4%

..

.

�� C1
�� C4

�� C2
�� C1

�� C0
��
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For zero volatility, the perpetual Merton option has a
critical threshold that is determined5 by a yield criterion
K ¼ rX=�. This is in accordance with the analysis of
critical dividend yield �� for zero volatility. Note that � is
a decreasing function of � while K is an increasing function
of �: When this boundary is reached, the yield rate of
exercise �S exceeds the cost rate of exercise rX. The current
value of such an exercise strategy is different depending
on the current project value relative the critical threshold
K : Above this threshold, waiting has no benefit and so
immediate exercise is optimal. Below the threshold, it
pays to wait just long enough to reach this threshold.

Effectively, the zero volatility perpetual option value is
derived from a known finite risk neutral stopping (forward
purchase or exercise) time ð1=ðr� �ÞÞ ln ðrX=�SÞ.

C1
� � ! 0ð Þ ¼

S � X S > K ¼
rX

�

r

�
� 1

� �
X

�S

rX

� �r=ðr� �Þ
S4K ¼

rX

�

8>>><
>>>:

Note that out of the money zero volatility calls are only
priced for r > � since if this were not the case, the project
value having negative drift would never hit any upper
exercise boundary.

Having established the perpetual zero volatility
American option value it is now easy to generalize to the
finite maturity case. The zero volatility value of a finite
maturity American price is the maximized value of the pay-
off max� Se���

� Xe�r� , 0
	 


chosen over optimal risk neutral
stopping time � 2 0,T½ �:

If T exceeds the zero volatility stopping time defined
earlier ð1=ðr� �ÞÞ ln ðrX=�SÞ, then the optimal value is
derived from exercise of a perpetual at the rX=� threshold
and stopping is chosen within the interval 0,T½ �. However,
if T is less than the time to optimal exercise of a perpetual,
then the value is determined as a European payoff at T :
This may or may not be positive depending on whether or
not sufficient time T remains to take the option from its
current moneyness to a point in the money.

Combining the payoffs at T , or earlier if optimal, yields
a general formula for the zero volatility or Intrinsic Value

(IV or zero volatility value) of an American option of
maturity T

IV¼

r

�
� 1

� �
X

�S

rX

� �r=ðr� �Þ
T5

1

r� �
ln
rX

�S

max Se��T
�Xe�rT , 0

	 

0< T <

1

ðr� �Þ
ln
rX

�S

8>>><
>>>:

ForamaturityT , this canhelp approximationmethods since
it forms a lower bound for estimated American prices.6

Critical exercise boundary in time and yield

When the American price falls below its payoff value,
exercise is preferred. Thus the general critical exercise
boundary where the surface of American prices intercepts
the payoff plane solves CT

� S,Xð Þ ¼ S � X .
Although of generally unknown form, the critical divi-

dend yield and time to maturity pair ðT , �Þ that satisfy the
payoff condition (for given S,X , r, �) have two important
limiting cases. As T becomes large, � ! �� as established.
The other case to consider is T ! 0, if out of the money

S<Xð Þ, again there is no dividend yield that can trigger
early exercise of an American and this is true at expiry
also when American options expire worthless. If in the
money one of two things can happen. First the option
can expire and be exercised for its Black Scholes value,
second it can be exercised before maturity for its
American value. The former Black Scholes (not early) exer-
cise, can only happen if r > � and X < S < rX=�.

III . BARONE-ADESI AND WHALEY
AND MACMILLAN

Initially without loss of generality, Barone-Adesi and
Whaley (1987), MacMillan (1986) (BAWM) decomposed
the early exercise premium of an American (with dividends)
over the corresponding European (with dividends) into
a separable function of the time to maturity and the project
value and time to maturity

CT
� � Se��TN d1ð Þ þ Xe�rTN d2ð Þ ¼ j Tð Þk S, 1� e�rT

� �
5 This can be shown by evaluating � as � ! 0: Since � can be rewritten as a square plus a term that remains finite as � ! 0; its limit can be established.

� ¼
1

2
�

r� �ð Þ

�2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� �ð Þ

�2
þ

rþ �

2 r� �ð Þ

� �2

�
rþ �

2 r� �ð Þ

� �2

þ
1

4

s

lim
�!0

� ¼
1

2
�

r� �ð Þ

�2
þ

r� �ð Þ

�2
þ

rþ �

2 r� �ð Þ
¼

r

r� �

K ¼
�

�� 1
X ¼

r

�
X

6Note that for the perpetual call, if the current project value is already above the yield threshold S > rX=� > X then there is an lower limit for volatility
that will trigger immediate exercise because the benefit of waiting beyond rX=� decreases with decreasing �.

��
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 S � Xð Þ �S � rXð Þ

SX

r
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Since each of these claims must satisfy the partial differen-
tial equation pricing equation, there are restrictions on
the forms of functions j, k: They then made the specific
restrictive approximation that in the resultant differential
equation, the time dependence of the kðS, 1� e�rT

Þ term is
small7 so that the separable (approximate) solution can be
recovered explicitly.

j Tð Þ k S, 1� e�rT
� �

� 1� e��TN d1 K Tð Þ,X , �,Tð Þð Þ
� �K Tð Þ

� Tð Þ

S

K Tð Þ

� �� Tð Þ

� Tð Þ ¼
1

2
�

r� �ð Þ

�2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� �ð Þ

�2
�
1

2

� �2

þ
2r

1� e�rT
� �

�2

s
> �

A new time dependent elasticity parameter � Tð Þ that is
greater than � is used. The early exercise level K Tð Þ is
determined by a boundary condition which reduces to

K Tð Þ

X
¼

1� e�rTN d2 K Tð Þ, �,Tð Þð Þ

1� e��TN d1 K Tð Þ, �,Tð Þð Þ

� Tð Þ

� Tð Þ � 1

Note that because of the multiple dependence on K Tð Þ=X
this must be solved numerically since this critical value is
required before any further option calculations are made,
� Tð Þ is also time dependent.

BAWM critical threshold

For the case r > �, the BAWM threshold has a finite
critical time T� where its critical threshold K T�

ð Þ is
equal to the Merton perpetual threshold (because of the
term that was assumed to be close to zero). This can be

seen by setting K T�
ð Þ=X ¼ �=ð�� 1Þ and noting that

� Tð Þ > � and � Tð Þ=ð� Tð Þ � 1Þ < �=ð�� 1Þ so that

�

�� 1

� T�
ð Þ � 1

� T�ð Þ
¼

1� e�rT�

N d2 K , �,T�
ð Þð Þ

1� e��T�

N d1 K , �,T�ð Þð Þ
¼ h T�

ð Þ > 1

e�rT�

N d2 K , �,T�
ð Þð Þ < e��T�

N d1 K , �,T�
ð Þð Þ

since � T�
ð Þ>� and therefore � T�

ð Þ=ð� T�
ð Þ � 1Þ<�=ð�� 1Þ:

Since N d1ð Þ>N d2ð Þ there is a critical time T� where the
BAWM threshold crosses the Merton threshold and
BAWM will yield an inconsistent critical price. Note that
this result does not hold if r < � when there is no finite time
that satisfies the critical equation.
Figure 2 shows the BAWM critical threshold as a

function of time T for X , r, �, �ð Þ ¼ 100, 10%, 4%, 20%ð Þ:
Note that it crosses the Merton perpetual threshold at
about 5 years. Therefore it will yield prices higher than
the Merton formula that only converge towards it from
above (shown in Fig. 1, these cross the Merton level at
T¼ 10). This would make BAWM of no practical value
in assessing stopping levels for real options of long matur-
ity since it would seemingly be advantageous to wait
beyond the perpetual option stopping level!

IV. GESKE–JOHNSON APPROXIMATION

Linear separation

Using other option prices that are simpler to evaluate,
Geske–Johnson (1984) produced an approximation tech-
nique for American options. Themethod effectively assumes
that the American option is the limit of a Bermudan

7
ð1� e�rT

Þð@k=@ð1� e�rT
ÞÞ � 0 is satisfied either if T is large, @k=@ð1� e�rT

Þ � 0 or T small ð1� e�rT
Þ � 0:

BAWM, C(int) and Numerical American Price Estimates

30

35

40

45

50

55

60

65

0 10 20 30 40 50 60 70

Maturity (year)

P
ri

ce

BAWM

Merton

Numerical

C(int)

Fig. 1. Price estimates (BAWM, Metron, Numerical and CT
� (int)) for (S, X, r, �, �)¼ (120, 100, 0.10, 0.04, 0.20)
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(periodically exercisable) price which itself can be priced
as a separable function of its time to maturity and inter-
exercise time. Two point GJ pricing further assumes that
the Bermudan (periodically exercisable) price is linear in
interexercise time.

Here we assume that the true American price CT
� trueð Þ

function is approximated by a formula CT
� linð Þ that is

linearly separable in two (initially arbitrary) positive
functions f Tð Þ, g �ð Þ of T , �ð Þ

CT
� trueð Þ � CT

� linð Þ ¼ C1
0 � f Tð Þ � g �ð Þ ð1Þ

lim
T!1

f Tð Þ ¼ 0 lim
�!0

g �ð Þ ¼ 0

f , g can be recovered by calibration from known limiting
American prices at T ! 1 and � ! 0

f Tð Þ ¼ C1
0 � CT

0 g �ð Þ ¼ C1
0 � C1

�

thus yielding the closed form two point approximation
scheme

CT
� trueð Þ � CT

� linð Þ ¼ C1
� þ CT

0 � S

¼
X

�� 1

� �1��
S

�

� ��

þSN d1ð Þ � Xe�rTN d2ð Þ � S

ð2Þ

One problem with this additive method is that it may
yield negative values for option prices, although exercise
for a zero value would seemingly be a better strategy, this is
still an unsatisfactory result so other assumptions were
explored.

Multiplicative separation

The second method, CT
� multð Þ assumes multiplicative

separation. If the log of the option price is additively
separable in f 0 Tð Þ, g0 �ð Þ rather than the price itself, a
multiplicative formula will arise that corresponds to that
of Ho et al. (1994), (again the maximum of the option
price and the payoff are preferred)

CT
� trueð Þ � CT

� multð Þ ¼ f 0 Tð Þ g0 �ð ÞC1
0 ¼

C1
� CT

0

S
ð3Þ

This formula benefits from the fact that it cannot produce
negative option prices.

Interpolated linear and multiplicative form

The third and preferred possibility CT
� intð Þ is to make

an assumption about the slope of the surface CT
� trueð Þ.

Assuming that the derivative of the surface satisfies
the following condition (slopes are a constant multiple
across �)8

CT
� trueð Þ � CT

� intð Þ ð4Þ

@C�
� intð Þ

@�
¼ a

@C�
0 intð Þ

@�

CT
� intð Þ ¼ C0

� þ

Z T

0

@C�
�

@�
d� ¼ C0

� þ a CT
0 � C0

0

	 

and calibrating a ¼ ðC1

� � C0
� Þ=ðC

1
0 � C0

0Þ atT ! 1 yields
the third, interpolated, approximation form

CT
� intð Þ ¼

C1
0 � CT

0

C1
0 � C0

0

C0
� þ

CT
0 � C0

0

C1
0 � C0

0

C1
� ð5Þ

8 It is also possible to assume the following

@C1
D

@D
¼ b

@CT
D

@D
which will generate another form of interpolated result.

American Early Exercise Thresholds for BAWM & C(int) Approximations
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Fig. 2. Critical excercise thresholds estimated for BAWM, Merton and CT
� (int) all for (X, r, �, �)¼ (100, 0.10, 0.04, 0.20)
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The Zero Volatility lower bound was also used to improve
this approximation result, which since C0

0 ¼ C0
� ¼ S � Xð Þ

þ

and C1
0 ¼ S yields

CT
� intð Þ

¼ max
CT

0 C
1
� �max S �X , 0ð Þ CT

0 þC1
� � S

� �
min S,Xð Þ

, IV

 !

¼

max
CT

0 C
1
� � S�Xð Þ CT

0 þC1
� � S

� �
X

, IV

 !
S > X

max
CT

0 C
1
�

S
, IV

� �
S4X

8>>>>><
>>>>>:

Since this interpolated form CT
� intð Þ has a different form

for S?X it has better overall performance than either the
linear CT

� linð Þ or multiplicative CT
� multð Þ separation cases.

Consequently in Table 2 the results against the benchmark
numerical procedure are reported for it CT

� intð Þ alone.

V. NUMERICAL RESULTS

Benchmark method

Numerical price estimates were obtained using a bino-
mial tree approach with two modifications. First, Black
Scholes values were inserted into the penultimate grid
point before expiry allowing more accurate use of a closed
form solution for one extra grid point subsuming the expiry

point and thus use one fewer approximate interim point

(Binomial Black–Scholes or BBS). The second amendment

is to then use Richardson extrapolation (see GJ for this

method) to improve American prices at each point on the

grid from previously derived estimates on the grid. This

Binomial Black–Scholes–Richardson extrapolation version

is known as the BBSR method. Benchmark numerical

values are typically estimated using 10 000 steps per year

so we followed this convention for the values in this note.

Results

Table 2 shows the benchmark prices with the percentage

error of the approximate methods of BAWM (upper) and

this note (CT
� intð Þ lower). Both methods converge to the

true price scheme in the zero dividend and infinite maturity

cases, However, the new method performs better than

BAWM in the long maturity and low yield cases. In the

columns for T ¼ 32, 64 years the percentage errors are

lower for the new method cases compared to BAWM.

Thus the new formula is more appropriate than BAWM

for approximating the price of American option situations

where the time to maturity is greater than about 16 years.

Figure 1 shows one cross-section from Table 2 (� ¼ 4%).

It clearly indicates that the BAWM yields prices that

can exceed the Merton perpetual solution. Furthermore,

Fig. 2 shows that using the BAWM method to solve for

the critical boundary can yield thresholds that are above

the perpetual boundary. The proposed new method

Table 2. Numerical price estimates and BAWM, CT
� (int) percentage price errors by time and yield

Time Dividend yield Infinite T¼ 64 T¼ 32 T¼ 16 T¼ 8 T¼ 4 T¼ 2

� ¼ 0% 120.00 119.83 115.93 99.98 75.74 54.11 36.26
BAWM 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%
CT

� intð Þ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

� ¼ 1
2
% 101.5 101.5 100.16 90.83 71.15 51.86 38.15

BAWM 0.0% 11.8% 9.7% 3.1% 0.4% 0.0% 0.0%
CT

� intð Þ 0.0% �0.1% �2.4% �6.6% �8.4% �8.1% �6.7%

� ¼ 1% 89.52 89.52 89.01 82.67 66.75 49.66 37.06
BAWM 0.0% 14.5% 15.0% 6.3% 1.1% 0.1% 0.0%
CT

� intð Þ 0.0% �0.1% �2.6% �8.5% �12.0% �12.0% �9.9%

� ¼ 2% 73.36 73.36 73.05 69.31 58.62 45.44 34.92
BAWM 0.0% 12.9% 19.0% 11.0% 3.0% 0.4% 0.0%
CT

� intð Þ 0.0% �0.1% �2.6% �9.6% �15.1% �15.9% �13.3%

� ¼ 4% 53.09 53.09 52.89 50.94 45.37 37.76 30.86
BAWM 0.0% 6.1% 16.1% 14.3% 6.3% 1.7% 0.3%
CT

� intð Þ 0.0% �0.1% �2.2% �8.8% �15.3% �17.1% �14.5%

� ¼ 8% 32.31 32.31 32.25 31.67 29.93 27.20 24.39
BAWM 0.0% 0.6% 4.5% 7.7% 5.9% 3.0% 1.2%
CT

� intð Þ 0.0% �0.1% �1.4% �5.8% �10.2% �11.0% �8.3%

� ¼ 16% 20.38 20.38 20.38 20.38 20.34 20.21 20.05
BAWM 0.0% 0.1% �0.1% �0.4% �0.4% �0.2% �0.1%
CT

� intð Þ 0.0% 0.1% �0.1% �0.4% �0.6% �0.4% 0.1%

American and Real Option approximations 715

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
N
a
t
i
o
n
a
l
 
T
a
i
w
a
n
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
0
2
:
4
8
 
1
1
 
S
e
p
t
e
m
b
e
r
 
2
0
0
8



CT
� intð Þ, also shown on both graphs, does not suffer from

this problem.

VI. CONCLUSION

American and Real option pricing problems although

generally difficult to solve have two well known asymptotic

solutions. GJ interpolation can use these to estimate the

unknown interior of the price surface. The approximation

forms derived are all analytic and asymptotically correct

for large T or small �:
The comparative statistics of these approximations are

easily derived because they are in explicit closed for unlike

the BAWM method. Furthermore the methods derived

here do not suffer from the same problem as the BAWM

method, they always converge from the correct side, unlike

BAWM when r > �: For long maturities (about five years),

they thus offer ease of implementation compared to both

BAWM and numerical techniques and advantages of

accuracy compared to the former.

Finally, whereas most numerical methods infer the price

of longer maturity American options from shorter ones,

the asymptotic long maturity approximation here could

be used as a seed to numerically estimate shorter maturity

prices from longer ones! Any error introduced by this

asymptotic approximation of the long maturity seed

would be no more onerous than that introduced when

the first finite American option price at the first time step

is estimated from a discrete step to maturity. Increased

accuracy would demand either a smaller first time

step when working from short to long maturity or a

longer initial maturity when working from long to short

maturities.
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