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Abstract

We derive a new formula for Asian options with floating strike,
which proves more accurate for both low and higher volatility values.
Average Strike Options are less often considered in the literature be-
cause their valuation is more complex. Compared to a benchmark our
analytical formula is very efficient in the sense of accuracy vs speed,
whereas numerical methods: Monte-Carlo, numerical integration of
the partial differential equation or numerical inversion of the Laplace
transform all require considerable calculating time.
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1 Introduction and motivation

About 10 years ago financial markets gave rise to a new generation of options
called “Asian.” These options, first traded over the counter, met particular
hedging needs of treasurers, corresponding to the entire budgetary period
and not only that of the end of the period. Asian options payoff is based on
the average price of a commodity or exchange rate observed during a given
period of time. Such payoffs cannot be obtained by combining other hedging
techniques and financial instruments such as standard options, futures or
forwards. Moreover, most “Asians” are less expensive, which confers an
additional advantage compared to traditional or some other exotic options.
This is because the volatility of an average is lower than the volatility of the
underlying asset.

The majority of traded Asian options are of European-style. As empha-
sized by Kemna and Vorst (1990), the reason is that a possibility of exercise
before the expiration date would make the contract more vulnerable to price
manipulation. Depending on the use of the average in the contract, one can
distinguish two types of Asian options:

• Average Price Options (APO) are Asian options where the average
relates to the underlying asset and the strike is fixed in advance.

• Average Strike Options (ASO) are Asian options where the average
relates to the strike price. The payoff is determined by the difference
between the underlying and its average. Average Strike Options are
also known as floating strike options.

Explicit formula for all moments of an arithmetic continuous average
Aτ of log-normal variates up to time τ has been obtained by Geman and
Yor (1993). The fundamental Asian option valuation problem is that there
are infinitely many moments of Aτ and, worse, knowledge of all moments is
not equivalent to knowing the probability law of the average. This is why
analytical approximations or numerical procedures are ultimately necessary.

The valuation of APOs has been considered by many authors. Geman
and Yor (1993) also derive a closed form formula for an “in-the-money” APO
call and a Laplace transform of the option premium for “at-the-money” and
“out-of-the money” cases. However as emphasized by Fu, Madan and Wang
(1998) and Temam (1998), numerical inversion of the Laplace transform
is time-consuming and not numerically stable, especially for low values of
volatility σ < 20%. Levy (1992) employed Wilkinson approximation to ob-
tain a formula for an APO call. Turnbull and Wakeman (1991) in their
algorithm assumed that Aτ is log-normal. Recently, the limiting case of a
perpetual average A∞ has been considered by Milevsky and Posner (1998a)
and (1998b) and an analytic formula obtained, but only for the case of neg-
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ative cost of carry.1 This is not surprising because A∞ has a well known,
reciprocal gamma distribution, which was first noticed by Yor (1993). At-
tempts has also been made, e.g. Hansen and Jorgensen (2000), to extend var-
ious analytical approximations to finite-lived, American-style Asian APOs.
Finally, direct numerical methods for ASOs are abundant and fall in the
range of either Monte-Carlo or quasi-Monte-Carlo simulations2 or solving
numerically the partial differential equation satisfied by an Asian APO.3

Analytical valuation methods for Average Strike Options are much less
abundant because the problem is complex. Alziary et al. (1997) provide the
put-call parity relations between APOs and ASOs but this is not sufficient
to transform an ASO valuation into an APO valuation. This is because
the relation ties simultaneously an ASO call and an ASO put. Indeed, to
compute a premium of an ASO one must know the joint probability law
of the couplet {Aτ , Sτ}, where Sτ is the last price of the underlying asset
observed in the averaging period of length τ . This is in contrast to APOs,
where knowing the law of the average Aτ is enough.

In their seminal paper Bouaziz, Briys and Crouhy (1994) used linear
approximation technique approximating the true law of {Aτ , Sτ} by a joint
log-normal distribution. The only available closed-form formula for ASOs
has been obtained by Conze and Visvanathan (1991), but only for geometric
averages Agτ . Not surprisingly, the pair {Agτ , Sτ} comprising the geometric
mean Agτ is joint log-normally distributed. This is why the formula provided
by Bouaziz et al. (1994) can be seen as relying to some extent on a geometric
type of approximation. Good approximations are obtained for relatively
small values of volatility. Not surprisingly, for higher volatility values, the
same order of error can be observed if one uses exact Conze and Visvanathan
(1991) geometric ASO pricing formula to value an arithmetic ASO Asian
option.

In this paper we incorporate second order terms into the probability
law approximation of the couplet {Aτ , Sτ}. Our closed-form formula is no
longer based on geometric approximation and, compared to a benchmark,
yields far more accurate results, even for higher values of volatility. As
a benchmark we use accurate numerical values obtained via Monte-Carlo
simulations. Our quadratic method can be extended to incorporate further
expansion terms yielding a family of closed-form formulas converging to the
true value. Finally, the approach can be applied to similar derivative pricing
problems when no solution exists.

The paper is organized as follows: in section 2 we introduce the Asian

1Continuous-time adjusted cost of carry is r − σ2

2
− δ < 0, where r, δ are risk-free and

dividend rates respectively.
2See Boyle et al. (1997), Broadie and Glasserman (1996), Joy et al. (1996), Grant et

al. (1997) and references therein.
3See Schreve and Večer (2000), Alziary et al. (1997) or Rogers and Shi (1995) and

references therein.
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option pricing setup and summarize existing results. In sections 3 and 4
we derive our quadratic pricing formula for floating strike Asian options.
Section 5 focuses on computational details of our derivation. Section 6
stress tests the quadratic approximation against Monte-Carlo benchmark.
Finally section 7 concludes.

2 Pricing average strike option

We assume that assumptions underlying Black-Scholes (1973) model hold.
The market is perfect and complete, trades take place continuously. There
exists risk-free asset paying continuous flow at rate r > 0 per unit of time.
The price of the underlying asset (the “stock”) evolves, under the risk-
neutral martingale measure Q, according to the stochastic differential equa-
tion

dSt = St (r dt+ σ dWt) S0 > 0 (1)

where Wt is standard Brownian motion under Q. The volatility σ > 0 is
constant.

An Asian option contract is signed at time t = 0 and expires at maturity
T > 0. The arithmetic average A is a claim, the value of which can be
computed at maturity T , given the history of prices from time t0 < T . In
general, t0 can also take negative values. Let D > 0 denote the duration of
the averaging

D , T − t0 (2)

Three cases are of interest. If T = D, the computation of the average
A corresponds to the whole life of the Asian option, in which case such a
contract is termed a plain vanilla option. If T > D, the option is of forward
starting type. Finally, if T < D, we have an in progress averaging Asian
option and t0 < 0.

Before maturity, t < T , the average A is not Ft-measurable. This fea-
ture is taken into account defining an Ft-measurable partial averageAt, the
computation of which ends at time t such that t ≤ T

At ,
1
D

∫ t

t0

Sudu (3)

The value of the arithmetic average A at maturity can now be defined as
A , AT .

An average strike Asian option (ASO) is defined by its payoff at maturity
which is a non-negative function of the terminal value of the stock, ST , and
the terminal value of the arithmetic average A. Payoffs for an average strike
Asian call we have

casoT = (ST −AT )+ (4)
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According to Ingersoll (1988), the price of an Asian option prior to maturity
is a function of time t and two state variables: the partial average At and
the stock price St

casot , c (At, St, t) (5)

satisfying a partial differential equation4 subject to boundary conditions.
Equivalently, the price of an average strike option can be seen as a risk-
neutral expectation of the terminal payoff (4) discounted using the risk-free
rate

casot = e−r(T−t)E
[
(ST −AT )+

∣∣Ft] (6)

where 0 ≤ t ≤ T and E denotes risk-neutral expectation under the martin-
gale measure Q. Using the well known “tower law” it is then straightforward
to rewrite (6) as

casot = e−r(T−t)E
{

E

[
(ST −AT )+

∣∣Ft0]∣∣Ft} (7)

Finally, representing ST in (7) as the solution to stochastic differential equa-
tion (1) with boundary condition St0 > 0, we obtain

casot = e−r(T−t)E
{
St0E

[
(ξ (t0, T ))+

∣∣Ft0]∣∣Ft}
where

ξ (t0, T ) , er̃D+σ(WT−Wt0) − 1
D

∫ T

t0

er̃(u−t0)+σ(Wu−Wt0)du (8)

and

r̃ , r − σ2

2

Bouaziz et al. (1994) linearize both exponential terms present in (8) accord-
ing to Taylor series expansion

er̃∆t+σ∆W ≈ 1 + r̃∆t+ σ∆W (9)

where ∆t is either equal to D or u − t0 and ∆W corresponds to either
(WT −Wt0) or (Wu −Wt0). Such approach assumes that all terms r̃∆t +
σ∆W are small. In order for this first order approximation to hold, this
means that:

4See Ingersoll (1988). As compared to the Black-Scholes partial differential equation,
it will involve one supplementary term D−1St ∂c/∂At. The partial average At plays a
role of an extra state variable and a fortiori generates partial differentiation with respect
to the partial average At.
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1. Interest rate r should be comparable to the “speed” parameter σ2

2 in
order to make r̃ = r − 1

2σ
2 small;

2. The averaging duration D should be small;

3. The volatility σ should be small.

Using (9) in (8) it is then straightforward to see that an approximated
linear expression for ξ (t0, T ) will be normally distributed with volatility σ
entering the resulting expression linearly, as a constant of proportionality.
This linear approximation has conditional expectation and variance equal
to

m =
r̃D

2
(10)

ν =
σ2D

3
(11)

Once the conditional expectation m and variance ν are “matched,” it is
then straightforward to obtain the following pricing formula for plain-vanilla
and forward-starting average strike Asian options5

casot = Ste
−r(T−t)

[
mN

(
m√
ν

)
+
√

ν

2π
e−

m2

2ν

]
(12)

into which appropriate values of m and ν must be inserted. The price does
not depend here on the average At because for t ≤ t0 its “calculation” has
not started yet. For plain-vanilla option t = t0 = 0 and St = S0.

Linear approximation (9) introduces errors in the sense that the original
distribution of ξ (t0, T ) is not normal and, secondly, one will then in some
sense rely only on the two first moments, m and ν, of the random variable
ξ (t0, T ). Moreover, the moments m and ν are themselves a first order
approximation of the true moments. Our approach corrects this error of
“second kind.” This is done in the next two sections.

3 Enhanced linear approximation

Linear approximations (10) and (11) for m and ν do very well when precision
is sought for very low values of averaging duration D and, simultaneously,
for interest rate r comparable to the speed parameter σ2

2 . In order to relax
these two constraints we proceed with the following, enhanced linearization
scheme

er̃∆t+σ∆W ≈ er̃∆t (1 + σ∆W ) (13)

5Bouaziz at al. (1994) also provide a formula for in progress averaging Asian call.
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where ∆W corresponds to either (WT −Wt0) or (Wu −Wt0). Our approach
preserves the exponential terms exp (r̃D) and exp [r̃ (u− t0)] from being de-
veloped, thus allowing the averaging duration D to be large and the interest
rate r to be different from the speed parameter σ2

2 .
Notice that the conditional mean of ξ (t0, T ) depends only on the length

of the averaging period D. The same will hold for conditional variance of
ξ (t0, T ). Applying our enhanced linear approximation (13) to (8) we obtain

ξ1 = er̃D − er̃D − 1
Dr̃

+ σ

[
er̃DWD −

1
D

∫ D

0
er̃uWudu

]
Defining

x , r̃D

the mean of ξ1 i.e. m1 , E [ξ1] can be written as

m1 =
ex (x− 1) + 1

x
(14)

Further computations show that the variance ν1 , E

[
(ξ1 −m1)2

]
is equal

to

ν1 = σ2D
e2x [2x (x (x− 2) + 3)− 3]− 4ex (x− 1)− 1

2x3
(15)

As expected, it is now straightforward to verify that for very small r̃D, the
first order Taylor series expansion of m1 and the zeroth order Taylor series
expansion of ν1 in x = r̃D around x = 0 will yield m and ν as given by the
“straight” approximations (10) and (11)

m1 =
1
2
x+ o

(
x2
)
≈ r̃D

2

ν1 = σ2D

[
1
3

+ o (x)
]
≈ σ2D

3

Enhanced linear approximation does well for small values of volatility σ. As
can be seen on Figure 1. For σ < 45% the enhanced parameters m1 and ν1

improve the approximation as compared to “straight” parameters m and ν.
However, for higher values of volatility the enhanced linear approximation
is no longer accurate. Straight approximation does slightly better for higher
values of σ but the actual picture is that both straight and enhanced linear
approximations largely underestimate benchmark values.

Approximation error is not only due to volatility σ taking higher values.
Linearization methods assume that terms such as σWu for u ≤ D and in
particular σWD are small. This means in turn that the volatility σ and the
two Brownian terms Wu, WD should be small. However, when the averaging
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period D becomes large this is no longer true as variances of these two terms,
σ2u and σ2D, are linearly increasing with time and quadratically increasing
with volatility.

In order to incorporate these two effects — the first being linked to larger
volatility and the second to the length of averaging — in the next section
we will consider quadratic expansions.

4 Quadratic approximation formula

Intuitively — although far from being a perfect solution — incorporating
higher order terms should once again improve the approximation, allowing
for longer averaging periods D and higher volatilities σ. Instead of expansion
(13) we will now use6

er̃∆t+σ∆W ≈ er̃∆t
[
1 + σ∆W +

1
2

(σ∆W )2

]
(16)

in (8). As before we are interested in the first two moments of a random
variable ξ2, which will depend on the length D of the averaging period. Vari-
able ξ2 has the same distribution as the right hand side of equation (8) for
the original ξ (t0, T ), in which exponential terms are expanded quadratically
according to (16). We obtain

ξ2 = ξ1 +
σ2

2

[
er̃DW 2

D −
1
D

∫ D

0
er̃uW 2

udu

]
(17)

In equation (17) the right hand side contains non-random, normally dis-
tributed and chi-square distributed terms. Moreover, the last term inte-
grates chi-square distributed variates. It is not at all obvious what the law
of this sum of chi-square and Gaussian normal variates is. In other words
the distribution of ξ2 — as compared to the distribution of ξ1 — is not
normal. However, our goal is here to improve the accuracy of inputs m and
ν for the general pricing formula (12) obtained under assumption of normal-
ity, rather than deriving a brand new formula for an auxiliary and peculiar
distribution. Therefore in what follows we will focus on obtaining the con-
ditional first two moments, the mean m2 and the variance ν2, necessary for
our quadratic expansion.

The expected value of ξ2 is equal to m1 plus a quadratic correction,
depending not only on x = r̃D but also on volatility σ

m2 , E [ξ2] = m1 +D
σ2

2
ex (x (x− 1) + 1)− 1

x2
(18)

6Note that ∆W is a finite increment of Brownian motion and thus (∆W )2 6= dt i.e. we
cannot use Itô’s lemma.
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where m1 is given by (14). The variance of ξ2 is equal to

ν2 , E

[
(ξ2 −m2)2

]
(19)

= ν1 +D2σ4 e
2x (2x (x (x (x− 2) + 5)− 7) + 7) + 8ex (x− 1) + 1

4x4

where ν1 is given by (15).
The quadratic approximation formula obtains by plugging the new con-

ditional mean and variance m2 and ν2, given by (18) and (19) respectively,
into the approximative formula (12). Our quadratic method yields far more
accurate results than any of either the “crude” linear method initially ob-
tained by Bouaziz et al. (1994) or our enhanced linear method. Accuracy
is satisfactory for low and medium values of volatility up to 50%. This
has been illustrated on Figure 1. The next section focuses on computations
necessary to obtain m2 and ν2, after which we numerically compare our
formulation with benchmark values.

5 Computational technique

Computation of means m1 and m2 as well as variances ν1 and ν2 is straight-
forward because it relies on basic properties of Wiener process W . However,
simplifications may become quite tedious. Computer algebra packages such
as Mathematica or Maple can be employed to check the derivation. In what
follows we give a brief idea of computation complexity involved.

The higher the order of the approximation, the more complex the com-
putational task becomes. For instance, once the quadratic approximation
mean, m2, was obtained, the last step involves the computation of variance
ν2 given by:

ν2 = E

[
(ξ2 −m2)2

]
(20)

Using quadratic expansion (16) and the quadratic mean m2 given by (18)
in the definition of quadratic variance (20), after cancelling m1 terms we
obtain

ν2 = σ4
E

[(
er̃D

σ
WD −

1
σD

∫ D

0
er̃uWudu

+
er̃D

2
W 2
D −

1
2D

∫ D

0
er̃uW 2

udu− γ

)2]
(21)

where the free term γ is equal to

γ =
D

2

[
er̃D − 1 + er̃D (r̃D − 1)

(r̃D)2

]
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We can see that expression (21) involves raising to the second power a sum
of 5 terms, which in turn will generate a sum of 15 terms. Next steps
involve taking Q-expectations of each of 15 terms, computing the remaining
exponential integrals, collecting terms and simplifying so as to obtain (19).
Some of cross terms will cancel i.e. in particular those involving powers of
Wiener process W of odd orders. For example the expectation of the cross
term

−2
(

1
σD

∫ D

0
er̃uWudu

)(
er̃D

2
W 2
D

)
is zero because E

[
WuW

2
D

]
= 0 which is a basic consequence of the inde-

pendence property for non-overlapping increments of Brownian motion. As
D > u we have

E

[
WuW

2
D

]
= E

[
Wu (WD −Wu +Wu)2

]
= E

[
Wu

(
(WD −Wu)2 + 2 (WD −Wu)Wu +W 2

u

)]
= E [Wu] E

[
(WD −Wu)2

]
+2E [WD −Wu] E

[
W 2
u

]
+ E

[
W 3
u

]
= 0

because E [Wu] = 0, E [WD −Wu] = 0 and E

[
W 3
u

]
= 0.

Terms of even order in powers of Wiener process W will in general not
vanish. For example the correlation term involving the integral of “dis-
counted” square of Wiener process W can be written as

E

[(
1

2D

∫ D

0
er̃uW 2

udu

)2
]

=
1

4D2
E

[(∫ D

0
er̃uW 2

udu

)(∫ D

0
er̃tW 2

t dt

)]
=

1
4D2

(∫ D

0
er̃u
(∫ D

0
er̃tE

[
W 2
uW

2
t

]
dt

)
du

)
(22)

Where now the expectation E

[
W 2
uW

2
t

]
involves powers of Wiener process

of even order. For t > u > 0 we have

E

[
W 2
uW

2
t

]
= E

[
W 2
u ((Wt −Wu) +Wu)2

]
= E

[
W 2
u

(
(Wt −Wu)2 + 2Wu (Wt −Wu) +W 2

u

)]
= E

[
W 2
u

]
E

[
(Wt −Wu)2

]
+2E

[
W 3
u

]
E [Wt −Wu] + E

[
W 4
u

]
= u (t− u) + 3u2

= ut+ 2u2
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We conclude that, in general case of any u > 0 and t > 0

E

[
W 2
uW

2
t

]
= ut+ 2 (u ∧ t)2

where u ∧ t = min {u, t}. We can now easily compute the internal integral
in (22) as ∫ D

0
er̃tE

[
W 2
uW

2
t

]
dt

=
∫ D

0
er̃t
[
ut+ 2 (u ∧ t)2

]
dt

= u

∫ D

0
ter̃tdt+ 2

[∫ u

0
t2er̃tdt+ u2

∫ D

u
er̃tdt

]
=
r̃u
(
er̃D (r̃ (2u+D)− 1)− 4er̃u + 1

)
+ 4

(
er̃u − 1

)
r̃3

Finally, computing the external integral in (22) yields

E

[(
1

2D

∫ D

0
er̃uW 2

udu

)2
]

=
1

4D2

e2r̃D (r̃D (3r̃D − 8) + 8) + 2er̃D (r̃D − 5) + 2
r̃4

Other computations are very similar in character to those presented above,
sequentially yielding m1, ν1, m2 and ν2.

6 Quadratic formula vs benchmark

The price estimates of floating strike options are obtained using Monte Carlo
simulation with antithetic variables and control variate reduction techniques.
Optimal parameter α? has been chosen so as to decrease the standard de-
viation of the price estimates (comparing with using α = 1 in the control
variate technique). The simulation is very precise as the highest standard
deviation of the price estimates was equal to δ = 0.08% of the estimated
option price for volatility σ = 1.

Since our standard deviation is very small (due to the fact that we use
two variance reduction techniques to reduce the standard deviation of price
estimates), the approximation error is very likely larger than 4δ. Instead, we
compute the percentage error (in comparison with the mean) of approxima-
tion value. For low and medium volatility cases (volatility less than 50%),
the errors are within ±2% of the option price, as compared to an undervalua-
tion ranging from −6.66% to −27.84% yielded by crude linear approximation
formula within the same volatility domain. Our values approximate Asian
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floating strike option reasonably well as compared to typical bid-ask spread
plus transaction cost of 0.5%. Comparison with benchmark is presented in
Table 1.

7 Concluding remarks

In this paper we derived an analytical quadratic approximation formula
for Asian options with floating strike. Our results extend those previously
obtained by Bouaziz, Briys and Crouhy (1994).

Our technique illustrates the principle that adding additional Taylor
series expansion terms can significantly increase the accuracy of an option
pricing method, where the probability distribution of the underlying variable
is unknown. Numerical comparison with benchmark values suggests that our
approximation is accurate for low and medium volatility values up to 50%.

Future research could investigate the possibility of applying quadratic
expansion techniques to derivative’s pricing problems where the distribution
of the underlying asset is derived from empirical observations rather than
from theoretical assumptions, as in recent studies of risk-neutral densities.
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Vol. Approximation Error [%] Vol. Approximation Error [%]
σ Quadratic Linear σ Quadratic Linear
0.02 0.000767858 −6.66153 0.32 1.3593 −20.0705
0.04 0.0906345 −7.21022 0.34 1.1062 −20.9645
0.06 0.453462 −8.00031 0.36 0.814977 −21.8511
0.08 0.883893 −8.89112 0.38 0.486226 −22.7299
0.1 1.25898 −9.82092 0.4 0.119586 −23.6012
0.12 1.55355 −10.7663 0.42 −0.285203 −24.4649
0.14 1.77181 −11.7163 0.44 −0.728197 −25.3208
0.16 1.92239 −12.666 0.46 −1.20981 −26.1693
0.18 2.01297 −13.6129 0.48 −1.73028 −27.0103
0.2 2.05028 −14.5553 0.5 −2.29001 −27.8438
0.22 2.03958 −15.4918 0.52 −2.88905 −28.6698
0.24 1.9847 −16.4217 0.54 −3.52786 −29.4886
0.26 1.88775 −17.3447 0.56 −4.20658 −30.3001
0.28 1.75032 −18.2608 0.58 −4.92482 −31.104
0.3 1.57422 −19.1692 0.6 −5.68298 −31.9007

Table 1: Comparison of relative errors [%] as compared to benchmark values
(Monte-Carlo simulation with two variance reduction techniques) yielded by
quadratic approximation formula and linear approximation formula as given
in Bouaziz et al. (1994).
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Figure 1: Quadratic approximation formula: bold line. Linear approxima-
tion: thin line. Enhanced linear approximation: thin dashed line. S0 = 100,
T = 1, r = 10%.


	Introduction and motivation
	Pricing average strike option
	Enhanced linear approximation
	Quadratic approximation formula
	Computational technique
	Quadratic formula vs benchmark
	Concluding remarks

